首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Guposhan–Huashan district is an important W–Sn–Sb–Zn–(Cu) metallogenic area in South China. It is located in the middle‐west segment of the Nanling Range. Granitoids in the Guposhan–Huashan district possess certain properties of A‐type or I‐type granites. The W–Sn–Sb–Zn mineralization in the district is closely associated with magma emplacement. Two igneous biotite and seven hydrothermal muscovite samples from skarn, veins and greisenization ores were analyzed by Ar–Ar methods. Two igneous biotite samples from fine‐grained quartz monzodiorite and fine‐grained biotite granite show plateau ages of 168.7 ± 1.9 Ma and 165.0 ± 1.1 Ma, respectively. Seven hydrothermal muscovite samples from ores yield plateau ages as two groups: 165 Ma to 160 Ma and 104 Ma to 100 Ma. These data suggest that the emplacement of fine‐grained granitoids in this district is coeval with the main phase magma emplacement, different from previous studies. The W–Sn–Sb–Zn mineralization took place in two stages, i.e. the Middle–Late Jurassic and early Cretaceous. W–Sn mineralization in the Guposhan–Huashan district is closely related to the magmatism, which was strongly influenced by underplating of asthenospheric mantle along trans‐lithospheric deep faults and related fractures.  相似文献   

2.
The Qingchengzi orefield in northeastern China, is a concentration of several Pb–Zn, Ag, and Au ore deposits. A combination of geochronological and Pb, Sr isotopic investigations was conducted. Zircon SHRIMP U–Pb ages of 225.3 ± 1.8 Ma and 184.5 ± 1.6 Ma were obtained for the Xinling and Yaojiagou granites, respectively. By step-dissolution Rb–Sr dating, ages of 221 ± 12 Ma and 138.7 ± 4.1 Ma were obtained for the sphalerite of the Zhenzigou Zn–Pb deposit and pyrargyrite of the Ag ore in the Gaojiabaozi Ag deposit, respectively. Pb isotopic ratios of the Ag ore at Gaojiabaozi (206Pb/204Pb = 18.38 to 18.53) are higher than those of the Pb–Zn ores (206Pb/204Pb = 17.66 to 17.96; Chen et al. [Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z., Zhang, X., 2005. Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China Series D 48, 467–476.]). Triassic granites show low Pb isotopic ratios (206Pb/204Pb = 17.12 to 17.41, 207Pb/204Pb = 15.47 to 15.54, 208Pb/204Pb = 37.51 to 37.89) and metamorphic rocks of the Liaohe Group have high ratios (206Pb/204Pb = 18.20 to 24.28 and 18.32 to 20.06, 207Pb/204Pb = 15.69 to 16.44 and 15.66 to 15.98, 208Pb/204Pb = 37.29 to 38.61 and 38.69 to 40.00 for the marble of the Dashiqiao Formation and schist of the Gaixian Formation, respectively).Magmatic activities at Qingchengzi and in adjacent regions took place in three stages, and each contained several magmatic pulses: ca. 220 to 225 Ma and 211 to 216 Ma in the Triassic; 179 to 185 Ma, 163 to 168 Ma, 155 Ma and 149 Ma in the Jurassic, as well as ca. 140 to 130 Ma in the Early Cretaceous. The Triassic magmatism was part of the Triassic magmatic belt along the northern margin of the North China Craton produced in a post-collisional extensional setting, and granites in it formed by crustal melting induced by mantle magma. The Jurassic and Early Cretaceous magmatism was related to the lithospheric delamination in eastern China. The Triassic is the most important metallogenic stage at Qingchengzi. The Pb–Zn deposits, the Pb–Zn–Ag ore at Gaojiabaozi, and the gold deposits were all formed in this stage. They are temporally and spatially associated with the Triassic magmatic activity. Mineralization is very weak in the Jurassic. Ag ore at Gaojiabaozi was formed in the Early Cretaceous, which is suggested by the young Rb–Sr isochron age, field relations, and significantly different Pb isotopic ratios between the Pb–Zn–Ag and Ag ores. Pb isotopic compositions of the Pb–Zn ores suggest binary mixing for the source of the deposits. The magmatic end-member is the Triassic granites and the other metamorphic rocks of the Liaohe Group. Slightly different proportions of the two end-members, or an involvement of materials from hidden Cretaceous granites with slightly different Pb isotopic ratios, is postulated to interpret the difference of Pb isotopic compositions between the Pb–Zn–(Ag) and Ag ores. Sr isotopic ratios support this conclusion. At the western part of the Qingchengzi orefield, hydrothermal fluid driven by the heat provided by the now exposed Triassic granites deposited ore-forming materials in the low and middle horizons of the marbles of the Dashiqiao Formation near the intrusions to form mesothermal Zn–Pb deposits. In the eastern part, hydrothermal fluids associated with deep, hidden Triassic intrusions moved upward along a regional fault over a long distance and then deposited the ore-forming materials to form epithermal Au and Pb–Zn–Ag ores. Young magmatic activities are all represented by dykes across the entire orefield, suggesting that the corresponding main intrusion bodies are situated in the deep part of the crust. Among these, only intrusions with age of ca. 140 Ma might have released sufficient amounts of fluid to be responsible for the formation of the Ag ore at Gaojiabaozi.Our age results support previous conclusions that sphalerite can provide a reliable Rb–Sr age as long as the fluid inclusion phase is effectively separated from the “sulfide” phase. Our work suggests that the separation can be achieved by a step-resolution technique. Moreover, we suggest that pyrargyrite is a promising mineral for Rb–Sr isochron dating.  相似文献   

3.
诸广山岩体中段鹿井地区矿床周边常有花岗斑岩脉及煌斑岩脉等晚期岩脉产出。钾长石40Ar-39Ar同位素年代学测试结果表明,花岗斑岩脉与煌斑岩脉侵位年龄分别为116.24±0.49 Ma和128.27±0.86 Ma,是早白垩世地壳伸展的岩浆响应。岩脉记录的岩浆活动时代与鹿井矿田铀成矿作用时代具有较好的对应关系。花岗斑岩脉与铀矿石均具有幔源特征,表明以花岗斑岩为代表的酸性岩浆在为铀矿化提供热源的同时可能还提供了部分成矿物质。在铀成矿作用过程中,以煌斑岩为代表的基性岩浆为铀成矿作用提供了热源、矿化剂、流体及动力条件等有利条件。  相似文献   

4.
赣西北大雾塘钨矿区地质特征及Re-Os同位素年代学研究   总被引:2,自引:1,他引:1  
通过对大湖塘钨矿田的大雾塘钨矿区辉钼矿Re-Os同位素年代学的研究,测得辉钼矿的w(Re)为0.3368×10~(-6)~8.256×10~(-6),获得的5个模式年龄比较一致,介于(136.6±2.2)Ma~(138.4±2.4)Ma,加权平均年龄为(137.7±2.7)Ma(MSWD=0.07)。将5个模式年龄进行等时线年龄计算,获得一条相关性较好的~(187)Re-~(187)Os等时线,计算得到辉钼矿Re-Os等时线年龄为(137.9±2.0)Ma(MSWD=0.20),与加权平均年龄一致,可代表辉钼矿的形成年龄。结合石门寺和狮尾洞矿区典型矿床地质、地球化学特征和成岩作用时空关系,认为大雾塘矿床的形成是大湖塘钨矿田的第二期次(140 Ma)大规模成矿作用的产物,2期成矿作用可能是大湖塘钨矿田巨量成矿元素堆积的重要原因之一。  相似文献   

5.
The Ga'erqiong‐Galale skarn–porphyry copper–gold ore‐concentrated area is located in the western part of the Bangong‐Nujiang suture zone north of the Lhasa Terrane. This paper conducted a systematic study on the magmatism and metallogenic effect in the ore‐concentrated area using techniques of isotopic geochronology, isotopic geochemistry and lithogeochemistry. According to the results, the crystallization age of quartz diorite (ore‐forming mother rock) in the Ga'erqiong deposit is 87.1 ± 0.4 Ma, which is later than the age of granodiorite (ore‐forming mother rock) in the Galale deposit (88.1 ± 1.0 Ma). The crystallization age of granite porphyry (GE granite porphyry) in the Ga'erqiong deposit is 83.2 ± 0.7 Ma, which is later than the age of granite porphyry (GL granite porphyry) in the Galale deposit (84.7 ± 0.8 Ma).The quartz diorite, granodiorite, GE granite porphyry and GL granite porphyry both main shows positive εHf(t) values, suggesting that the magmatic source of the main intrusions in the ore‐concentrated area has the characteristics of mantle source region. The Re–Os isochron age of molybdenite in the Ga'erqiong district is 86.9 ± 0.5 Ma, which is later than the mineralization age of the Galale district (88.6 ± 0.6 Ma). The main intrusive rocks in the ore‐concentrated area have similar lithogeochemical characteristics, for they both show the relative enrichment in large‐ion lithophile elements(LILE: Rb, Ba, K, etc.), more mobile highly incompatible lithophile elements(HILE: U, Th) and relatively depleted in high field strength elements (HFSE: Nb, Ta, Zr, Hf, etc.), and show the characteristics of magmatic arc. The studies on the metal sulfides' S and Pb isotopes and Re content of molybdenite indicate that the metallogenic materials of the deposits in the ore‐concentrated area mainly come from the mantle source with minor crustal source contamination. Based on the regional tectonic evolution process, this paper points out that the Ga'erqiong‐Galale copper–gold ore‐concentrated area is the typical product of the Late Cretaceous magmatism and metallogenic event in the collision stage of the Bangong‐Nujiang suture zone.  相似文献   

6.
胡国辉  张琪琪  李建锋  张拴宏 《地球科学》2020,45(11):3962-3981
辽东地区中生代岩浆活动强烈,伴随着大规模的金成矿作用.五龙金矿是该地区规模最大的典型石英脉型金矿床,金矿体主要赋存于侏罗纪片麻状花岗岩和早白垩世花岗闪长岩中.因此,该地区中生代岩浆活动对金成矿作用具有显著的制约.选择辽东五龙金矿区片麻状花岗岩和三股流岩体进行岩相学、锆石和独居石U-Pb年代学研究.3个片麻状花岗岩的岩性均为黑云母二长花岗岩,矿物发生强烈的韧性变形,呈定向排列,锆石U-Pb年龄分别为159.2±1.8 Ma、160.2±1.8 Ma和156.1±1.2 Ma,三股流黑云母二长花岗岩样品的锆石U-Pb年龄为123.8±1.2 Ma.花岗岩样品中的独居石矿物学特征和化学组成显示均为岩浆成因,3个片麻状花岗岩的独居石年龄分别为158.1±1.9 Ma、157.5±1.4 Ma和153.5±1.4 Ma,三股流岩体的独居石U-Pb年龄为123.4±1.5 Ma.晚侏罗世片麻状花岗岩的独居石年龄比锆石年龄略小1.1~2.7 Ma,其中2个样品的冷却速率分别为55.56℃/Ma和57.69℃/Ma,表明晚侏罗世岩浆在高温阶段为一快速冷却作用过程,可能经历了快速的地壳抬升事件.锆石和独居石的U-Pb年龄结果表明片麻状花岗岩和三股流岩体分别形成于侏罗纪晚期和白垩纪早期,结合已有研究资料,辽东五龙矿集区主要发生了晚侏罗世和早白垩世两期岩浆活动,与古太平洋板块向欧亚大陆俯冲作用有关,并伴随着早白垩世金矿的形成.   相似文献   

7.
The recently discovered Baizhangyan skarn‐porphyry type W–Mo deposit in southern Anhui Province in SE China occurs near the Middle–Lower Yangtze Valley polymetallic metallogenic belt. The deposit is closely temporally‐spatially associated with the Mesozoic Qingyang granitic complex composed of g ranodiorite, monzonitic g ranite, and alkaline g ranite. Orebodies of the deposit occur as horizons, veins, and lenses within the limestones of Sinian Lantian Formation contacting with buried fine‐grained granite, and diorite dykes. There are two types of W mineralization: major skarn W–Mo mineralization and minor granite‐hosted disseminated Mo mineralization. Among skarn mineralization, mineral assemblages and cross‐cutting relationships within both skarn ores and intrusions reveal two distinct periods of mineralization, i.e. the first W–Au period related to the intrusion of diorite dykes, and the subsequent W–Mo period related to the intrusion of the fine‐grained granite. In this paper, we report new zircon U–Pb and molybdenite Re–Os ages with the aim of constraining the relationships among the monzonitic granite, fine‐grained granite, diorite dykes, and W mineralization. Zircons of the monzonitic granite, the fine‐grained granite, and diorite dykes yield weighted mean U–Pb ages of 129.0 ± 1.2 Ma, 135.34 ± 0.92 Ma and 145.3 ± 1.7 Ma, respectively. Ten molybdenite Re–Os age determinations yield an isochron age of 136.9 ± 4.5 Ma and a weighted mean age of 135.0 ± 1.2 Ma. The molybdenites have δ34S values of 3.6‰–6.6‰ and their Re contents ranging from 7.23 ppm to 15.23 ppm. A second group of two molybdenite samples yield ages of 143.8 ± 2.1 and 146.3 ± 2.0 Ma, containing Re concentrations of 50.5–50.9 ppm, and with δ34S values of 1.6‰–4.8‰. The molybdenites from these two distinct groups of samples contain moderate concentrations of Re (7.23–50.48 ppm), suggesting that metals within the deposit have a mixed crust–mantle provenance. Field observation and new age and isotope data obtained in this study indicate that the first diorite dyke‐related skarn W–Au mineralization took place in the Early Cretaceous peaking at 143.0–146.3 Ma, and was associated with a mixed crust–mantle system. The second fine‐grained granite‐related skarn W–Mo mineralization took place a little later at 135.0–136.9 Ma, and was crust‐dominated. The fine‐grained granite was not formed by fractionation of the Qingyang monzonitic granite. This finding suggests that the first period of skarn W–Au mineralization in the Baizhangyan deposit resulted from interaction between basaltic magmas derived from the upper lithospheric mantle and crustal material at 143.0–146.3 and the subsequent period of W–Mo mineralization derived from the crust at 135.0–136.9 Ma.  相似文献   

8.
煌斑岩在玲珑金矿田形成过程中的地质意义   总被引:5,自引:0,他引:5  
玲珑金矿田发育的金矿脉以黄铁石英脉为主.发育的含金石英脉在时空及成因方面与煌斑岩脉有密切联系.在空间上,煌斑岩脉与黄铁石英矿脉呈小角度相交,且大都错断矿脉.在时间上,同位素测年显示,煌斑岩脉的形成时间范围较大,一般为80~132Ma,而石英脉的形成主要集中在100~110Ma.通过煌斑岩中金含量测定及高温高压实验,煌斑岩并非是金元素的来源,金元素与煌斑岩在高温高压条件下不相溶,在成因方面,形成矿脉的大部分金元素与煌斑岩脉应同属于地幔物质;地幔岩浆含大量的地幔流体,根据金的化学性质,金易和地幔流体中的Cl-、OH-结合形成络合物,在地幔岩浆上侵过程中随地幔流体上升到地壳上部,并在适当的位置聚集形成含金石英矿脉,而煌斑岩浆从上侵的基性岩浆中分离出来,充填于构造裂隙中,形成煌斑岩脉.  相似文献   

9.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

10.
TheWulong lode deposit contains over 80 tonnes of gold with an average grade of 5.35 g/t.It is one of the largest deposits in Dandong City,Liaoning Province in northeast China.Previous studies on the deposit focused on its geological characteristics,geochemistry,fluid inclusions,and the timing of gold mineralization.However,controversy remains regarding the origin of the ore-forming fluids and metals,and the genesis of the gold deposit.This paper presents zircon UePb and pyrite RbeSr ages and S,Pb,He,and Ar isotopic results along with quartz H and O isotopic data for all litho-units associated with the deposit.Laser ablation inductively coupled mass spectrometry measurements yielded zircon UePb dates for samples of pre-mineralization rocks like granite porphyry dike,the Sanguliu granodiorite,fine-grained diorite,and syn-mineralization diorite,as well as post-mineralization dolerite,and lamprophyre;their emplacement ages are 1261 Ma,1241 Ma,1231 Ma,1201 Ma,1192 Ma,and 1152 Ma,respectively.The pyrite RbeSr isochron age is 1191 Ma,indicating that both magmatism and mineralization occurred during the Early Cretaceous.The d18OH2O values of ore-forming hydrothermal fluids from the quartzepolymetallic sulfide vein stage vary from 4.8&to 6.5&,and the dDV-SMOW values are between67.7&and75.9&,indicating that the ore-forming fluids were primarily magmatic.The noble gas isotope compositions of fluid inclusions hosted in pyrite suggest that the ore-forming fluids were dominantly derived from crustal sources with minor mantle input.Sulfur isotopic values of pyrite vary between 0.2&and 3.5&,suggesting that S was derived from a homogeneous magmatic source or possibly from fluids derived from the crust.The Pb isotopic compositions of sulfides(207Pb/204Pb?15.51 e15.71,206Pb/204Pb?17.35e18.75,208Pb/204Pb?38.27e40.03)indicate that the Pb of the Wulong gold deposit is a mixture of crust and mantle components.Geochronological and geochemical data,together with the regional geological history,indicate that Early Cretaceous magmatism and mineralization of the Wulong gold deposit occurred during the rollback of the subducting Paleo-Pacific Plate,which resulted in lithospheric thinning and the destruction of the North China Craton(NCC),which indicates that the deposit is of magmaticehydrothermal origin.  相似文献   

11.
The 43 t (1.4 Moz) of gold in the Woodcutters goldfield 50 km north of Kalgoorlie has wide geological significance in terms of gold in Archaean granite, as well as its local commercial and exploration significance. Woodcutters is already one of the largest Archaean gold systems in granite, and is unusual in being so far laterally from the nearest greenstone belt. Gold in the Federal zone, one of the deposits making up the Woodcutters goldfield, is hosted in hornblende‐biotite granodiorite,6 km from the mapped contact with greenstone. In Federal open pit, the granodiorite is coarse‐grained in the northern half, and a fine‐grained granodiorite in the south, with both hosting gold. These two types of granodiorite are rather similar in both mineralogy and geochemistry. There is also a subordinate fine‐grained monzodiorite. The Federal gold mineralisation is in a northwest‐striking, northeast‐dipping (315° strike/60°E dip) shear zone in the Scotia granite. Variation in grainsize of the host rocks might have affected the style of deformation with more brittle fabrics in the coarse‐grained phase and more ductile fabrics prominent in the fine‐grained granodiorite. Hydrothermal alteration is extensively developed around the Federal deposit and is a useful vector towards gold mineralisation. Distal epidote alteration surrounds a proximal muscovite‐biotite alteration zone that contains quartz‐sulfide veins. The alteration shares some of the common alteration characteristics of Archaean greenstone‐hosted gold, but differs in that carbonate‐chlorite alteration is only weakly developed. This difference is readily explained in terms of host‐rock composition and lower concentrations of Fe, Mg and Ca in the granite compared with greenstone. Fluid‐inclusion studies demonstrate that the fluids associated with the hydrothermal alteration at Woodcutters shared the common characteristics of fluids in Archaean greenstone gold, namely low‐salinity and dominant H2O–CO2. Fluid inclusions with moderate salinity were found in one fresh sample away from mineralisation, and are inferred to represent possible magmatic fluid. There is no evidence of a granite‐derived fluid being responsible for gold mineralisation. The granodiorite host rock had cooled, crystallised and had at least started to undergo deformation prior to gold introduction. The distribution of gold mineralisation in the Woodcutters goldfield has the style, shape and orientation comparable with greenstone‐hosted gold deposits in the same region. The northwest trend, the quartz veining and simple pyrite mineralogy are all features common to other greenstone‐hosted gold deposits near Kalgoorlie such as Mt Pleasant. The alteration fluid appears to have penetrated the granite on the scale of many hundreds of metres, causing large‐scale alteration. Woodcutters gold mineralisation resulted from the same metamorphic fluid processes that led to formation of greenstone gold deposits. In this metamorphic model, granitic rocks are predicted to be less‐favourable gold hosts than mafic rocks for two reasons. Granitic rocks do not generally fracture during regional deformation in such a way as to create large‐scale dilation. Furthermore, with less iron and no carbon, granitic rocks have lower potential to precipitate gold from solution by wall‐rock reaction. The metamorphic model predicts that those granite types with higher Fe should host better gold deposits, all other factors being equal. Accordingly, tonalite‐trondhjemite and hornblende‐bearing granodiorite should provide better environments for major gold deposits compared with monzogranite, and granite sensu stricto, as borne out by Woodcutters, but mafic rocks should be better hosts than any of these felsic to intermediate rocks.  相似文献   

12.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

13.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and (−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.  相似文献   

14.
The Yingchengzi gold deposit, located 10 km west of Shalan at the eastern margin of the Zhangguangcai Range, is the only high commercially valuable gold deposit in southern Heilongjiang Province, NE China. This study investigates the chronology and geodynamic mechanisms of igneous activity and metallogenesis within the Yingchengzi gold deposit. New zircon U–Pb data, fluid inclusion 40Ar/39Ar dating, whole‐rock geochemistry and Sr–Nd isotopic analysis is presented for the Yingchengzi deposit to constrain its petrogenesis and mineralization. Zircon U–Pb dating of the granite and diabase–porphyrite rocks of the igneous complex yields mean ages of 471.7 ± 5.5 and 434 ± 15 Ma respectively. All samples are high‐K calc‐alkaline or shoshonite rocks, are enriched in light rare earth elements and large ion lithophile elements, and are depleted in high field strength elements, consistent with the geochemical characteristics of arc‐type magmas. The Sr–Nd isotope characteristics indicate that the granite formed by partial melting of the lower crust, including interaction with slab‐derived fluids from an underplated basaltic magma. The primary magma of the diabase–porphyrite was likely derived from the metasomatized mantle wedge by subducted slab‐derived fluids. Both types of intrusive rocks were closely related to subduction of the ocean plate located between the Songnen–Zhangguangcai Range and Jiamusi massifs. However, fluid inclusion 40Ar/39Ar dating indicates that the Yingchengzi gold deposit formed at ~249 Ma, implying that the mineralization is unrelated to both the granite (~472 Ma) and diabase–porphyrite (~434 Ma) intrusions. Considering the tectonic evolution of the study area and adjacent regions, we propose that the Yingchengzi gold deposit was formed in a late Palaeozoic–Early Triassic continental collision regime following the closure of the Paleo‐Asian Ocean. In addition, the Yingchengzi deposit could be classified as a typical orogenic‐type gold deposit occuring in convergent plate margins in collisional orogens, and unlikely an intrusion‐related gold deposit as reported by previous studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
胶东昆嵛山花岗岩的特征、成因及其与金矿的关系   总被引:22,自引:0,他引:22       下载免费PDF全文
昆嵛山花岗岩是牟平—乳山金矿成矿带的围岩,在其成因和定位时代上长期存在争议。本文对岩体地质和地球化学特征进行了系统研究,并就岩体成因及其与金矿的关系进行了讨论。作者认为,昆嵛山花岗岩是在中生代由岩浆缓慢冷凝结晶形成的大型复式岩基,并非交代成因。它由垛崮顶片麻状花岗闪长岩(147Ma)、八门邹家斑状花岗闪长岩(135Ma)、瓦善—水道弱片麻状二长花岗岩及五爪山片麻状含榴二长花岗岩(120Ma)组成,成分具贫铝富碱的特点。岩浆来源于中下地壳中酸性变质火山岩系部分熔融形成的岩浆,其形成温度为650—750℃。岩体经历了韧性和脆性变形作用,不同方向的片麻状构造是岩浆结晶期韧性变形作用的结果。脆性变形形成的断裂和破碎带是本区主要的导矿和容矿构造。花岗岩定位、韧和脆性变形作用与金矿成矿作用有十分密切的关系  相似文献   

16.
The Haenam–Jindo area, located on the southwestern margin of the Korean Peninsula, was the site of vigorous volcanic activity during the Late Cretaceous and Early Tertiary periods. Large parts of the area record strong hydrothermal alteration, and there exist many clay–alunite and gold–silver deposits. We undertook potassium–argon (K–Ar) age dating of five mineral samples (including adularia, sericite and alunite) from the Eunsan, Moisan and Gasado epithermal gold–silver deposits in this area. The purities of the samples were confirmed by X‐ray diffraction analysis. The K–Ar ages of adularia from the Eunsan deposit and adularia and sericite from the Moisan deposit (related to gold–silver mineralization) are 75.0 ± 1.6, 74.7 ± 1.6 and 75.1 ± 1.6 Ma, respectively. The similarity of these ages, combined with the close proximity and similar geochemical characteristics of the deposits, indicates that the mineralization occurred as part of a single hydrothermal system. The K–Ar ages of alunite at the surface and adularia at depth within the Gasado deposit are 82.2 ± 1.9 and 70.7 ± 1.9 Ma, respectively, revealing that the clay–alunite and gold–silver mineralization formed at different ages. K–Ar age data indicate that the gold–silver mineralization in this area occurred mainly at 75–70 Ma, resulting from hydrothermal activity in the Haenam–Jindo area (82–70 Ma). This is the first time that the mineralization of precious metals in Korea has been identified during this period.  相似文献   

17.
刘勇  聂凤军  方俊钦 《矿床地质》2012,31(6):1326-1336
对辽西河坎子地区与碱性杂岩体相关的钼多金属矿床进行了同位素年代学研究。所获黑云母正长花岗岩锆石LA-ICP-MS U-Pb同位素加权平均年龄为(235.3±1.0) Ma,MSWD值为0.68;河坎子钼多金属矿床内辉钼矿的Re-Os同位素等时线年龄为(224.0±1.3) Ma,MSWD值为0.72。碱性杂岩体与相关的钼多金属矿床具有密切的空间关系,两者的形成时间亦比较接近,据此可推测,河坎子碱性杂岩体与相关的钼多金属矿床均为印支期构造-岩浆作用及流体活动的产物。印支期内频繁的岩浆-热液活动为该地区内钼、铜、金多金属元素的活化、迁移、富集提供了充足的热源条件。古大陆内部伸展构造环境中的碱性岩浆作用及流体活动为钼多金属矿床的形成提供了动力、物质和流体来源。  相似文献   

18.
河北省张家口-宣化地区(张宣地区)位于华北克拉通北缘中段,区内自显生宙以来构造活动频繁,并产出大量岩浆岩和金矿床,是研究华北克拉通北缘岩浆-构造-成矿演化体系的重要对象。本文通过对张宣地区的水泉沟正长岩、响水沟似斑状花岗岩、井儿洼粗安岩-英安岩、象山花岗闪长岩、青羊沟黑云母二长花岗岩和张家口组流纹岩的锆石年龄、Lu-Hf同位素和地球化学组成进行研究,结合前人研究成果,获得区内古生代-中生代岩浆岩的侵位时期主要为海西期(峰值398Ma和373Ma)、印支期(峰值234Ma)和燕山期(峰值143Ma和130Ma)。张宣地区在古生代-中生代经历了古亚洲洋俯冲、华北克拉通破坏及古太平洋俯冲过程。早古生代时期,古亚洲洋向华北克拉通俯冲;到泥盆纪,白乃庙岛弧带和华北克拉通北缘发生弧陆碰撞,张宣地区处于弧陆碰撞后的伸展环境,富集地幔岩浆上涌并经历了地壳的同化混染和分离结晶的共同作用,形成大量碱性岩;二叠纪末期-三叠纪,各微陆块相互碰撞,张宣地区处于碰撞后伸展阶段,地幔岩浆引起加厚下地壳的部分熔融,基性、酸性岩浆混合,导致区内的基性岩与酸性岩共存;侏罗纪-白垩纪时期,华北克拉通发生减薄,形成区内大范围的侵入岩和火山岩。张宣地区产有大量金矿、铅锌矿、银矿及少量铜矿和钼矿,金矿集中产于宣化-崇礼-赤城交界处,而银铅锌多金属矿则成群成带环绕金矿化集中区分布。成矿时间主要为海西期和燕山期,印支期成矿尚未明确,但成矿潜力巨大。根据地质特征和同位素组成,可将张宣地区的金矿床划分为"东坪式"、"小营盘式"和"张全庄式"三类。古生代-中生代各时期岩浆活动对金成矿均有贡献,大部分金矿床与海西期和燕山期岩浆活动联系密切,多期次成矿及成矿叠加是形成张宣地区大量金矿床的重要因素。  相似文献   

19.
诸广—贵东地区作为华南热液型铀矿最为重要的花岗岩型铀矿大型矿集区,区内发育了大量与铀矿化作用密切相关的基性岩脉。为了厘定区内基性岩年代学数据,更好地约束铀成矿时限,以诸广中段鹿井地区辉绿岩脉为研究对象,开展了40Ar-39Ar年代学研究。结果表明:辉绿岩全岩40Ar-39Ar同位素年龄为(171.7±1.6)、(169.1±3.8)Ma,反映鹿井地区在中侏罗世(约170 Ma)发生了一次岩石圈伸展裂解作用。诸广—贵东地区至少存在200、170、140、105和90 Ma 5期基性岩浆活动,195、165、125、90、75和55 Ma 6期铀成矿事件,成矿热液往往紧随每次区域性玄武岩事件之后(5~20 Ma),铀成矿与以辉绿岩墙为代表的区域玄武岩事件有紧密的时间、空间和成因联系。辉绿岩脉与成矿构造上的关联性以及来源于地幔的深部岩浆浅部表现形式的成因特点,决定了其可以为铀成矿提供一定的挥发分(矿化剂)和后期铀沉淀富集场所,提高成矿热液对铀的携带能力,进而促进铀的成矿作用。  相似文献   

20.
内蒙古巴音杭盖金矿床稀土元素及同位素研究   总被引:1,自引:0,他引:1  
陈祥  满来 《黄金地质》2000,6(1):38-43
巴音杭盖金矿区分布华力西期斜长花岗岩和下元古界宝音图群的地质。辉绿岩、煌斑岩、花岗斑岩及石英脉形成于华力西期以后。其中辉绿岩和煌斑岩是典型的幔源岩,花岗伟晶岩则是典型的壳源岩。H、O、S、Pb同位素研究表明,来源于地幔的流体有以下两方面的作用:1)促使下部古老岩石中金的活化及壳、幔源岩浆的形成;2)形成迁移金的介质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号