首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The east margin of the Siberian craton is a typical passive margin with a thick succession of sedimentary rocks ranging in age from Mesoproterozoic to Tertiary. Several zones with distinct structural styles are recognized and reflect an eastward-migrating depocenter. Mesozoic orogeny was preceded by several Mesoproterozoic to Paleozoic tectonic events. In the South Verkhoyansk, the most intense pre-Mesozoic event, 1000–950 Ma rifting, affected the margin of the Siberian craton and formed half-graben basins, bounded by listric normal faults. Neoproterozoic compressional structures occurred locally, whereas extensional structures, related to latest Neoproterozoic–early Paleozoic rifting events, have yet to be identified. Devonian rifting is recognized throughout the eastern margin of the Siberian craton and is represented by numerous normal faults and local half-graben basins.Estimated shortening associated with Mesozoic compression shows that the inner parts of ancient rifts are now hidden beneath late Paleozoic–Mesozoic siliciclastics of the Verkhoyansk Complex and that only the outer parts are exposed in frontal ranges of the Verkhoyansk thrust-and-fold belt. Mesoproterozoic to Paleozoic structures had various impacts on the Mesozoic compressional structures. Rifting at 1000–950 Ma formed extensional detachment and normal faults that were reactivated as thrusts characteristic of the Verkhoyansk foreland. Younger Neoproterozoic compressional structures do not display any evidence for Mesozoic reactivation. Several initially east-dipping Late Devonian normal faults were passively rotated during Mesozoic orogenesis and are now recognized as west-dipping thrusts, but without significant reactivation displacement along fault surfaces.  相似文献   

2.
The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW–SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE–WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.  相似文献   

3.
The Curitiba Basin, Paraná, lies parallel to the west side of the Serra do Mar range and is part of a continental rift near the Atlantic coast of southeastern Brazil. It bears unconsolidated and poorly consolidated sediments divided in two formations: the lower Guabirotuba Formation and the overlying Tinguis Formation, both developed over Precambrian basement. Field observations, water well drill cores, and interpretations of satellite images lead to the inference that regional tectonic processes were responsible for the origin of the Basin in the continental rift context and for morphotecatonic evolution through block tilting, dissection, and erosion. The structural framework of the sediments and the basement is characterized by NE–SW-trending normal faults (extensional tectonic D1 event) reactivated by NE–SW-trending strike–slip and reverse oblique faults (younger transtensional tectonic D2′ to transpressional tectonic D2″ event). This tectonic event, which started in the Paleogene and controlled the basin geometry, began as a halfgraben and was later reactivated as a pull-apart basin. D2 is a neotectonic event that controls the current morphostructures. The Basin is connected to the structural rearrangement of the South American platform, which underwent a generalized extensional or trantensional process and, in late Oligocene, changed to a compressional to transpressional regime.  相似文献   

4.
Kh. S. Zaky 《Geotectonics》2017,51(6):625-652
Shear fractures, dip-slip, strike-slip faults and their striations are preserved in the pre- and syn-rift rocks at Gulf of Suez and northwestern margin of the Red Sea. Fault-kinematic analysis and paleostress reconstruction show that the fault systems that control the Red Sea–Gulf of Suez rift structures develop in at least four tectonic stages. The first one is compressional stage and oriented NE–SW. The average stress regime index R' is 1.55 and SHmax oriented NE–SW. This stage is responsible for reactivation of the N–S to NNE, ENE and WNW Precambrian fractures. The second stage is characterized by WNW dextral and NNW to N–S sinistral faults, and is related to NW–SE compressional stress regime. The third stage is belonging to NE–SW extensional regime. The SHmax is oriented NW–SE parallel to the normal faults, and the average stress regime R' is equal 0.26. The NNE–SSW fourth tectonic stage is considered a counterclockwise rotation of the third stage in Pliocene-Pleistocene age. The first and second stages consider the initial stages of rifting, while the third and fourth represent the main stage of rifting.  相似文献   

5.
The Bansong Group (Daedong Supergroup) in the Korean peninsula has long been considered to be an important time marker for two well-known orogenies, in that it was deposited after the Songnim orogeny (Permian–Triassic collision of the North and South China blocks) but was deformed during the Early to Middle Jurassic Daebo tectonic event. Here we present a new interpretation on the origin of the Bansong Group and associated faults on the basis of structural and geochronological data. SHRIMP (Sensitive High-Resolution Ion MicroProbe) U–Pb zircon age determination of two felsic pyroclastic rocks from the Bansong Group formed in the foreland basin of the Gongsuweon thrust in the Taebaeksan Basin yielded ages of 186.3 ± 1.5 and 187.2 ± 1.5 Ma, respectively, indicating the deposition of the Bansong Group during the late Early Jurassic. Inherited zircon component indicates ca. 1.9 Ga source material for the volcanic rocks, agreeing with known basement ages.The Bansong Group represents syntectonic sedimentation during the late Early Jurassic in a compressional regime. During the Daebo tectonic event, the northeast-trending regional folds and thrusts including the Deokpori (Gakdong) and Gongsuweon thrusts with a southeast vergence developed in the Taebaeksan Basin. This is ascribed to deformation in a continental-arc setting due to the northwesterly orthogonal convergence of the Izanagi plate on the Asiatic margin, which occurred immediately after the juxtaposition of the Taebaeksan Basin against the Okcheon Basin in the late stage of the Songnim orogeny. Thus, the Deokpori thrust is not a continental transform fault between the North and South China blocks, but an “intracontinental” thrust that developed after their juxtaposition.  相似文献   

6.
In this research, we have focused on the geometrical characteristics of young faults in North Tehran tectonic wedge which is confined with the Mosha and North Tehran faults, the most outstanding active faults in Alborz fold-thrust belt. The statistical, genetic, and kinematic relationships between internal faults, boundary faults, and the stress regime in the area (at the finite state of deformation path) are considered in detail with the help of rose diagrams and Riedel??s model. On this basis, all faults with diverse mechanisms have been classified into different Riedel fractures and their orders of formation are identified. Pattern of faults implies a more or less N?CS compression at the period of faulting. Consideration of geometry and tectonic setting of abundant normal faults have led to propose folding and listric faulting model to explain the origin of normal faults in a compressional tectonic region. These structural models represent the mechanism of normal faulting in response to compression in crustal and upper crustal scales, respectively.  相似文献   

7.
Mauro Alberti   《Tectonophysics》2006,421(3-4):231-250
The spatial properties of events in the 1997 Colfiorito–Sellano seismic sequence (Northern Apennines, Italy) were investigated using coherence, a parameter derived from seismic moment tensors that quantifies the kinematic similarity between focal mechanisms. The 1997 Colfiorito–Sellano seismic sequence predominantly consists of normal faulting earthquakes, with a few strike-slip and reverse faulting episodes. This kinematic heterogeneity is possibly related to the contemporaneous activity of two different sets of faults: NW–SE normal faults and NNE–SSW sub-vertical faults, the latter inherited from the previous Miocene compressional phase. The study used two independently-derived data sets of the same seismic sequence characterized by a different number of events and by different precision of spatial localisation. Their statistical significances, assessed through a reshuffling procedure, reveal that data sets with at least some hundreds of events and good positional precision are required to obtain significant results through coherence analysis. Results from the better quality data set indicate that this seismic sequence is characterized by a rapid decrease in the kinematic similarity between earthquake pairs within 2 km of separation, particularly along directions sub-perpendicular to the normal fault strike. The decrease rate seems to be controlled by the geometric characteristics of the normal faults, given that the mean along-dip distance between fault segments is 2 km. In proximity to pre-existing tectonic lineaments the relative abundance of strike-slip and reverse faults tends to decrease the kinematic similarity between events but does not influence the coherence decrease rate. The presence of mixed focal mechanisms (normal, reverse and strike-slip) in a single seismic phase implies that mixed fault types are not restricted to polyphase tectonic histories: such heterogeneous kinematics during a single phase may be induced by the presence of inherited discontinuities.  相似文献   

8.
Faulting related to movements along major fault zones in the Upper Benue Trough during Albian times, with evidence of deformation in the Cretaceous Bima Sandstone are common especially around the Kaltungo, Gombe, Zambuk and Teli lineaments. Conjugate extensional systems of deformation bands show increased siliceous cementation of the sandstones adjacent to these lineaments. During the Late Cretaceous compressional event, the deformation bands and faults in the Upper Benue Trough were reactivated, resulting into dilational opening of fractures believed to have acted as fluid conduits and/or barriers. These deformation bands which decrease in density away from the major faults are characterized with increasing porosity and permeability in the host sandstone abruptly away from the tectonic barrier. It is proposed here that the master faults of the Benue Trough, linking it with the Anambra Basin and the Niger Delta probably served as conduits for the migration of hydrocarbons into the Cretaceous reservoirs of the Upper Benue Trough and by extension into the Niger Delta.  相似文献   

9.
Recent crustal movements have been observed and studied in several parts of India including the Himalayan and sub-Himalayan regions, the Precambrian shield of peninsular India and also the coastal tracts. The results of studies of Holocene deformation and crustal movements in two type areas are presented, one in the extreme southeastern part of the peninsula and the other in northeastern India.The Precambrian shield in the extreme southeastern part is characterised by a major NE—SW trending fault zone in the Tirupattur—Mattur areas of Tamil Nadu with some major extended faults, one of which apparently cuts through the entire crust and Moho as indicated by gravity data and which is associated with occurrences of alkaline and basic intrusions and carbonatite complex. Evidence of Recent crustal movements in this zone is afforded by geomorphic features and recent and current seismicity of a mild nature which is apparently to be attributed to slow movements along the fault plane.The Shillong plateau in northeastern India occurs as block-uplifted horst, comprising for the most part Archaean crystalline rocks with plateau basalts and Cretaceous and Tertiary sediments occurring on its southern margin. The plateau is bounded by major faults and is located in a zone of high seismicity lying astride and parallel to the eastern Himalayas intervened by the alluvium of the Brahmaputra Valley. Geomorphic features such as raised terraces, straight-edged scarps, etc., provide evidence for Recent crustal movements with dominant vertical movements along the fault planes which have continued through Tertiary and Recent times. Repeated precision levelling measurements conducted by the Survey of India indicate a rate of uplift of 4–5 cm per 100 years during the period 1910–1975.The gravity data pertaining to this region are also discussed in relation to the crustal movements.  相似文献   

10.
A 3D structural modelling of the Permian–Mesozoic Polish Basin was performed in order to understand its structural and sedimentary evolution, which led to basin maturation (Permian–Cretaceous) and its tectonic inversion (Late Cretaceous–Paleogene). The model is built on the present-day structure of the basin and comprises 13 horizons within the Permian to Quaternary rocks. The analysis is based on 3D depth views and thickness maps. The results image the basin-scale symmetry, the perennial localization of the NW–SE-oriented basin axis, the salt movements due to tectonics and/or burial, and the transverse segmentation of the Polish Basin. From these observations, we deduce that salt structures are correlated to the main faults and tectonic events. From the model analysis, we interpret the stress conditions, the timing, and the geometry of the tectonic inversion of the Polish Basin into a NW–SE-oriented central horst (Mid-Polish Swell) bordered by two lateral troughs. Emphasis is placed on the Zechstein salt, considering its movements during the Mesozoic sedimentation and its decoupling effect during the tectonic inversion. Moreover, we point to the structural control of the Paleozoic basement and the crustal architecture (Teisseyre–Tornquist Zone) on the geometry of the Polish Basin and the Mid-Polish Swell.  相似文献   

11.
This study presents a structural analysis based on hundreds of striated small faults (fault-slip data) in the Amman area east of the Dead Sea Transform System. Stress inversion of the fault-slip data was performed using an improved Right-Dihedral method, followed by rotational optimization (TENSOR Program, Delvaux, 1993). Fault-slip data (totaling 212) include fault planes, striations and sense of movements, are obtained from the Turonian Wadi As Sir Formation, distributed mainly along the southern side of the Amman – Hallabat structure in Jordan the study area. Results show that σ1 (SHmax) and σ3 (SHmin) are generally sub-horizontal and σ2 is sub-vertical in 8 of 11 paleostress tensors, which are belonging to a major strike-slip system with σ1 swinging around N to NW direction. The other three stress tensors show σ2 (SHmax), σ1 vertical and σ3 is NE oriented. This situation explained as permutation of stress axes σ1 and σ2 that occur during tectonic events and partitioned strike slip deformation. NW compressional stresses affected the area and produced the major Amman – Hallabat strike-slip fault and its related structures, e.g., NW trending normal faults and NE trending folds in the study area.The new paleostress results related with the active major stress field of the region the Dead Sea Stress Field (DSS) during the Miocene to Recent.  相似文献   

12.
The Kangra Re-entrant in the NW Himalaya is one of the most seismically active regions, falling into Seismic Zone V along the Himalaya. In 1905 the area experienced one of the great Himalayan earthquakes with magnitude 7.8. The frontal fault system – the Himalayan Frontal Thrust (HFT) associated with the foreland fold – Janauri Anticline, along with other major as well as secondary hinterland thrust faults, provides an ideal site to study the ongoing tectonic activity which has influenced the evolution of drainage and landscape in the region. The present study suggests that the flat-uplifted surface in the central portion of the Janauri Anticline represents the paleo-exit of the Sutlej River. It is suggested that initially when the tectonic activity propagated southward along the HFT the Janauri Anticline grew along two separate fault segments (north and south faults), the gap between these two fault and the related folds allowed the Sutlej River to flow across this area. Later, the radial propagation of the faults towards each other resulted in an interaction of the fault tips, which caused the rapid uplift of the area. Rapid uplift resulted in the disruption and longitudinal deflection of the Sutlej river channel. Fluvial deposits on the flat surface suggest that an earlier fluvial system flowed across this area in the recent past. Geomorphic signatures, like the sharp mountain fronts along the HFT in some places, as well as along various hinterland subordinate faults like the Nalagarh Thrust (NaT), the Barsar Thrust (BaT) and the Jawalamukhi Thrust (JMT); the change in the channel pattern, marked by a tight incised meander of the Beas channel upstream of the JMT indicate active tectonic movements in the area. The prominent V-shaped valleys of the Beas and Sutlej rivers, flowing across the thrust fronts, with Vf values ranging from <1.0–1.5 are also suggestive of ongoing tectonic activity along major and hinterland faults. This suggests that not only is the HFT system active, but also the other major and secondary hinterland faults, viz. the MBT, MCT, SnT, NaT, BaT, and the JMT can be shown to have undergone recent tectonic displacement.  相似文献   

13.
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.  相似文献   

14.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

15.
The fractures in the porcelanites from the Monterey Formation in California USA and the Sap Bon Formation in Central Thailand were documented for a comparative study of their modes, distribution, and their relationship to other structures such as folds and bedding planes. Both formations consist in thinly bedded stiff units that are prone to folding, flexural slip, and cross-bedding brittle fracturing under compression. There are two assemblages in the porcelanites. The first assemblage includes commonly vertical high-angle opening mode fractures, left-lateral strike-slip faults, normal faults, and thrust faults. The second one is sub-horizontal fractures which are associated with folds, bedding slip, and thrusts faults in both Monterey and Sap Bon formations. The structural architectures of these rocks and the associated groups of structures are remarkably similar in terms of both opening and shearing modes and their relationships with the bedding due to their depositional architecture and the compressional tectonic regimes, in spite of the fact that the two locations are more than ten thousand kilometers apart and have very different ages of deformation.  相似文献   

16.
In this study, we address the late Miocene to Recent tectonic evolution of the North Caribbean (Oriente) Transform Wrench Corridor in the southern Sierra Maestra mountain range, SE Cuba. The region has been affected by historical earthquakes and shows many features of brittle deformation in late Miocene to Pleistocene reef and other shallow water deposits as well as in pre-Neogene, late Cretaceous to Eocene basement rocks. These late Miocene to Quaternary rocks are faulted, fractured, and contain calcite- and karst-filled extension gashes. Type and orientation of the principal normal palaeostress vary along strike in accordance with observations of large-scale submarine structures at the south-eastern Cuban margin. Initial N–S extension is correlated with a transtensional regime associated with the fault, later reactivated by sinistral and/or dextral shear, mainly along E–W-oriented strike-slip faults. Sinistral shear predominated and recorded similar kinematics as historical earthquakes in the Santiago region. We correlate palaeostress changes with the kinematic evolution along the boundary between the North American and Caribbean plates. Three different tectonic regimes were distinguished for the Oriente transform wrench corridor (OTWC): compression from late Eocene–Oligocene, transtension from late Oligocene to Miocene (?) (D1), and transpression from Pliocene to Present (D2–D4), when this fault became a transform system. Furthermore, present-day structures vary along strike of the Oriente transform wrench corridor (OTWC) on the south-eastern Cuban coast, with dominantly transpressional/compressional and strike-slip structures in the east and transtension in the west. The focal mechanisms of historical earthquakes are in agreement with the dominant ENE–WSW transpressional structures found on land.  相似文献   

17.
The formation and distribution of fractures are controlled by paleotectonic stress field,and their preservative status and effects on development are dominated by the modern stress field. Since Triassic,it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N,NE-SW,E-W,and NW-SE directions respectively. At the end of Triassic,under the horizontal compression tectonic stress field,for which the maximum principal stress direction was NW-SE,the fractures were well developed near the S-N faults and at the end of NE-SW faults,because of their stress concentration. At the end of Cretaceous,in the horizontal compression stress fields of the NE-SW direction,the stress was obviously lower near the NE-SW faults,thus,fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene,under the horizontal compression tectonic stress fields of E-W direction,stress concentrated near the NE-SW faults and fractures developed at these places,especially at the end of the NE-SE faults,the cross positions of NE-SW,and S-N faults. Therefore,fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults,the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction,the NW-SE fractures were mainly the seepage ones with tensional state,the best connectivity,the widest aperture,the highest permeability,and the minimum opening pressure.  相似文献   

18.
As a result of oblique collision, the Taiwan orogen propagates southward. The Hengchun peninsula in the southern tip of the Taiwan Central Range, preserving the youngest, the least deformed and the most complete accretionary prism sequences, allows therefore better understanding of the tectonic evolution of Taiwan orogen. On the Hengchun peninsula, four main stages of paleostress can be recognized by the analysis of brittle tectonics. After recording the first two stages of paleostress, rocks of the Hengchun peninsula (the Hengchun block) have undergone both tilting and counterclockwise rotation of about 90°. The structural boundaries of this rotated Hengchun block are: the Kenting Mélange zone in the southwest, the Fongkang Fault in the north, and a submarine backthrust in the east. The angle of this rotation is principally calculated by the paleomagnetic analysis data and a physical model experiment. Through a systematic back-tilting and back-rotating restoration, the original orientations of the four paleostress stages of Hengchun peninsula are recognized. They are, from the ancient to the recent, a NW–SE extension, a combination of NW–SE transtension and NE–SW transpression, a NE–SW compression, and finally a combination of NE–SW transtension and NW–SE transpression. This result can be explained by a phenomenon of stress axes permutation, instead of a complex polyphase tectonism. This stress axes permutation is caused by the horizontal compression increase accompanying the propagation of the accretionary prism. Combining the tectonic and paleomagnetic data with paleocurrent and stratigraphic data enables us to reconstruct the tectonic evolution of the Hengchun peninsula. This reconstruction corresponds to the deformation history of a continental margin basin, from its opening to its intense deformation in the accretionary prism.  相似文献   

19.
Gold mineralization in the Eastern Desert of Egypt is confined, almost completely, to the basement rocks of the Nubian Shield that was cratonized during the Panafrican orogeny.Island-arc, orogenic and post-orogenic stages are indicated for the tectonic-magmatic evolution of the Nubian Shield in Late Proterozoic times. Different styles of gold mineralization recognised in the Eastern Desert are inferred to have developed during these stages.In the island-arc stage, which is characterized by volcanic and volcaniclastic rocks in an ensimatic environment, gold mineralization is hosted in stratiform to strata-bound Algoma-type BIF and associated tuffaceous sedimentary rocks. Both types represent exhalative deposits, formed during breaks in sub-marine basaltic and bastalic–andesite volcanic eruptions. The volcanic rocks have a tholeiitic affinity and reflect an immature arc stage. Gold hosted in massive-sulphide deposits within calc-alkaline rhyolites represents another style of gold mineralization connected with mature island arc stage.During the orogenic-stage, ophiolites and island arc volcanic and volcaniclastic rocks were thrust onto the Pre-Panafrican continental margin. Subduction was active beneath the continent while the thrusting was still operative. A phase of calc-alkaline magmatic activity developed during this stage and the compressional deformation event was synchronous with regional metamorphism (greenschist–amphibolite facies). Extensional shear fractures (brittle–ductile shear zones) were broadly contemporaneous with the intense compressional tectonic regime. These fractures opened spaces in which the mineralizing fluids penetrated.Gold mineralization associated with the orogenic-stage is represented by vein-type mineralization that constituted the main target for gold since Pharaonic times. Other styles of gold mineralization during this stage are represented by altered ophiolitic serpentinites (listwaenites), Gold mineralization associated with intrusion related deposits (possibly porphyry copper deposits), as well as, auriferous quartz veins at the contacts of younger gabbros and G-2 granites.The post-orogenic stage is characterized by the dominance of intra-plate magmatism. Small amounts of the element in disseminations, stockworks and quartz veins of Sn–W–Ta–Nb mineralization represent gold mineralization connected with this stage.The link between these tectonic–magmatic stages and gold mineralization can be used as a criterion at any exploration strategy for new targets of gold mineralization in Egypt.  相似文献   

20.
Field analyses of compressional faulting and folding in the Foothills of western Taiwan enable us to reconstruct paleostress trajectories over a large area and to establish the relative chronology of tectonic events. Two main compressional events have contributed to the present structure of the fold-thrust belt. Stratigraphic data show that these events are Plio-Pliocene in age. Older normal faulting indicates NNW-SSE extension across the Chinesse passive continental margin during the Neogene. The two main compressional events of the Taiwan collision correspond to similar fan-shaped distributions of maximum compressive stress trajectories, with a counterclockwise shift of 30°–50° between the two events. Using the relationship between recent stress trajectories and the direction of recent plate motion as a guide, we reconstruct the direction of plate convergence for the older event. We suspect that the relative motion Philippine Sea plate-Eurasia has rotated counterclockwise of at least 35°–45° in Taiwan during collision. This conclusion is in agreement with independent plate tectonic reconstructions. Several problems provide objectives to further tectonic and paleomagnetic studies, including the duration and diachronism of compressional events as well as possible clockwise rotation of northernmost Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号