首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>熔体包裹体保存了岩浆系统在熔体被捕获时刻的物质组成,对岩浆演化系统的研究具有重要意义。但斜长石熔体包裹体组分的不确定性常导致错误的地质作用解释,斜长石熔体包裹体也因此未受研究者们的广泛青睐。为提高斜长石熔体包裹体在地质学研究中的准确性与普遍性,本文设计了新的高温试验对斜长石熔体包裹体进行研究。首先利用南大西洋中脊19°S(SMAR19°S)地区MORB斜长石熔体包裹体进行高温均一、降温结晶实验;然后对熔体包裹体的均一温度、组分均一性以及水分含量进行讨论;随后结果表明  相似文献   

2.
挥发分(例如H2O、CO2、F、Cl和S)是地幔的重要组成部分,虽然它们在地幔中的含量很低,但是在地幔熔融和熔体演化、地幔不均一、地幔流变学、地幔地震特性和电导率等研究方面具有重要作用。对矿物熔体包裹体和玻璃挥发分的研究已经成为当前的研究热点。其中,熔体包裹体研究凭借其独特的优势成为研究地幔和岩浆挥发分组成的重要手段。熔体包裹体直接捕获了矿物形成时岩浆中的成分,且由于寄主矿物的存在使得熔体包裹体能够保持独立演化而不受外界环境影响,因此能够较为完整地保存岩浆中的挥发分信息。同时,研究熔体包裹体中的挥发分是恢复岩浆喷发前挥发分含量最直接的途径。如果通过现代分析方法(如扫描电镜、电子探针和离子探针等)对熔体包裹体进行详细的岩相学观察以及对后期可能影响熔体包裹体原始挥发组分的作用(地壳混染、岩浆去气、扩散和水化作用)进行评估,并结合实验研究熔体包裹体被捕获后发生的变化而对数据进行矫正,那熔体包裹体对研究岩浆体系中的挥发分将大有可为。基于此,本文系统介绍了熔体包裹体挥发分研究的现状及主要研究内容,主要包括熔体包裹体挥发分的测试方法、挥发分在岩浆中的溶解度、判断挥发分数据可靠性和挥发分研究的经典应用等4个方面。  相似文献   

3.
岩浆岩中的熔体包裹体   总被引:15,自引:1,他引:15  
夏林圻 《地学前缘》2002,9(2):403-414
熔体包裹体是岩浆岩矿物生长过程中捕获的天然岩浆珠滴 ,它们有效地保存了大量有关其主矿物形成时周围岩浆介质的物理化学信息 ,所以它们是其主矿物结晶演化史的忠实记录员 ,它们能够提供岩浆系统成分和演化的重要信息。文中对熔体包裹体研究的若干基本原理进行了讨论 ,它们涉及 :(1)熔体包裹体的一般特征 ;(2 )熔体包裹体封闭过程中和封闭后的演化 ;(3)熔体包裹体的均一化研究 ;(4 )熔体包裹体化学成分和挥发组分研究。熔体包裹体研究可以对岩浆岩石学中的一些重要问题进行更为深入的探索 :(1)重建天然岩浆结晶演化的热历史 ;(2 )提供有关岩浆沿下降液相线的成分数据 ;(3)查明天然岩浆结晶演化过程中化学成分的变迁规律 ;(4 )解决岩浆岩石学中的一些疑难问题 ,如岩浆不混溶作用、岩浆混合作用、岩浆混染作用、岩浆中硫的性状、地幔部分熔融和地幔交代作用等方面的问题。将熔体包裹体数据和常规的岩石学、地球化学和实验岩石学信息综合一体 ,可以提高我们模拟岩浆作用过程的能力。熔体包裹体研究已经成为现代岩浆岩石学的一个独立的分支 ,其前景十分广阔。  相似文献   

4.
高一杰  刘景波 《地球科学》2018,43(1):236-246
高级变质岩中的熔体包裹体为包裹于寄主矿物(石榴子石、锆石等)中的熔体滴,主要由子晶矿物、玻璃和一些偶然捕获的固相矿物组成.最近10年来,熔体包裹体已经成为研究区域变质岩部分熔融作用的新手段和新途径.熔体包裹体粒径通常 < 20 μm,微小的尺度对熔体包裹体识别与分析提出巨大挑战.为此系统总结了熔体包裹体的识别方法、结构特征、化学成分分析方法,并指出熔体包裹体研究对于部分熔融的识别、部分熔融发生的温压条件、机制和流体状态的限定等具有重要的意义.   相似文献   

5.
硅酸盐熔体包裹体均匀化过程的动力学性质   总被引:4,自引:0,他引:4       下载免费PDF全文
夏林圻 《地质科学》1984,(3):323-329
硅酸盐熔体包裹体的研究,和以模拟实验为主的实验岩石学,实验矿物学一样,已经成为现代岩浆岩石学,尤其是理论岩浆岩石学研究的一个必不可少的组成部分。均匀化测温研究,是硅酸盐熔体包裹体研究的一个重要组成部分。其方法是对于呈封闭系统的硅酸盐熔体包裹体进行加热,在反方向上,再造这些包裹体从结晶到熔融的所有阶段,直至其完全均匀化,也就是恢复到它们被生长着的矿物包含、捕获时的状态,借以测量矿物近液相线或固相线的结晶温度。  相似文献   

6.
熔体包裹体研究不仅广泛应用于火山岩和部分侵入岩系统,而且因其具有可以保存岩浆初始挥发分和金属组成的优势,近来也逐步应用于矿床学领域.在介绍熔体包裹体形成机制和捕获后成分改造的基础上,简要归纳了目前常用的熔体包裹体分析方法,以斑岩型Cu-(Mo-Au)和斑岩型Mo成矿系统为例,重点介绍熔体包裹体在矿床学领域的应用,包括成矿金属和挥发分含量的测定,以及熔体-流体分配系数测定等方面.然而,熔体包裹体在捕获后均会受到不同程度的成分改造,且对于大多数造岩矿物内的熔体包裹体,其成分改造的具体机制仍不明了,因此在实际应用过程中,需要对其组成进行具体分析和甄别.随着分析技术的改善和提高,熔体包裹体捕获后具体成分改造机制有待进一步查明,进而推动熔体包裹体的应用.现阶段熔体包裹体在斑岩型Cu-(Mo-Au)和斑岩型Mo成矿岩浆系统的成功应用表明,相比全岩地球化学研究,熔体包裹体已成为研究成矿岩浆体系内成矿金属和挥发分演化的重要手段.   相似文献   

7.
熔体包裹体由被封存在矿物中的原始岩浆组成,有效的保存了有关其主矿物形成时周围岩浆介质的物理化学信息,是研究岩浆演化和成矿作用的原始样品。本文以内蒙古巴尔哲超大型稀有稀土金属矿床中伟晶岩壳和石英斑晶中的熔体包裹体和流体-熔体包裹体为研究对象,使用高温热台和激光拉曼进行分析。结果显示熔体包裹体的熔融温度在750~1027℃之间(平均为916℃),熔体-流体包裹体的均一温度在475~650℃之间(平均为562℃),而包裹体内的硅酸盐矿物和稀土矿物的存在表明巴尔哲岩体的岩浆-热液演化及其对稀有稀土矿化的制约。  相似文献   

8.
岩浆熔体包裹体研究进展   总被引:2,自引:0,他引:2  
王蝶  卢焕章  单强 《岩石学报》2017,33(2):653-666
近现代对于熔体包裹体的研究已经有50余年,但它们在反映岩浆系统特征方面的价值是直至最近10~15年间才逐渐被火山学家、岩石学家和包裹体学者所意识到。熔体包裹体的研究结果之所以难以被接受主要有以下几个因素:1)缺乏可靠的分析技术;2)熔体包裹体捕获后会发生一系列的变化;3)包裹体中熔体存在不均匀的现象;4)较高的均一温度,很难测定。但随着分析方法的改进和熔体包裹体的系统研究,学者们逐渐确定了熔体包裹体在解开岩浆系统复杂性方面的实用性,可以这么说"熔体包裹体的研究正值当年"。例如:现代的研究提供了岩浆中溶解和出溶的挥发分含量的不可否认的证据,并且从熔体包裹体中得到的气相、盐类卤水和岩浆不混溶信息证明岩浆的相分离远比从结晶相图中推论得到的要复杂得多;包裹体岩相学已详细地描绘了熔体包裹体捕获之后经历的特定变化——结晶,挥发分的扩散,气相出溶,以及泄露等。因此,如果有细致的包裹体岩相学的观察以及精确的测试分析,那么,从熔体包裹体中得到的成分数据是有用且可靠的。  相似文献   

9.
为进一步研究MORB斜长石熔体包裹体的形成机制,结合南大西洋中脊19°区域附近与Pet DB中MORB斜长石熔体包裹体数据,对Ca/Al值在斜长石熔体包裹体形成与改造过程中的变化规律进行讨论。结果显示,Ca/Al值可指示斜长石熔体包裹体形成过程中的化学分异作用、寄主结晶作用与扩散再平衡作用;当MORB斜长石熔体包裹体的Ca/Al0.85(或0.80)时,熔体包裹体不能代表MORBs未分异的原始岩浆或结晶分异后的演化岩浆,SMAR19°研究区中MORB斜长石熔体包裹体的Ca/Al1.0,其组分不能代表被捕获时的原始熔体。  相似文献   

10.
熔体包裹体是岩浆岩中矿物生长或结晶过程中捕获的少量硅酸盐熔体,成为地球深部过程的重要见证者。因此,有效识别其记录的岩浆演化信息显得十分重要。文章在前人对熔体包裹体研究的基础上,系统梳理其研究方法,总结了5步研究过程:① 利用偏光显微镜,开展详细的岩相学观察以识别具有代表性的熔体包裹体类型;② 为加热实验和成分分析制备样品;③ 利用高温热台,对熔体包裹体进行加热实验使其内部均一化,并测得捕获温度;④ 通过电子探针、二次离子探针、LA-ICP-MS、显微激光拉曼等技术对熔体包裹体中的主、微量元素、同位素以及挥发分组成进行分析测试;⑤ 熔体包裹体数据分析,与全岩成分和相关实验得出的流体成分进行对比。虽然熔体包裹体的研究经历了近百年的发展,但有效还原其代表的初始岩浆信息,仍然是当前研究的难点和热点。尤其是地球系统科学发展引发宜居地球深部过程的探讨,使得开展熔体包裹体分析新方法的探讨成为重中之重。  相似文献   

11.
<正>近现代对于熔体包裹体(melt inclusion)的研究已经有50余年,但它们在反映岩浆系统特征方面的价值是直至最近10~15年间才逐渐被火山学家,岩石学家和包裹体学者所意识到。熔体包裹体的研究结果之所以难以被接受主要有以下几个因素:(1)缺乏可靠的分析技术;(2)熔体包裹体捕获后会发生一系列的变化;(3)有的包裹体中熔体存在不均匀的现象;(4)较高的均一温度,很难测定。但随着分析方法的改进和熔体包裹体的系统研究的进展,学者们逐渐确定了熔体包裹体在解开岩浆系统  相似文献   

12.
<正>超级火山(supervolcano)喷发带给地球的影响是灾难性的。岩浆从聚集在岩浆房到喷发到底需要多长时间,这对于超级火山喷发的预测是关键性的问题。最近,Pamukcu等人从新的角度—石英中熔体包裹体形状研究了这个问题。熔体包裹体被捕获时,与寄主矿物之间的界面通常是弯曲的。捕获后,为了降低自由能,会逐渐演化为寄主矿物负晶形的形状。对于石英中的熔体包裹体来  相似文献   

13.
熔体包裹体是矿物在生长过程中捕获的原始岩浆,能有效的保留大量主矿物结晶和周围岩浆介质的物理化学信息,是岩浆演化和成矿过程的良好指示刺.文章从熔体包裹体在主矿物中的赋存状态,均一化试验和测试技术等方面总结了目前的研究进展,并结合具体的矿床揭示熔体包裹体对岩浆和成矿方面的指示意义.同时笔者也建议,将熔体包裹体信息和岩石学、地球化学、找矿学联系起来,可以加深对岩浆演化过程的了解程度,提高勘查找矿的效果.熔体包裹体作为一种较新的微区分析对象具有十分广阔的应用前景.  相似文献   

14.
熔体包裹体在镁铁质火山岩成因研究中的应用   总被引:1,自引:0,他引:1  
熔体包裹体是矿物在生长或结晶过程中捕获的小的硅酸盐熔体,它保存了原生岩浆、岩浆演化以及源区性质等方面的重要信息。然而,全岩成分只保留了经历复杂地质过程(如分离结晶、岩浆混合、地壳混染和后期蚀变等)之后的"混合"成分,有关岩石起源方面的重要信息部分或全部消失。本文系统总结了熔体包裹体的研究方法,包括岩相学观察、挑选寄主矿物、加热均一化、镶嵌和磨制样品靶、成分分析等,介绍了熔体包裹体方法在镁铁质火山岩成因研究中一些应用实例。  相似文献   

15.
黄岗梁夕卡岩型铁锡矿床的主要成矿阶段一一含水夕卡岩阶段的萤石内,首次发现了含有多种子矿物的特殊的流体-熔融包裹体, 该种流体『熔融包裹体携带有较多Fe、Mg及Cr等深源组分,从原生至次生,其内熔体组分从以含Ca、F为主向以含Si为主的熔体演化, 由均句捕获向不均匀捕获演化,在此过程中熔体组分逐渐减少至消失,子矿物亦减少至消失.这显示了携带大量成矿元素的原始成矿熔体组分的演化、熔体相与流体相的分异是导致Fe、Sn等沉淀成矿重要因素,这一发现确定了黄岗梁夕卡岩型铁锡矿床的岩浆成因. 项工作填补了岩浆成因夕卡岩型矿床的研究空白,为该类型矿床矿流体和成矿作用研究提供了新的思路和方法手段,并进一步拓了流体包裹体的研究内容.  相似文献   

16.
阿尔泰伟晶岩中流体熔融包裹体成分的研究   总被引:9,自引:1,他引:9  
吴长年  朱金初 《地球化学》1995,24(4):351-358
对阿尔泰可可托海、柯鲁木特和库威伟晶岩锂辉石及绿柱石中单个流体熔融包裹体各相成分,借助激光拉曼探针进行分析,鉴定出固体相为不同硅酸盐子晶矿物,定量给出了流体相成分。根据子晶矿物和流体相成分估算了整个流体熔融包裹体的成分,并据此进一步讨论了熔体中流体的溶解度问题。流体熔融包裹体成分研究表明熔体中流体已达饱和或过饱和,流体相与熔体相发生分离,相应残余伟晶岩浆体系进入晶体+熔体+流体三相共存的岩浆-热液  相似文献   

17.
流体熔融包裹体   总被引:22,自引:5,他引:22  
卢焕章 《地球化学》1990,(3):225-229,T001
流体熔融包裹体是一种新类型,它代表岩浆分异热液的过程。 按室温时的相态和成分可分四种:1.气相+液相+熔体相的流体熔融包裹体;2.熔融包裹体与流体包裹体共存;3.熔融包裹体周围有细小的流体包裹体群;4.含易溶盐子矿物+气相+熔融体的流体熔融包裹体。  相似文献   

18.
大陆碰撞过程中会发生广泛的部分熔融现象,形成深熔熔体。深入认识深熔熔体的组成和演化是大陆俯冲带化学地球动力学的主要研究内容。在熔融过程中产生的熔体会被超高压岩石中的转熔矿物所捕获,最终以多相晶体包裹体(multiphase crystal inclusion,简称MCI)的形式保存下来。多相晶体包裹体通常具有典型的负晶形和爆裂纹,主要以硅酸盐和碳酸盐矿物为主含有少量的硫酸盐矿物。矿物学、岩石学和地球化学原位微区分析的研究结果表明,多相晶体包裹体是由岩石部分熔融产生的初始硅酸盐或/和碳酸盐初始熔体熔体结晶而成。在降压折返过程中,高压岩石中的含水矿物,如多硅白云母、钠云母和帘石等脱水引发部分熔融产生硅酸盐熔体,而碳酸盐熔体则由碳酸盐矿物部分熔融产生。富Na矿物如钠云母脱水熔融产生的包裹体具有相对较高的Na含量,而部分富K的包裹体主要由富K矿物如多硅白云母脱水熔融所产生。近年来随着微区原位技术的飞速发展,从矿物的形态结构到矿物地球化学组成的测定技术有了飞速发展,通过对超高压岩石中包裹的多相晶体的详细研究,可限定大陆碰撞造山过程中部分熔融的组成、时限和形成机制,对大陆深俯冲的构造热演化和折返机制有重要制约。  相似文献   

19.
大陆碰撞过程中会发生广泛的部分熔融现象,形成深熔熔体。深入认识深熔熔体的组成和演化是大陆俯冲带化学地球动力学的主要研究内容。在熔融过程中产生的熔体会被超高压岩石中的转熔矿物所捕获,最终以多相晶体包裹体(multiphase crystal inclusion,简称MCI)的形式保存下来。多相晶体包裹体通常具有典型的负晶形和爆裂纹,主要以硅酸盐和碳酸盐矿物为主含有少量的硫酸盐矿物。矿物学、岩石学和地球化学原位微区分析的研究结果表明,多相晶体包裹体是由岩石部分熔融产生的初始硅酸盐或/和碳酸盐初始熔体熔体结晶而成。在降压折返过程中,高压岩石中的含水矿物,如多硅白云母、钠云母和帘石等脱水引发部分熔融产生硅酸盐熔体,而碳酸盐熔体则由碳酸盐矿物部分熔融产生。富Na矿物如钠云母脱水熔融产生的包裹体具有相对较高的Na含量,而部分富K的包裹体主要由富K矿物如多硅白云母脱水熔融所产生。近年来随着微区原位技术的飞速发展,从矿物的形态结构到矿物地球化学组成的测定技术有了飞速发展,通过对超高压岩石中包裹的多相晶体的详细研究,可限定大陆碰撞造山过程中部分熔融的组成、时限和形成机制,对大陆深俯冲的构造热演化和折返机制有重要制约。  相似文献   

20.
夏琼霞 《地球科学》2019,44(12):4042-4049
石榴石是高压-超高压变质岩石中最重要的变质矿物之一,是研究俯冲带深部变质和熔融过程的理想研究对象.通过对俯冲带内不同条件下形成的石榴石进行详细研究,确定了岩浆成因、变质成因和转熔成因石榴石.岩浆石榴石是岩浆熔体在冷却过程中结晶形成,成分主要为锰铝榴石-铁铝榴石,通常含有石英、长石、磷灰石等晶体包裹体.变质石榴石是在亚固相条件下通过变质反应形成,包裹体为参与变质反应的矿物组合;进变质生长的石榴石通常显示核部到边部锰铝榴石降低的特征.转熔石榴石是在超固相条件下通过转熔反应形成,通常含有晶体包裹体,其中既有从转熔熔体结晶的矿物包裹体,也有转熔反应残留的矿物包裹体.对超高压变质岩石中转熔石榴石的识别,可以为深俯冲陆壳岩石的部分熔融提供重要的岩石学证据,是大陆俯冲带部分熔融研究的重要进展之一.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号