首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China.  相似文献   

2.
Well Zheng-1 is located in the combined area of the central uplift and the north Tianshan piedmont depression in the Junggar Basin. Two oil-bearing beds are recognized at 4788–4797 m of the Lower Cretaceous Tugulu Formation (K1tg) and 4808.5–4812.5 m of the Lower Jurassic Sangonghe Formation (J1s). The geochemical characteristics of family composition, carbon isotopic composition, saturated hydrocarbons, sterane and terpane biomarkers and carotane of two crude oils are described in this paper. The results show that the geochemical characteristics of the two crude oils are basically similar to each other, indicating they were all derived mainly from the high mature, brine, algae-rich lake facies sediments. Oil-source correlation revealed that crude oils of the two beds were derived mainly from the source rocks of Permian and mixed by the oil derived from the source rocks of Jurassic and Triassic. This is consistent with the geological background with several sets of source rocks in the area studied.  相似文献   

3.
The Grains containing Oil Inclusions(GOI)data in currently gas/condensate-beating Jurassic and Cretaceous reservoir sandstones of Well Pen 5(the Mosuowan area of central Junggar Basin,NW China)are generally greater than the empirical threshold line of 5%.This is consistent with the gas-condensate section originally containing a palaeo-oil column.In order to assess the origin of the oil trapped in the oil inclusion and its relationship to the free oil/gas-condensate,a detailed molecular geochemical study was carried out for correlation between the free and inclusion oils.The paleo oil is most likely sourced from the Lower Permian Fengeheng Formation,which generated hydrocarbons primarily during Late Triassic and the oils were later secondarily altered and dysmigrated along faults likely during Late Jurassic-Early Cretaceous.In contrast,the current reservoired oil/gas-condensate mainly derived from the Middle Permian Lower Wuerhe Formation,whose peak generation time last from Late Cretaceous even to the present.This paper showed that integrated oil-bearing fluid inclusion analyses have likely allowed a complex multi-phase charge history to be recognized and resolved with a high degree of confidence.  相似文献   

4.
Using analyses of the lithology, sequences, paleoenvironment, and tectonic setting, the depositional system of the Carboniferous Huanglong Formation in the eastern Sichuan Basin was identified. The lithological characteristics of the Lower Member, Middle Member, and Upper Member were analyzed and classified. Before the use of carbon, oxygen, and strontium isotopes in the analysis, all of the geochemical data were tested for validity. On the basis of the Z values obtained from carbon and oxygen isotopes, the paleoenvironments of the three members were elucidated. Lower Member was dominantly an enclosed marine environment with intense evaporation and little freshwater input into the sea. Middle Member developed in a semi-enclosed to normal marine environment with many rivers. Upper Member was formed in a normal marine environment. The east Sichuan Basin was enclosed by paleouplifts before the deposition of the Huanglong Formation, forming a relatively enclosed depositional setting. Paleogullies developed in the Silurian strata that underlie the Carboniferous rocks; these paleogullies can be identified. On the basis of a comprehensive analysis, we propose that the Huanglong Formation developed in a platform system. Four microfacies were identified: supratidal flat, dolostone flat, grain shoal, and shelf microfacies. The high-permeability and high-porosity characteristics of the grain shoal microfacies are favorable for hydrocarbon accumulation, while the supratidal flat and shelf microfacies developed very few high-quality reservoirs. The paleogullies, in which increased amounts of grain shoal microfacies developed, controlled the distribution of high-quality reservoirs.  相似文献   

5.
Sequence stratigraphical analysis was applied to the Upper Carboniferous–Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.  相似文献   

6.
The geochemical characteristics of crude oils and reservoir core extracts from the Kuche petroleum system are described and studied systematically by means of various geochemical techniques and methods to acquire molecular information. The results suggest crude oils from the petroleum system can be divided into two groups: marine oils and non-marine oils. The former represents the dominant oils found in the area. Tar mats were firstly discovered and determined accurately in terrestrial oil and gas reservoirs, with Lower Tertiary sandstone reservoirs in the Yaha oilfield of the Tarim Basin. However, based on the ratio of 20S/(20S 20R)C29 sterane as a maturity parameter, lacustrine oils filled into the Tertiary reservoirs in the direction toward the western part of the petroleum system. In contrast, according to the fact that methylcyclohexane indices of eastern oils are greater than those of western oils, the location in which coalgenerated oils filled into the Tertiary reservoirs lies in the eastern part of the petroleum system.  相似文献   

7.
One of most hotly debated topics concerning the Late Mesozoic evolution of Tethyan and the Tibetan Plateau is the timing of the closure of the Meso-Tethys ocean, which is represented by the Bangong–Nujiang suture zone. The Upper Jurassic–Lower Cretaceous Shamuluo Formation, which unconformably overlies the older Mugagangri Group accretionary complex, provides important information on the closure of the Meso-Tethys Ocean. This paper precisely confines the depositional age of the Shamuluo Formation in the western segment of the Bangong–Nujiang suture zone, extending it from the Late Jurassic to the Albian. Combined with the results of previous studies, we suggest that the Shamuluo Formation in the Awengco–Baerqiong region mainly contains a bathyal Berriasian–Hauterivian subunit and a shallow-marine Albian subunit. Provenance analysis indicates that the Berriasian–Hauterivian subunit was mainly derived from the Jurassic southern Qiangtang magmatic arc, while the Albian subunit was derived from the coeval volcanic rocks and the Upper Carboniferous–Upper Permian strata in the southern Qiangtang terrane. Thus, the two subunits of the Shamuluo Formation have significant distinct sedimentary facies and provenances, indicating that they were deposited in different tectonic settings.Based on the regional geological data, we suggest that the bathyal Berriasian–Hauterivian subunit and the shallow-marine Albian subunit of the Shamuluo Formation should be interpreted as a record of the oceanic arc-continent collision and the Lhasa–Qiangtang soft-collision, respectively. Thus, the closure time of the Meso-Tethys Ocean is at least limited to the Albian.  相似文献   

8.
In this paper we discuss the timing of final closure of the Paleo-Asian Ocean based on the field investigations of the Carboniferous–Permian stratigraphic sequences and sedimentary environments in southeastern Inner Mongolia combined with the geology of its neighboring areas. Studies show that during the Carboniferous–Permian in the eastern segment of the Tianshan-Hinggan Orogenic System, there was a giant ENE–NE-trending littoral-neritic to continental sedimentary basin, starting in the west from Ejinqi eastwards through southeastern Inner Mongolia into Jilin and Heilongjiang. The distribution of the Lower Carboniferous in the vast area is sparse. The Late Carboniferous or Permian volcanic-sedimentary rocks always unconformably overlie the Devonian or older units. The Upper Carboniferous–Middle Permian is dominated by littoral-neritic deposits and the Upper Permian, by continental deposits. The Late Carboniferous–Permian has no trace of subduction-collision orogeny, implying the basin gradually disappeared by shrinking and shallowing. In addition, it is of interest to note that the Ondor Sum and Hegenshan ophiolitic mélanges were formed in the pre-Late Silurian and pre-Late Devonian respectively, and the Solonker ophiolitic mélange formed in the pre-Late Carboniferous. All the evidence indicates that the eastern segment of the Paleo-Asian Ocean had closed before the Late Carboniferous, and most likely before the latest Devonian (Famennian).  相似文献   

9.
Hydrothermal Dolomite (HTD) is present in the Upper Sinian (Upper Proterozoic) Dengying Formation, east Sichuan Basin, China. The strata are comprised by primary dolomite. The HTD has various textures, including zebra dolomite, subhorizontal sheet-like cavities filled by saddle dolomite and breccias cemented by saddle dolomites as well occur as a fill of veins and fractures. Also co-occur MVT type lead-zinc ores in the study area. The δ13C and δ18O isotopes of HTD in the Upper Sinian Dengying Formation are lighter than those of the host rocks, while STSr/86Sr is higher. The apparent difference in carbon, oxygen and strontium isotopes, especially the large difference in S7Sr/S6Sr isotopes ratio indicate crystallization from hot basinal and/or hydrothermal fluids. Saddle dolomite was precipitated at temperatures of 270-320℃. The diagenetic parasequences of mineral assemblage deposited in the Dengying Formation are: (1) dolomite host rock →sphalerite-galena-barite-fluorite; (2) dolomite host rock →saddle dolomite →quartz; (3) dolomite host rock →saddle dolomite→bitumen; (4) dolomite host rock →saddle dolomite →barite. The mean chemical composition of the host dolomite matrix and HTD didn't change much during hydrothermal process. The fluids forming the HTDs in the Dengying Formation were mixtures of freshwater from the unconformity at the top of Sinian, fluids from diagenetic compaction and hydrocarbon generation & expulsion from the Lower Cambrian Niutitang Formation mudstones or the Doushantuo Formation silty mudstones, and hydrothermal fluids from the basement. The hydrocarbon reservoirs associated with the HTD were mostly controlled by the basement faults and fractures and karsting processes at the unconformity separating Sinian and Cambrian strata. The hydrocarbon storage spaces of HTD included dissolved cavities and intercrystalline pores. Dissolution cavities are extensive at the top of Dengying Formation, up to about 46m below the unconformity between Sinian an  相似文献   

10.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   

11.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

12.
我国腐植煤的还原性质及其与沉积环境的关系   总被引:3,自引:2,他引:3  
赵师庆 《沉积学报》1984,2(2):53-65
一、不同还原性腐植煤的基本特征在研究华北聚煤区东部晚古生代太原组(C3)和山西组(P11)煤性质差别及显微特征的基础上,作者认为除煤岩成分和变质程度外,还存在着影响煤质的第三个成因因素--还原性质。  相似文献   

13.
总结前人研究成果和近期勘探成果,重新确立了该区石炭纪地层层序,将原小海子组解体,以其内部存在的沉积间断为界,其上划为下二叠统南闸组,其下归为上石炭统,并命名为喀拉拜勒组;将原巴楚组解体,其上部“双峰灰岩”段及泥岩段仍为下石炭统巴楚组,下部砂泥岩互层段及砂岩段(东河砂岩段)归入上泥盆统,称东河塘组,并对井下石炭系进行了横向对比。  相似文献   

14.
INTRODUCTIONTheLatePaleozoicNorthChinabasinisahugecratonicbasin,thestratadistributionandcoal-bearingcharacteristicsvaryindife...  相似文献   

15.
阳泉矿区煤系地层形成于海陆交互相的过渡环境,其煤层的形成、赋存、厚度变化、分布均受沉积环境的控制和影响。根据分析成煤环境、预测煤层赋存变化情况,为煤炭资源补勘和开采生产提供指导  相似文献   

16.
四川盆地是一个大型复合含气为主、含油为辅的叠合盆地。多旋回的沉积演化过程,孕育了多套海相、陆相烃源岩,且不同区域发育不同成因类型的烃源岩。目前下寒武统、志留系、下二叠统、上二叠统和上三叠统五套主要烃源岩均已进入高演化阶段,并以成气为主。由于多阶成烃、混源聚集和后期遭受TSR次生蚀变等成藏过程的复杂性使得天然气组分较干、碳同位素组成复杂,常规方法进行气源对比较困难。文中在对四川盆地沉积演化背景分析的基础上,通过对有效烃源岩发育特征和分布规律的探讨,分区域进行了气藏的分析,特别是对天然气组分、非烃组成(H2S、CO2、N2等)和碳同位素等资料综合研究的基础上,基本确定了各区块各含气层系的主力源岩。认为川东主力产层石炭系、三叠系和二叠系的气源分别为志留系、上二叠统龙潭组和下二叠统;川南气区震旦系灯影组、寒武系、二叠系和三叠系产层的气源分别主要来自下寒武统,上、下二叠系源岩;川西气区侏罗系和三叠系须家河组主产层的气源主要来自三叠系须家河组煤系烃源岩,下二叠统和嘉陵江组产层气源则可能主要来自二叠系;川中主要为产油区,下侏罗统自流井群原油应来自侏罗系源岩,浅部层系气源为上三叠统须家河组的陆相烃源岩,深部气藏则为寒武系烃源岩。由于川东北部烃源岩发育层数最多,且质量都较好,因此川东北部是烃类最富集的地区,也是勘探潜力最大的地区。  相似文献   

17.
刘超  孙蓓蕾  曾凡桂 《地质学报》2014,88(8):1579-1587
二叠纪—三叠纪之交是古生界向中生界过渡的重要地质历史转折时期,发生了地史时期规模最大的生物灭绝事件。石千峰组作为华北地台二叠系—三叠系过渡阶段沉积,其时代归属对二叠系—三叠系界线的准确划分至关重要。本文应用LA-MC-ICPMS对华北中部太原西山晚二叠世—早三叠世上石盒子组、石千峰组、刘家沟组中4件砂岩样品进行碎屑锆石U-Pb定年,4件砂岩样品(SNF、XM、K8、LJG)分别给出了最年轻锆石峰值年龄270Ma、296Ma、250Ma、262Ma,表明太原西山上石盒子组师脑峰砂岩(SNF)的沉积时间不早于270Ma,石千峰组底部K8砂岩(K8)沉积时间不早于250Ma。因此,太原西山地区石千峰组应归属于早三叠世,二叠系—三叠系的界线应位于石千峰组K8砂岩之下。  相似文献   

18.
山西静乐舍科勘查区主要含煤地层为上石炭统太原组和下二叠统山西组,通过对区内地质成果分析,本区太原组沉积环境由河控三角洲到潟湖、潮坪交替出现,期间发育两次碳酸盐台地,岩性主要以灰岩、泥岩、中粗砂岩和粉、细砂岩为主,含主要可采煤层9煤层;山西组主要为三角洲平原分流河道相、泛滥盆地相和泥炭沼泽相,以砂岩、粉砂岩、砂质泥岩为主,含主要可采煤层4-1、4煤层;4-1号煤层属大部可采的较稳定煤层,4和9号煤层属全区可采的较稳定煤层;本区主要煤类均为焦煤,资源量丰富,煤质较好,具有较高的开发价值。  相似文献   

19.
为查明鄂尔多斯盆地塔然高勒地区直罗组上段、下段的岩性-岩相特征以及参与蚀变作用的流体强度差异,开展了系统的岩心观察、剖面对比,并结合黏土矿物、碳氧同位素和U、Th元素等手段进行分析。结果表明,研究区南部直罗组上段主要由灰绿色、红色泥岩夹透镜状红色、黄色、灰绿色砂岩组成,北部主要由红色泥岩与灰绿色砂岩构成,南北部下段均由灰白色、灰绿色砂岩或砂砾岩夹薄层泥岩组成。直罗组红色砂岩为原生沉积,灰绿色砂岩为后生改造类型;上段受含氧含铀水和深部还原性流体作用强度较下段变弱,且由北向南作用程度降低,北部还原蚀变岩石与原生岩石共存,南部基本保留原生岩石;下段则受流体改造更为充分,主体为后生蚀变岩石。直罗组不同类型砂体的展布兼受沉积相和后期流体双重作用,但强弱差异性明显,限制了铀矿化产出在直罗组下段砂体中的定位,因此,上、下段应作为不同的成矿体系讨论。  相似文献   

20.
藏北羌塘盆地油气地质勘探新进展   总被引:1,自引:1,他引:1       下载免费PDF全文
羌塘盆地是青藏高原最大的含油气盆地,也是中国潜在的石油战略后备区之一。新的油气地质调查发现,盆地内发育优质古生代烃源岩,主要为石炭系、二叠系的暗色泥岩,具有机碳含量高的特征,机质类型主要为Ⅱ2-Ⅲ型,Ro值大多为1.50%~2.40%,处于高成熟-过成熟阶段。前那底岗日组的古风化壳是盆地内新发现的潜在的储集层,其覆盖于二叠系以及前人已确定的三叠系肖茶卡组地层之上。新发现的上侏罗统-下白垩世白龙冰河组泥灰岩夹膏盐、页岩是区域上较好的盖层。盆地内近年来在地表发现油气显示250余处,其中最重要的是发现了现代天然气泄漏的泥火山,并采集到了天然气样品。综合考虑沉积相、烃源岩、储集层、盖层、保存条件等因素,优选了6个有利区块,其中,托纳木和半岛湖区块作为潜力目标区进行了勘探。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号