首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
青藏高原是气候变化的敏感区,其积雪在区域水文循环和气候系统中具有重要作用。本文利用1980—2020年逐日无云积雪覆盖遥感数据,分析了该地区近40年的积雪面积、积雪覆盖日数的分布特征和变化趋势。结果表明:青藏高原地区积雪分布具有明显的空间分异和垂直地带性分布特征,阿姆河流域、印度河流域、塔里木盆地、恒河流域、怒江流域和雅鲁藏布江流域的高海拔山区是积雪广泛分布的地区。在水文年内,高原地区积雪覆盖率呈单峰变化,8月上旬积雪面积最小,1月中下旬达到最大,分别占高原总面积的5.2%和38.6%;40年间,高原地区平均积雪面积以3.9×104 km2·(10a)-1的趋势显著减少(P<0.05);积雪覆盖日数以0.47 d·a-1的趋势显著减少,高原71.4%的区域积雪覆盖日数呈减少趋势,呈显著减少的区域约占55.3%;17.1%的区域积雪覆盖日数呈显著增加趋势,且主要分布在5 200 m以上的高海拔山区,在海拔5 200~5 900 m之间的区域,积雪覆盖日数的增加率随海拔升高而增加。  相似文献   

2.
陈蜀江  贾翔  黄铁成  陈孟禹 《冰川冻土》2015,37(6):1650-1659
冰-草生态交错带是陆地生态交错带的重要类型之一, 对其进行有效监测和研究对于生物多样性的保护具有重要意义. 利用2004-2013年近10 a的MODIS10A1数据提取积雪日数, 结合DEM和Landsat影像研究提孜那甫河流域山区的冰-草生态交错带的时空格局及其动态变化. 结果表明: ①近10 a 来交错带的平均面积为5 749 km2, 占研究区总面积的37.83%. ②交错带分布由西南向东北偏移, 在东北坡、东坡分布较西坡和北坡多, 主要分布在海拔4 600~4 900 m的区域; 在坡度大于25°陡坡以上的区域分布较多. ③近10 a间冰-草生态交错带面积总体呈波动上升趋势, 总增长率为10.68%, 年均增长约66.78 km2; 其中2005年和2009年交错带面积较前一年有所明显下降, 而2007年交错带面积上升较为明显; 交错带面积与气温呈强正相关, 与降水呈弱负相关. ④近10 a交错带的平均海拔呈缓慢上升趋势, 2013年的交错带分布的平均海拔较2004年上升了45 m; 而近50 a来研究区高寒草甸带向上爬高了约100 m左右.  相似文献   

3.
祁连山区多年冻土空间分布模拟   总被引:1,自引:1,他引:0  
祁连山区位于青藏高原东北边缘,是亚洲水塔重要的组成部分,多年冻土的变化对生态系统和水资源平衡有着重要影响。基于青藏高原第二次综合科学考察、道路勘察钻孔点以及前人所获得的多年冻土下界资料,回归得出祁连山区多年冻土下界统计模型,借助ArcGIS平台在DEM数据的支持下,模拟出祁连山区多年冻土空间分布图。结果表明:祁连山区多年冻土分布的下界具有良好的地带性规律,表现为随经纬度增加而降低的规律;祁连山区多年冻土在空间分布上呈现出以哈拉湖为中心向四周扩散的分布格局;祁连山区总面积约为16.90×104 km2,其中多年冻土面积约为8.03×104 km2,占总面积约47.51%。多年冻土区与季节冻土区之间存在着有不连续多年冻土分布的过渡区,过渡区面积约1.43×104 km2,占总面积约8.46%。  相似文献   

4.
青藏高原冻融侵蚀敏感性评价与分析   总被引:5,自引:3,他引:2  
冻融侵蚀是我国仅次于水蚀和风蚀的土壤侵蚀类型。青藏高原由于其海拔高、辐射强、气温低的特点,是我国冻融侵蚀较严重的区域。选择影响冻融侵蚀的5个主要因子:气温年较差、降水量、坡度、坡向、植被覆盖度进行定量研究,分析青藏高原冻融侵蚀敏感性强度及空间分布特征。结果表明:(1)青藏高原冻融侵蚀区面积为149.02×104 km2,占青藏高原总面积的62.20%;冻融侵蚀敏感区的面积为56.80×104 km2,中度及以上敏感区面积为27.39×104 km2,占冻融侵蚀敏感区面积的48.22%;(2)冻融侵蚀敏感性空间分布差异明显,中度以上敏感区主要分布在青藏高原南部和东南部、喀喇昆仑山、祁连山、横断山区等地区。  相似文献   

5.
基于辽河流域多目标地球化学调查取得的土壤表层和深层有机碳和全碳数据,探讨辽河流域土壤碳储量计算方法,分析辽河流域碳密度的分布特征.对辽河流域5.23×104 km2土壤碳储量计算表明,深层(0~1.8 m)土壤碳储量为860.50×106 t,中层(0~1.0 m)为538.30×106 t,表层(0~0.2 m)为138.76×106 t;辽河流域土壤深层碳密度为16.45×103 t/km2,中层为10.28×103 t/km2,表层为2.65×103 t/km2.分别根据土壤类型、地质单元、生态系统和土地利用类型的划分方式计算土壤的碳储量,为土壤碳循环研究与环境效应评价提供了科学依据.  相似文献   

6.
祁连山摆浪河全新世冰量变化初探   总被引:2,自引:2,他引:0  
采用祁连山老虎沟12号冰川2009年RTK测量生成的数字高程模型(DEM), 建立现代冰川表面横截面拟合的二次方程, 结合差分GPS测量的冰碛垄形态, 运用于祁连山摆浪河上游14号冰川和16号冰川全新世以来冰量变化的估算. 结果表明: 新冰期以来冰储量减少0.38 km3, 小冰期以来14号冰川和16号冰川的冰储量分别减少0.016 km3和0.047 km3; 根据祁连山全新世各个时期最大冰川范围的时间, 估计了全新世以来14号和16号冰川冰储量的减少速率, 新冰期以来为12.2×10-5~15.0×10-5 km3·a-1, 小冰期以来分别为4.0×10-5~5.3×10-5 km3·a-1, 11.75×10-5~15.7×10-5 km3·a-1.  相似文献   

7.
中国地区地面观测积雪深度和遥感雪深资料的对比分析   总被引:4,自引:1,他引:3  
比较了气象台站观测和卫星遥感(SMMR、 SSM/I、 AMSR-E)的积雪深度两种资料在空间分布、 年际变化及其与中国夏季降水之间关系的异同性.结果表明: 两种资料在积雪稳定区的分布比较一致, 积雪深度的大值区位于东北地区、 新疆北部和青藏高原地区; 对于季节性积雪区且积雪深度不大的区域而言, 二者之间存在着较大的差异, 尤其在江淮流域及长江中下游地区, 台站观测的积雪深度大于遥感得到的积雪深度; 平均而言, 两种资料获得的积雪深度在各地区基本一致.在新疆北部和高原南部, 二种资料的年际变化存在着差异, 在新疆北部, 台站观测大于遥感得到的积雪深度, 而在高原东南部遥感大于台站观测积雪.近30 a来, 两种资料获得的积雪深度在新疆北部和青藏高原的年际变化趋势基本一致, 新疆北部为增加趋势, 青藏高原有减少的趋势.值得注意的是, 在东北地区, 近30 a来两种类型资料的年际变化趋势呈相反变化.两种资料在新疆北部的相关最强; 东北、 青藏高原其次; 而高原东南部最差, 在使用时应加注意.青藏高原地区的两种积雪资料与中国夏季降水的相关"信号"基本一致.青藏高原地区积雪与东北西部地区和长江中下游夏季降水之间的相关最为显著.资料间的差异性并不影响高原地区积雪对中国夏季降水"信号"的应用.  相似文献   

8.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3 km2,是现代冰川面积的4.5倍,冰储量约为274.4 km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76 km2,冰储量约为0.51 km3;LGM时期两冰川的平衡线高度分别为4 460~4 547 m和3 569~3 694 m,与现代冰川相比分别降低了535 m和1 034~1 184 m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89 ℃和5.09~6.99 ℃。  相似文献   

9.
1956—2017年河西内流区冰川资源时空变化特征   总被引:7,自引:6,他引:1  
基于修订后的河西内流区第一、 第二次冰川编目数据及2016—2017年Landsat OLI遥感影像, 对河西内流区1956—2017年冰川时空变化特征进行分析。结果表明: ①河西内流区现有冰川1 769条, 面积976.59 km2, 冰储量约49.82 km3。冰川面积以介于0.1 ~ 10 km2的冰川为主, 数量以<0.5 km2的冰川为主。祁连山是该区域冰川集中分布区, 其冰川数量、 面积和冰储量分别占该区域冰川相应总量的98.47%、 97.52%和97.53%。②疏勒河流域(5Y44)冰川数量、 面积及冰储量最多(最大), 冰川平均面积为0.81 km2, 石羊河流域(5Y41)最少(最小)。从四级流域来看, 宁掌等流域(5Y445)冰川最为发育, 冰川数量、 面积及储量均最大, 宰尔莫合流域(5Y446)冰川平均面积最大(1.80 km2), 夹道沟-潘家河流域(5Y422)最小, 仅有0.05 km2。③近60年河西内流区冰川数量减少556条, 面积减少417.85 km2, 冰储量损失20.16 km3。面积介于0.1 ~ 0.5 km2之间的冰川数量与面积减少最多(457条和 -117.49 km2), 海拔4 400 ~ 5 400 m区间是冰川面积集中退缩的区域(98.55%), 北朝向冰川面积减少最多(-219.92 km2)且冰川退缩速率最快(-3.61 km2·a-1)。④1956—2017年河西内流区各流域冰川面积均呈退缩态势, 区内冰川变化呈自西向东逐渐加快的趋势, 但有3条冰川在1986—2017年出现不同程度的前进, 气温升高是该区域冰川退缩的主要原因。  相似文献   

10.
1957-2009年中国台站观测的关键积雪参数时空变化特征   总被引:7,自引:2,他引:5  
利用1957-2009年中国地面气象台站观测积雪资料分析表明, 中国年平均雪深、雪水当量、积雪密度分别为0.49 cm、0.7 mm、0.14 g·cm-3. 平均来说, 三者在青藏高原地区都是最小的, 在西北地区均较大; 空间上, 中国年平均雪深和雪水当量大值区位于东北和新疆北部, 以及青藏高原西南部的小部分区域; 中国大部分地区年平均积雪密度在0.14 g·cm-3以下, 3大稳定积雪区积雪密度略高. 1957-2009年, 中国及各区域年平均雪深和雪水当量均表现为波动增加趋势, 但不显著; 空间上雪深的显著正趋势主要位于内蒙古东部、东北北部、新疆西北部和青藏高原东北部; 雪水当量与雪深类似, 但正趋势范围不如前者广, 负趋势范围则较大.  相似文献   

11.
NOAA卫星遥感与常规观测中国积雪的对比研究   总被引:13,自引:3,他引:10  
郭艳君  翟盘茂  李威 《冰川冻土》2004,26(6):755-760
利用30a来NOAA卫星遥感和常规观测的中国积雪资料,对比研究了二者在不同季节和不同年代的逐月积雪日数.研究表明:全年、秋季、冬季和春季全国64%以上地区卫星遥感与常规观测的月积雪日数显著相关,其中东北(包括内蒙东部)和北疆地区显著相关;华北和内蒙中部冬季相关最为显著;青藏高原相关程度明显偏低.值得注意的是,高原上无测站分布地区对于NOAA卫星遥感的高原空间平均年积雪日数影响不显著.NOAA卫星遥感与常规观测的青藏高原空间平均全年积雪日数未达到显著相关,二者年际变化存在一定差异.  相似文献   

12.
刘洵  金鑫  柯长青 《冰川冻土》2014,36(3):500-507
IMS雪冰产品由多种光学与微波传感器数据融合而成,提供北半球每日无云的积雪范围,在积雪遥感研究中具有广阔的前景. 以气象站实测雪深数据为真值,检验了2009-2010年IMS雪冰产品在中国三大稳定积雪区北疆、东北、青藏高原地区每月、积雪季以及全年的误判率、漏判率和总体准确率,并分析了IMS雪冰产品的准确率与雪深之间的关系. 结果显示:IMS雪冰产品的年总体准确率在三大积雪区均超过了92%,积雪季总体准确率均超过了88%,利用IMS雪冰产品监测积雪范围是可靠的. 然而,IMS雪冰产品精度具有区域差异性,北疆地区在1月和2月误判率偏高,青藏高原地区积雪季有严重的漏判现象. IMS雪冰产品的准确率在东北地区和北疆地区随着雪深的增加而升高,当东北地区雪深超过6 cm,北疆地区超过13 cm时,准确率接近100%,但是,青藏高原地区两者基本没有关系. 通过在青藏高原地区与同时相的4景MODIS积雪产品对比分析发现,实际上IMS雪冰产品相对地高估了积雪面积,青藏高原地区漏判率高其原因是IMS对零碎积雪的识别能力不足并且气象站分布不均匀.  相似文献   

13.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

14.
采用高级微波扫描辐射计(AMSR-E)亮温数据, 选取Chang算法、GSFC 96算法、AMSR-E SWE 算法、青藏高原改进算法和Savoie算法等5种雪深反演算法, 利用2010年2月10-12日3 d的气象站台雪深观测数据, 对比分析了5种雪深反演算法在新疆地区、青藏高原、内蒙古地区、东北地区、西北地区和华北平原的精度和适用性. 结果表明:总体验证中, 青藏高原改进算法3 d的结果均优于其他算法, 其均方根误差(RMSE)为9.16 cm、9.96 cm和9.63 cm, 平均相对误差(MRE)分别为59.77%、52.79%和48.47%. 分区验证中, 结果最佳的算法分别为:在新疆地区, GSFC 96算法RMSE为6.85~7.48 cm;内蒙古地区, 青藏高原改进算法的RMSE分别为5.9 cm、6.11 cm和5.46 cm;东北地区, 青藏高原改进算法RMSE为6.21~7.83 cm;西北地区和华北平原5种算法的适用性不佳;青藏高原由于缺乏实测数据, 无法得到该区验证统计结果.  相似文献   

15.
40余年来中国地区季节性积雪的空间分布及年际变化特征   总被引:19,自引:8,他引:11  
王澄海  王芝兰  崔洋 《冰川冻土》2009,31(2):301-310
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势.  相似文献   

16.
中国近50a积雪日数与最大积雪深度的时空变化规律   总被引:10,自引:7,他引:3  
王春学  李栋梁 《冰川冻土》2012,34(2):247-256
通过REOF和非参数Mann-Kendall趋势检验法,以1958/1959-2007/2008年度中国557个气象台站的积雪观测资料为基础,对中国积雪日数与最大积雪深度的时空演变规律进行分析.结果表明:东北、新疆北部和青藏高原中东部为中国积雪日数和最大积雪深度的3个大值区;近50a来,春、秋季中国积雪日数和最大积雪深度在整体上呈现缓慢减少的趋势,冬季积雪日数和最大积雪深度呈现增加的趋势.气温是影响积雪产生和维持的重要因素.  相似文献   

17.
基于MODIS双卫星积雪遥感数据的积雪日数空间分布研究   总被引:4,自引:2,他引:2  
刘俊峰  陈仁升 《冰川冻土》2011,33(3):504-511
结合Terra和Aqua卫星的积雪产品,获取2001-2006年全国新的逐日积雪覆盖数据,并利用此数据通过两种方案获取了全国积雪日数分布,对比发现3大稳定积雪区中,新疆地区积雪稳定性及连续性最好,东北其次,而青藏高原地区最差;通过595个气象台站年积雪日数数据分区分不同植被类型修正MODIS获得的年积雪日数.结果表明:...  相似文献   

18.
中国西部积雪日数类型划分及与卫星遥感结果的比较   总被引:12,自引:6,他引:6  
何丽烨  李栋梁 《冰川冻土》2011,33(2):237-245
根据中国105°E以西地区232个地面气象台站1951-2004年积雪日数观测资料和1980-2004年SMMR、SSM/I逐日雪深资料,划分中国西部积雪类型并分析其年代际变化,并对两种资料的结果进行了比较.结果表明:北疆、天山和青藏高原东部地区年平均积雪日数大于60 d,为稳定积雪区;南疆盆地中心、四川盆地和云南省南...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号