首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
In this study we present a recent compilation of 286 modern surface pollen spectra from the southern part of the Russian Far East (42–54°N, 131–141°E) and use it to test the biome reconstruction method. Seventy terrestrial pollen taxa were assigned to plant functional types and then classified to eight regional biomes. When applied to 286 surface pollen spectra, the method assigns about 70% (201 sites) of the samples to the cool mixed forest biome, 17% – to the taiga, 2% – to the cool conifer forest, 3% – to the temperate deciduous forest, and 7% – to the steppe. The steppe reconstruction is characteristic of the pollen spectra from the agricultural areas around Lake Khanka. A visual comparison shows good agreement between pollen-derived biomes and actual vegetation distribution in the region. However, pollen and botanical data, compared with the potential vegetation distribution simulated from the modern climate dataset using the BIOME1 model, demonstrate that spatial distribution of cool mixed forest is underrepresented in the model simulation. The model sets the mean temperature of the coldest month of −15 °C as the factor limiting distribution of the temperate deciduous broadleaf taxa, while vegetation and pollen data from the region demonstrate that this limit should be lowered to −26 °C. Application of the method to the Gur 3–99 pollen record (50°00N, 137°03E) demonstrates that tundra vegetation predominated around the site prior to 14 ka BP (1 ka = 1000 cal. years). However, the local presence of boreal trees and mixed forest-tundra vegetation is suggested by relatively high taiga scores. Soon after 14 ka BP the scores of taiga become slightly higher than tundra scores. During 11.4–10.5 ka BP a cool conifer forest is reconstructed. Establishment of the full interglacial conditions is marked by the onset of cool mixed forest by 10.5 ka BP. Between 10.3 and 2.5 ka BP the scores of temperate deciduous forest are close to those of cool mixed forest and become distinctly lower during the late Holocene.  相似文献   

2.
High-Resolution Climate Simulations of Oxygen Isotope Stage 3 in Europe   总被引:1,自引:0,他引:1  
Oxygen isotope stage 3 (OIS 3) climate and its variations are the focus of the Stage 3 Project. The objective of the OIS 3 modeling effort is twofold: (1) to explore the importance of different boundary conditions on the climate of Europe and (2) to develop climate simulations that best reproduce the wealth of OIS 3 observations. Given the complexity of the topography and coastlines, the modeling effort is based on a “nested” General Circulation Model (GCM) and mesoscale model (RegCM2) with climate simulations for Europe on a 60-km grid spacing. The key conclusions are as follows: (1) The mesoscale model, driven by GCM output, does a reasonable job of reproducing the modern European climate. (2) OIS 3 variations in orbit, CO2, and ice-sheet size are of little significance in explaining the observed climate variability. (3) The model results focus attention on North Atlantic sea-surface temperatures (SST) as a major factor in explaining OIS 3 climates. (4) Experiments for different SST values capture a number of systematic changes in sea-level pressure and precipitation. (5) Climate models simulate substantial European cooling and significant changes in precipitation, but they do not explain large differences between OIS 3 warm and cold episodes.  相似文献   

3.
花粉植被化与全球古植被计划研究   总被引:5,自引:0,他引:5  
于革 《地球科学进展》1999,14(3):306-311
花粉是全球陆地分布最广的古气候环境信息来源。以花粉为基本资料的重建全球古植被计划自1994年实施以来,经数百名国际学者包括我国在内的第四纪花粉学等领域的专家合格,在综合和重建晚第四纪植被和制图方面取得了重大进展。研究成果提出了6kaBP和18ka BP两个时期的植被,在填补地理空白的基础上构成了全球规模古植被分布。  相似文献   

4.
Velichko, A. A., Novenko, E. Y., Pisareva, V. V., Zelikson, E. M., Boettger, T. & Junge, F. W. 2005 (May): Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data. Boreas , Vol. 34, pp. 207–219. Oslo. ISSN 0300–9483.
The article discusses pollen data from Central and Eastern Europe and provides insight into the climate and vegetation dynamics throughout the Eemian interglacial (including preceding and succeeding transitional phases). Three sections with high resolution pollen records are presented. Comparison of the data indicates that the range of climatic and environmental changes increased from west to east, whereas the main phases of vegetation development appear to have been similar throughout the latitudinal belt. At the interglacial optimum, the vegetation in both Central and Eastern Europe was essentially homogeneous. An abrupt change marks the Saalian/Eemian boundary (transition from OIS 6 to OIS 5e), where environmental fluctuations were similar to those detected at the transition from the Weichselian to the Holocene (Allerød and Dryas 3). Transition from the Eemian to the Weichselian was gradual in the western part of the transect, with forest persisting. In the east, fluctuations of climate and vegetation were more dramatic; forest deteriorated and was replaced by cold open landscapes.  相似文献   

5.
Fluvial and eolian successions of oxygen isotope stage 3 are compared with global (GCM) and regional climate (RCM) modeling experiments of the stage 3 and last glacial maximum climate in Europe. Differences in precipitation between stage-3 stades and interstades were minor, which is confirmed by the fluvial successions. The fluvial response to climate variation is non-uniform, and in southern Europe more pronounced than in northern Europe. The model simulations indicate a strong western winter circulation over Europe during stage 3, which is supported by the eolian deposits data. Wind speeds in the last glacial maximum simulation appear modest compared with those of stage 3, which contrasts with the abundance of eolian deposits. This suggests that during glacial climates the stabilizing effect of vegetation determines eolian sedimentation rates, rather than wind speed. Stage 3 can be divided into an older part (>45,000 cal yr B.P.) with a relatively stable landscape and moist climate and a younger part with more frequent climate change and decreasing landscape stability.  相似文献   

6.
European vegetation during representative “warm” and “cold” intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.  相似文献   

7.
Kjellström, E., Brandefelt, J., Näslund, J.‐O., Smith, B., Strandberg, G., Voelker, A. H. L. & Wohlfarth, B. 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 10.1111/j.1502‐3885.2010.00143.x. ISSN 0300‐9483. State‐of‐the‐art climate models were used to simulate climate conditions in Europe during Greenland Stadial (GS) 12 at 44 ka BP. The models employed for these simulations were: (i) a fully coupled atmosphere–ocean global climate model (AOGCM), and (ii) a regional atmospheric climate model (RCM) to dynamically downscale results from the global model for a more detailed investigation of European climate conditions. The vegetation was simulated off‐line by a dynamic vegetation model forced by the climate from the RCM. The resulting vegetation was then compared with the a priori vegetation used in the first simulation. In a subsequent step, the RCM was rerun to yield a new climate more consistent with the simulated vegetation. Forcing conditions included orbital forcing, land–sea distribution, ice‐sheet configuration, and atmospheric greenhouse gas concentrations representative for 44 ka BP. The results show a cold climate on the global scale, with global annual mean surface temperatures 5 °C colder than the modern climate. This is still significantly warmer than temperatures derived from the same model system for the Last Glacial Maximum (LGM). Regional, northern European climate is much colder than today, but still significantly warmer than during the LGM. Comparisons between the simulated climate and proxy‐based sea‐surface temperature reconstructions show that the results are in broad agreement, albeit with a possible cold bias in parts of the North Atlantic in summer. Given a prescribed restricted Marine Isotope Stage 3 ice‐sheet configuration, with large ice‐free regions in Sweden and Finland, the AOGCM and RCM model simulations produce a cold and dry climate in line with the restricted ice‐sheet configuration during GS 12. The simulated temperature climate, with prescribed ice‐free conditions in south‐central Fennoscandia, is favourable for the development of permafrost, but does not allow local ice‐sheet formation as all snow melts during summer.  相似文献   

8.
黄河源区高寒植被主要特征初探   总被引:3,自引:2,他引:1  
位于青藏高原东北部多年冻土与季节冻土交错带的黄河源区高寒生态环境及其变化一直备受关注. 气候变暖、冻土退化条件下,为了解黄河源区不同冻土区植被状况,在源区布设了4个场地:查拉坪(CLP,源区南部连续低温多年冻土区);扎陵湖南岸(ZLH,源区中南部岛状多年冻土区);麻多乡(MDX,源区西部的不连续多年冻土区);鄂陵湖北岸(ELH,源区中北部季节冻土区). 结合植被调查和场地监测,分析了源区各冻土区植被的差异. 结果显示:总体上低温多年冻土区植被盖度、多样性指数高,表现为连续多年冻土区(查拉坪)>不连续多年冻土区(麻多乡)>季节冻土区(鄂陵湖北岸),其中岛状多年冻土区(扎陵湖南岸)例外,该场地平均盖度最低,多样性指数介于查拉坪和麻多乡之间,局部植被退化较严重. 均匀度指数均表现为扎陵湖南岸最高,查拉坪次之. 地上生物量调查结果显示:查拉坪>麻多乡>扎陵湖南岸>鄂陵湖北岸,且鄂陵湖北岸出现指示植被退化的植物. 尽管黄河源区高寒植被研究为理解冻土退化条件下的生态环境变化提供了一些基础数据,评估气候变化和冻土退化的生态和水文效应需要更系统的调查和监测研究.  相似文献   

9.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
论青藏高原苔原——成因、分布与分类的研究   总被引:1,自引:0,他引:1  
孙广友 《冰川冻土》2004,26(2):121-128
通过分析青藏高原形成苔原的综合因素,论证了高原边缘高山和高原本体都发育有苔原,是全球中纬度独特的大陆苔原带.在划分高山苔原与山原苔原的基础上,将山原苔原进一步划分为湿地苔原、草甸苔原、草原苔原和荒漠苔原等4类,丰富了全球苔原结构.阐明青藏高原既有区域环境的独特性,也有适应全球地带性规律的统一性,使高原自然地带的定位更为准确,也有益于高原环境垂直带理论的完善.  相似文献   

11.
Climate impact of high northern vegetation: Late Miocene and present   总被引:1,自引:0,他引:1  
The Late Miocene belongs to the late phase of the Cenozoic. Climate at that time was still warmer and more humid as compared to today, especially in the high latitudes. Corresponding to the climate situation, palaeobotanical evidences support that vegetation in the high northern latitudes changed significantly from the Late Miocene until today. To quantify the climate impact of this vegetation change, we analyse how vegetation in the high northern latitudes contribute to climate evolution. For that, we perform climate modelling sensitivity experiments for the present and for the Late Miocene (Tortonian, 11–7 Ma). For our present-day sensitivity experiment, we introduce the Tortonian vegetation in the high northern latitudes. For our Tortonian sensitivity experiment, we introduce the modern vegetation on the same grid cells. In the Tortonian and in the present, the modern vegetation leads to a strong cooling of the northern extratropics (up to −4°C). Nevertheless, the meridional heat transports remain nearly unchanged in both cases. In general, the vegetation impact on climate is similar in the Tortonian and in the present. However, some exceptions occur. Due to the Tethys Ocean in the Tortonian, temperatures decline only weakly in eastern Europe and western Asia. In the Tortonian climate, temperatures on the Sahara realm rise (up to +1.5°C), while the temperatures do not change remarkably in the present-day climate. This different behaviour is caused by a stronger and more sensitive hydrological cycle on the Sahara region during the Tortonian.  相似文献   

12.
To understand the mechanisms underlying the effects of climate variation, especially the effects of water on vegetation, vegetation type and distribution as well as climate data and soil type were used to simulate present vegetation distributions and net primary productivity (NPP) under present and future climate scenarios SRES-A2 and SRES-B2. A natural vegetation NPP model was also applied to calculate future vegetation NPP. The results showed that water played a dominant role not only in the distribution of vegetation, but also in the rate of change in the vegetation area. Analysis of NPP showed that precipitation had more effects on the amount of biome NPP than temperature did. Different effects were observed for the rate of change in NPP. In cases where biomes remain unaltered, the variation in annual precipitation could account for 39% of the variation in NPP. In cases where biomes changed, 45% of NPP was caused by temperature variation. Regarding the variation in transect production, −2.85% resulted from the change in vegetation structure when compared with present NPP, and 7.69% from the climate change under scenario SRES-B2; these values were −7.4 and 19.56%, respectively, under scenario SRES-A2. The results showed water served as a dominant factor controlling the vegetation distributions and NPP. However, temperature became determinant where the biomes changed, impacting the rate of change in vegetation NPP when the climate changed. The results also showed that water would have a positive effect on transect production, and the structure of vegetation had a negative effect under the projected future climate.  相似文献   

13.
15 abrupt warming transitions perturbed glacial climate in Greenland during Marine Isotope Stage 3 (MIS 3, 60–27 ka BP). One hypothesis states that the 8–16 °C warming between Greenland Stadials (GS) and Interstadials (GI) was caused by enhanced heat transport to the North Atlantic region after a resumption of the Atlantic Meridional Overturning Circulation (AMOC) from a weak or shutdown stadial mode. This hypothesis also predicts warming over Europe, a prediction poorly constrained by data due to the paucity of well-dated quantitative temperature records. We therefore use a new evidence from biotic proxies and a climate model simulation to study the characteristics of a GS–GI transition in continental Europe and the link to enhanced AMOC strength. We compare reconstructed climatic and vegetation changes between a stadial and subsequent interstadial – correlated to GS15 and GI14 (~55 ka BP) – with a simulated AMOC resumption using a three-dimensional earth system model setup with early-MIS 3 boundary conditions. Over western Europe (12°W–15°E), we simulate twice the annual precipitation, a 17 °C warmer coldest month, a 8 °C warmer warmest month, 1300 °C-day more growing degree days with baseline 5 °C (GDD5) and potential vegetation allowing tree cover after the transition. However, the combined effect of frequent killing frosts, <20 mm summer precipitation and too few GDD5 after the transition suggest a northern tree limit lying at ~50°N during GI14. With these 3 climatic limiting factors we provide a possible explanation for the absence of forests north of 48°N during MIS 3 interstadials with mild summers. Finally, apart from a large model bias in warmest month surface air temperatures, our simulation is in reasonable agreement with reconstructed climatic and vegetation changes in Europe, thus further supporting the hypothesis.  相似文献   

14.
气候变暖对多年冻土区土壤有机碳库的影响   总被引:3,自引:2,他引:1  
马蔷  金会军 《冰川冻土》2020,42(1):91-103
多年冻土区存储了大量土壤有机碳。气候变暖、 多年冻土退化导致其长期封存的有机碳逐渐或快速释放, 进入大气圈或水系统, 改变原有多年冻土区碳循环, 并可能显著加速气候变暖。通过综述气候变暖对多年冻土区碳库的影响研究进展, 主要包括多年冻土碳库储量、 降解机理及变化预测, 研究表明: 北半球多年冻土区的碳储量巨大, 但不确定性很高, 尤其是海底多年冻土和水合物碳库储量的评估; 多年冻土碳库对气候变暖的响应速度受土壤水热特性、 土壤有机质C/N比、 有机碳含量和微生物群落特征等多种环境因素的控制或影响; 目前, 关于北半球多年冻土碳库对气候变暖响应模拟结果说明, 多年冻土退化短期内不会导致经济和生产方面的灾难性后果。但是, 无论是针对多年冻土碳库评估, 还是多年冻土有机碳库对气候变暖的响应模拟研究结果, 都有较大的不确定性。未来多年冻土碳库变化的模拟和预测研究应更多考虑多年冻土快速退化和多年冻土区水合物分解, 如中小尺度热喀斯特的生态环境和碳的源汇效应。准确的多年冻土区有机碳排放模拟可为未来多年冻土碳与气候反馈的预估提供重要支持。  相似文献   

15.
Little is known concerning climate changes in the Eastern Baltic region during the last interglacial–glacial cycle and in particular, climate changes during the Weichselian. In this study, a quantitative reconstruction of the mean January and July temperature for the Medininkai-117 site in Lithuania is presented. The reconstruction is based on pollen and plant macrofossils from this site, which reveal that the vegetation was characteristic of many northern Europe sites during the Eemian and Early Weichselian. Gradual evolution of the vegetation suggests that relatively uniform climate conditions existed during the Eemian. Our reconstructions support the view of a relatively stable Eemian, with short cooling phases of low amplitude. A strong increase in temperature was apparent during the beginning of the interglacial and decrease during the transition to the Weichselian. Reconstructed July temperatures of the Eemian interglacial were approximately 2 °C higher than today (18.5 °C; today: 16.2 °C) and were similar to today for January (− 5.2 °C; today: − 5.1 °C). July temperatures during the Early Weichselian were only ~ 2°C lower than during the Eemian, whereas the January temperatures gradually decreased. Winter temperatures were relatively high (above − 10 °C) during the Early Weichselian.  相似文献   

16.
Palynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00?N, 0°23′52?W) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial-interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.  相似文献   

17.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

18.
Oxygen isotope stage 3 (OIS 3), encompassing the long middle section of the last glacial interval, has been the focus of an intensive high-resolution climate modeling effort for Europe. These model simulations produce substantially colder climates than modern simulations; however, the temperatures appear warmer than many proxy indicators suggest. In order to evaluate the importance of the model boundary conditions, comparable simulations are completed for the last glacial maximum (LGM). The LGM simulation produces a much colder European continent than OIS 3, despite similarities in the specification of sea-surface temperatures (SSTs). Ice-sheet dimension is evidently a key factor in explaining the difference in European climates over the past 40,000 yr. However, underestimates in specified OIS 3 ice sheets cannot be invoked to explain the discrepancies, since data strongly indicate small ice-sheet extents at that time; this leaves errors in specified OIS 3 SSTs as the most likely cause.  相似文献   

19.
The “type” DeKalb mounds of northeastern Illinois, USA (42.0°N, −88.7°W), are formed of basal sand and gravel overlain by rhythmically bedded fines, and weathered sand and gravel. Generally from 2 to 7 m thick, the fines include abundant fossils of ostracodes and uncommon leaves and stems of tundra plants. Rare chironomid head capsules, pillclam shells, and aquatic plant macrofossils also have been observed.Radiocarbon ages on the tundra plant fossils from the “type” region range from 20,420 to 18,560 cal yr BP. Comparison of radiocarbon ages of terrestrial plants from type area ice-walled lake plains and adjacent kettle basins indicate that the topographic inversion to ice-free conditions occurred from 18,560 and 16,650 cal yr BP. Outside the “type” area, the oldest reliable age of tundra plant fossils in DeKalb mound sediment is 21,680 cal yr BP; the mound occurs on the northern arm of the Ransom Moraine (−88.5436°W, 41.5028°N). The youngest age, 16,250 cal yr BP, is associated with a mound on the Deerfield Moraine (−87.9102°W, 42.4260°N) located about 9 km east of Lake Michigan. The chronology of individual successions indicates the lakes persisted on the periglacial landscape for about 300 to 1500 yr.  相似文献   

20.
Woolly mammoths were large, herbivorous, cold-adapted mammals of the Late Pleistocene. The diet and habitat requirements of the species set certain constraints on the palaeoenvironments it could occupy. The relationship between the mammoth’s shifting range and changing environments can be explored using independent data on ice sheet configuration, temperature, and vegetation, provided the locality and age of the fossil remains can be validated. Here we present a comprehensive record of occurrence of the woolly mammoth in the circum-Baltic region of northern Europe during the last glaciation, based on a compilation of radiocarbon-dated remains. The record shows that the mammoth was widespread in northern and north-eastern Europe during Marine Isotope Stage 3 (MIS 3), at 50,000–30,000 calibrated years ago (50–30 ka). The presence of the species up to 65°N latitude supports the restriction of the Scandinavian Ice Sheet (SIS) during MIS 3. The widest distribution range round 30 ka was followed by a decline that led to the disappearance of mammoths from the area during the maximum extent of the SIS, from 22 to 18 ka. The woolly mammoth re-colonized the Baltic region and southern Scandinavia after the onset of the late-glacial deglaciation at 17 ka. The late-glacial record suggests a markedly fluctuating population changing its range in tune with the rapid environmental changes. The last appearance of mammoth in our study region was in Estonia during the Younger Dryas (Greenland Stadial 1; GS1) at about 12 ka. The two major periods of occurrence during MIS 3 and the late-glacial stadial suggest that mammoth had a wide tolerance of open to semi-open tundra and steppe-tundra habitats with intermediately cold climate, whereas the 22–18 ka disappearance suggests a major southward and/or eastward retreat in response to extremely cold, glacial conditions near the SIS margin. The final regional extinction correlates with the re-forestation during the rapid warming at the Younger Dryas–Holocene boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号