首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
研究采集了黑龙江松嫩平原南部28个夏季大气颗粒物样品,分析了不同粒径(TSP、PM10、PM2-5)样品中常量和微量元素含量,对元素浓度含量特征、元素间相关性和空间分布特征进行了分析,并使用富集系数法和因子分析法进行元素来源解析。研究表明:在PM10-100中富集的元素多在地壳中含量很高,重金属元素在PM2-5中高度富集,不同粒径大气颗粒物中各元素质量浓度整体水平为:大庆>绥化>哈尔滨>齐齐哈尔。富集因子分析表明:Fe、K、Ti、Mn、Co的富集因子小于1或非常接近1,Ca、Mg、Ni、Cr的富集因子大于1但仍小于10,Na、Zn、Cu、Cd、Pb、Se的富集因子大于10,表现出较为明显的人为来源特征。参照颗粒物不同源主要标识元素,对各元素进行主因子分析结果表明:松嫩平原南部大气可吸入颗粒物的主要来源是土壤扬尘,此外还有燃煤、垃圾焚烧、汽车尾气、碱尘大气传输、燃油和工业来源。  相似文献   

2.
使用TH1500C智能中流量(80~120 L/min)大气采样器采集了北京市区5个功能区和郊区的大气颗粒物(TSP/PM_(10)/PM_(2.5))样品,利用电感耦合等离子体质谱仪和原子荧光谱仪分析测试了大气颗粒物中Al,Fe,Mn,As,Hg,Cd,和Cr等21种元素,并通过计算元素的富集因子探讨了大气颗粒物中元素的来源。结果表明,冬季大气颗粒物PM10中Cd,Cr,As,Hg的浓度比春季的分别增幅233%,306%,298%和141%;在PM2.5中的增幅分别为442%,309%,310%和256%。Cd,Cr,As,Hg和Se等元素均表现出在PM_(2.5)中富集的趋势,并且其在冬季的浓度明显高于春季。认为冬季燃煤取暖对大气颗粒物中的污染元素贡献较大,主要贡献元素为Cd,As和Hg。  相似文献   

3.
南京市大气降尘重金属含量特征及来源研究   总被引:19,自引:0,他引:19  
文中对南京市大气降尘重金属含量水平进行了研究,从2006年12月起连续收集一年的大气降尘样品,分析了As、Cd、Cr、Cu、Hg、Mn、Mo、Ni、Pb、Se、Zn等11个元素。结果表明,与土壤背景值相比,南京市大气降尘中除Cr、Fe、Mn外的重金属含量总体明显升高。采用相关分析和主成分分析,对降尘重金属元素来源进行解析,认为有三种主要来源:一是As、Cu、Hg、Pb、Se与燃煤活动、汽车尾气排放有关。二是Cd、Ni、Zn、Mo可能与化学工业有关,但Mo还受工业活动、土壤颗粒物的影响。分析还表明,在化工业园附近的样点,这些元素含量普遍较高。三是Mn、Cr主要与土壤颗粒物有关(自然来源)。以Fe作为参考元素计算重金属的富集因子表明,自然来源的Cr、Mn具有较小的富集因子,而受工业活动影响的Cd、Pb、Se、Zn具有较大的富集因子。  相似文献   

4.
石家庄市大气降尘重金属元素来源分析   总被引:4,自引:1,他引:3       下载免费PDF全文
本文对石家庄市大气降尘重金属含量水平进行了研究,从2007年11月起连续收集一年的大气降尘样品,分析了As、Cd、Hg、Pb、Cr、Cu、Zn、Ni、Mo、Mn、Al2O3、K2O等12项。结果表明,与土壤背景值相比,石家庄市大气降尘中除Al2O3外的重金属含量总体明显升高。采用相关分析和主成分分析,对降尘重金属元素来源进行解析,认为有3种主要来源:一是Pb、Cr、As、Hg、Mo、Cd、Mn与燃煤活动、道路交通有关;二是Ni、Cu、Zn除与燃煤活动有关外,还与工矿企业废气排放有关;三是Al2O3主要与土壤颗粒物有关(自然来源)。以Al作为参考元素计算重金属的富集因子表明,受工业活动影响的Cd、Hg、Zn具有较大的富集因子,大气降尘中的重金属含量高值区与工业区域的分布相吻合。  相似文献   

5.
文中利用电感耦合等离子质谱仪(ICP-MS)对《攻坚行动方案》实施后北京市环境大气PM2.5中微量元素组成特征进行研究。结果表明,《攻坚行动方案》实施后,北京市PM2.5中微量元素以Zn、Mn、Ba、Pb、Cr、Cu、Ti等7种元素为主,其中元素Zn含量最高。元素Zn、Cd、Tl、Cs、Rb的水溶性组分在总微量元素中占比超过80%,说明这些元素大部分以易溶于水的状态存在于PM2.5中。有趣的是,在PM2.5样品中微量元素的含量(10-6)随着PM2.5污染水平的升高而下降,而质量浓度(ng·m-3)随PM2.5污染水平的升高而升高。这说明单位质量PM2.5中微量元素的含量只与颗粒物的组成成分有关,与颗粒物浓度无关。采样期间PM2.5中的微量元素主要来源于土壤扬尘(48.27%)、燃烧源和工业排放(16.16%)、刹车和轮胎磨损(10.03%),其次是汽车尾气(5.84%)、建筑扬尘(4.88%)以及其他源(3.68%)。与攻坚行动前相比,PM2.5中微量元素的质量浓度有明显的降低,高污染等级的PM2.5样品中微量元素质量浓度的降幅最为明显,比攻坚行动前下降了80.3%。  相似文献   

6.
将高灵敏度的同步辐射微束x射线荧光光谱分析方法与计算机模式识别技术相结合,用于上海市大气PM2.5,单颗粒物的源识别。分析了污染排放源的PM2.5,单颗粒物,结果表明,来自不同污染排放源的颗粒物具有不同的能谱特征。同时分析了环境空气监测样品PM2.5,单颗粒物,结果表明,在上海市中心区大气PM2.5,的污染源主要以机动车尾气为主,而在吴淞工业区大气PM2.5,的污染源主要以钢铁工业尘和燃煤烟尘为主。  相似文献   

7.
研究了我国西南地区小龙潭、阳宗海和贵阳三个燃煤电厂排放可吸入颗粒物(PM10)中重金属元素(As、Se、Be、Pb、Cd和Co)的分布与富集特征.同粒径大于10μm的飞灰相比,大多数重金属倾向于在PM10中富集.经历了挥发-凝聚过程的As、Se、Cd和Pb元素,在PM10粒径大小和化学成分差异等因素的共同作用下,随着PM10粒径的减小,其含量和富集系数在总体增大的趋势下局部存在低值异常;未经历挥发-凝聚过程的重金属元素(小龙潭电厂、贵阳电厂Be和Co)表现出在不同粒级PM10中均匀分布和正常富集的特征.煤粉燃烧过程中重金属元素的挥发-凝聚特性改变了燃煤产物中重金属元素的环境迁移能力,经历了挥发-凝聚过程的重金属元素主要赋存于飞灰表面,形成纳米级颗粒覆盖层,其水溶性和酸溶性增强,环境危害性增大.  相似文献   

8.
大气颗粒物是大气质量评价中的一个通用的重要指标,近年来,对于大气颗粒物污染这一热点问题开展了大量的研究。文中选取辽宁省沈阳市、锦州市和葫芦岛市等典型地区研究大气颗粒物(TSP、PM10、PM2.5)中Cd等重金属元素的分布特征。结果表明,辽宁省大气可吸入颗粒物中Pb和Zn的含量最高,其次是Cu、Mn、As、Cr、Cd。燃煤、燃油和工业污染源等方面可能是造成这些元素含量较高的主要原因。此外,文中还对大气颗粒物对土地质量的影响研究进行一些有益尝试。研究表明,大气颗粒物中重金属元素含量对土地质量的影响是显而易见的。政府管理部门应该重视对大气颗粒物中重金属元素含量的监控,努力减少其对土地质量的影响。  相似文献   

9.
借助稀释通道采样系统,采集了5种民用煤(3种块煤、1种蜂窝煤和1种煤球)燃烧排放的PM2.5和单颗粒样品.利用ICP-MS分析了PM2.5中16种金属元素(Mg、Al和K 3种轻金属;V、Cr、Mn、Fe、Co、Ni、Cu、As、Rb、Sr、Cd、Ba和Bi共13种重金属)的含量,并运用TEM和SEM-EDX研究了燃煤...  相似文献   

10.
济宁市是位于华北平原大气污染传输通道上的工业城市,为研究其秋、冬季细颗粒物(PM2.5)的污染特征,在市区的3个站点进行了PM2.5的同步滤膜采样。采样期为2018年10月15日至2019年1月31日,涵盖非采暖期和采暖期(自2019年11月15日始),共270个小流量滤膜样品。研究结果表明,济宁市秋、冬季PM2.5平均质量浓度为(98.9±48.8)μg/m3,采暖期PM2.5质量浓度(107.1±52.8)μg/m3显著高于非采暖期(77.4±27.8)μg/m3。PM2.5的化学组成以二次无机气溶胶、有机碳和元素碳为主,占比分别为52.4%、10.9%和7.5%。S、Cl、K、Ca、Fe和Si元素平均质量浓度之和占元素总平均质量浓度的78.8%,是PM2.5中的主要元素。采暖期PM2.5的主要化学组分质量浓度显著高于非采暖期。二次有机碳是有机碳的重要来源,占比78.9%。PM2.5中Zn和Pb的富集因子较高,说明燃煤及相关工业对PM2.5中重金属的贡献较为显著,ρ(NO3?)/ρ(SO42?)比值分析表明,济宁市整体受流动源影响较大。本研究可为查明华北平原典型工业城市的PM2.5污染来源成因提供依据。  相似文献   

11.
Microscopic morphology and elemental composition of atmospheric particulate matter (PM) in 13 different size fractions from 0.01 to 10 μm were studied using a Field Emission Scanning Electron Microscope with Energy-Dispersive Spectrometer (FESEM–EDX). The relative mass fractions exhibited a bimodal distribution with a major mode in the fine range (0.18–1 μm) and a minor mode in the coarse range (>1 μm), suggesting that the major pollution of PM is fine particles in this area of Urumqi atmosphere. The PM could be classified as follows: aluminosilicate/silica mineral, Si–Al rich fly ash, Fe oxide particle, Ti dominant particle, sulfate/carbonate crystal, carbonaceous aerosols (including soot, organic carbon, tar ball and irregularly shaped carbon). The soot and organic carbon with anthropogenic sources are dominant types in fine range samples (<1 μm). The natural source minerals and secondary synthesized sulfate/carbonate crystals were accumulated in the coarse range (>1 μm). Elemental composition of various types of particles (0.056–5.6 μm) was also analyzed by EDX. C, S, O, N, Si, Al, Fe, Ca, Na, K, Mg, Cl, F, Hg were detected in most samples. Si, Al and Ca accumulated in coarse fractions, while S and Hg mainly accumulated in fine fractions. Concentrations of 15 metallic elements in size range from 0.1 μm to 5.6 μm were divided into three groups based on their possible sources. (1) The crustal elements (Al, Mg, Fe, Mn and V), mainly present in coarse particles (>1 μm); and (2) the anthropogenic source elements (Ca, Ni, As, Cu, Pb, Cd and Hg). The concentrations of Ca and Ni increased with increasing particle size, while As, Cu, Pb, Cd and Hg showed opposite trends. As, Cu, Pb, Cd and Hg accumulated mainly in fine fraction (<1 μm). (3) The multi sources elements (Cr, Co and Se) possibly come from both natural and anthropogenic sources. High levels of heavy metals, especially Hg in nanosize particles, may pose great risk to human health.  相似文献   

12.
To investigate trace elements in wet precipitation over the Tibetan Plateau (TP), a total of 79 event-based precipitation samples were collected from September 2007 to September 2008 at Nam Co Station. Samples were analyzed for concentrations of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb using inductively coupled plasma-mass spectrometry (ICP-MS). The annual volume-weighted concentrations of elements were generally comparable to other background sites, and much lower than urban areas. The enrichment factors (EF) showed that, in comparison with the Tibetan soils, the wet precipitation had elevated concentrations of Cr, Co, Ni, Cu, Zn, Cd and Pb, probably indicating their anthropogenic origins. Other elements (Al, Fe, Mn and V) with enrichment factor value of <10 may derive mainly from crustal sources. The principal component analysis further confirmed the two different groups of elements in wet deposition samples. The backward trajectories were calculated for each precipitation event using the NOAA HYSPLIT model. The results indicated significant differences of EF for trace elements of anthropogenic origin between the summer monsoon and non-monsoon seasons. The data obtained in the present study indicated that pollutants can affect remote high altitude regions like the Tibetan Plateau through long-range transport, especially in the summer monsoon season.  相似文献   

13.
Santiago, the capital of Chile, suffers from high air pollution levels, especially during winter. An extensive particulate matter (PM) monitoring and analysis program was conducted to quantify elemental concentrations of PM. Size-resolved PM samples (PM2.5 and PM10–2.5) from the La Paz and Las Condes stations in Santiago (2004–2005) were analyzed using ICP-MS. Most trace element concentrations (Cu, Pb, Zn, Mn, V, Sb, Pb and As) were higher during winter than during summer and were also higher at the La Paz station than at the Las Condes station. During the highest pollution events, As concentrations in PM2.5 (16 ng m?3) exceeded the annual average standard value (6 ng m?3). A 10-year time series showed decreasing Pb and As concentrations and slightly increasing Zn, Cu and Mn concentrations. Concentrations of Cr and Ni remained relatively constant. The implementation of new public policies in 1998 may explain the decreasing concentrations of Pb and As. Enrichment factor (EF) calculations identified two principal groups: elements with EF < 10 (Mg, Y, Zr, U Sr, Ca, Ti, and V) and EF > 10 (Rb, K, Cs, Fe, P, Ba, Mn, Ni, Cr, Co, Zn, Sn, Pb, Cu, Mo, Cd, As, Ag, and Sb), which were related to natural and anthropogenic PM sources, respectively. Three main PM sources were identified using factor analysis: a natural source (crustal matter and marine aerosol), combustion and copper smelting. Three other sources were identified using rare earth elements: fluid catalytic crackers, oil-fired power production and catalytic converters.  相似文献   

14.
In order to investigate the factors influencing the distribution of 32 potentially toxic elements in the Ptolemais–Kozani basin, northwestern Greece, 38 soil samples were collected and analyzed. Concentrations of Al, Ca, Fe, K, Mg, Mn, Na, P, Ti, Ba, Co, Cr, Cu, La, Li, Ni, Pb, Sc, Sr, V, Y, and Zn were determined by ICP-AES and concentrations of As, Bi, Cd, Cs, Mo, Rb, Sb, Th, Tl, and U by ICP-MS. Bivariate analysis, principal component analysis, and geostatistical analysis were employed to investigate the factors influencing the distribution of the elements determined in the study area. The results indicate that the distribution of the majority of elements determined, especially for Cr, Ni, and associated elements, is greatly influenced by the geology and geomorphology of the study area. Principal component analysis has yielded four factors that explain over 77% of the total variance in the data. These factors are as follows: lithophilic elements that are associated with Al silicates minerals of K (factor I: 29.4%), ultramafic rocks (factor II: 20.5%), elements that are coprecipitated with Fe and Mn oxides (factor III: 18.0%), and anthropogenic activities (factor IV: 9.3%). The anthropogenic activities that influence the distribution of several potentially toxic elements (i.e., Cd, Cu, Pb, Zn) are agricultural practices and the deposition of fly ash in the vicinity of the local power stations.  相似文献   

15.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

16.
Suboxic trace metal geochemistry in the Eastern Tropical North Pacific   总被引:3,自引:0,他引:3  
We analyzed Al, Ti, Fe, Mn, Cu, Ba, Cd, U, Mo, V, and Re in water column, settling particulate, and sediment (0 to 22 cm) samples from the intense oxygen minimum zone (OMZ) of the eastern tropical North Pacific near Mazatlán, Mexico. The goal was to determine how the geochemistry of these elements was influenced by suboxic water column conditions and whether the sediments have a unique “suboxic” geochemical signature.The water column was characterized by a Mn maximum, reaching ∼8 nmol kg−1 at 400 m. Concentrations of Cu, Ba, Cd, Mo, Re, U, and V were unaffected by the low O2 conditions and were comparable to those of the open ocean. Sinking particles were composed of lithogenic particles of detrital origin and nonlithogenic particles of biogenic origin. Al, Ti, and Fe were mostly (at least 79%) lithogenic. About 75% of the Mn was nonlithogenic. Significant amounts (at least 58%) of Cu, Ba, Cd, and Mo were nonlithogenic.Sediment geochemistry varied across the continental shelf and slope. Cadmium, U, and Re have prominent maxima centered at 310 m, with 12.3 ppm, 10.9 ppm, and 68.3 ppb, respectively, at the core top. High values of Mo (averaging 6.8 ppm) and V (averaging 90 ppm) are seen in OMZ surface sediment. Additional down-core enrichment occurs for all redox-sensitive elements in the top 10 cm. For U, Mo, V, and Re, surface sediments are a poor indicator of metal enrichment. Comparison of the nonlithogenic composition of sediments with sinking particles suggests that direct input of plankton material enriched in metals makes a significant contribution to the total composition, especially for Cd, U, and Mo.We evaluated Re/Mo and Cd/U ratios as tracers for redox environments. Rhenium and Mo concentrations and Re/Mo ratios do not lead to consistent conclusions. Concurrent enrichments of Re and Mo are an indicator of an anoxic depositional environment. In contrast, high Re/Mo ratios are an indicator of suboxic conditions. Cadmium is enriched in surface sediments, while U has considerable down-core enrichment. The concentrations of Cd and U and the Cd/U ratio do not follow patterns predicted from thermodynamics. Though the water column is suboxic, these four redox-sensitive elements indicate that the sediments are anoxic. The implication for paleostudies is that a trace metal sediment signature that indicates anoxic conditions is not necessarily attributable to an anoxic water column.  相似文献   

17.
The knowledge of the variability, the anthropogenic versus natural origin and corresponding environmental risk for potentially harmful elements in urban topsoils is of importance to assess human impact. The aims of the present study were: (1) to assess the distribution of heavy metals (Sn, Li, Ga, Ba, Fe, Mn, Co, Be, Ti, Al, Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Zn, Cu, Pb, Se, Mo, Sc and Ag) in urban environment; (2) to discriminate natural and anthropogenic contributions; and (3) to identify possible sources of pollution. Multivariate statistic approaches (principal component analysis and cluster analysis) were adopted for data treatment, allowing the identification of three main factors controlling the heavy metal variability in Xuzhou urban topsoils. Results demonstrate that Hg, Cr, Sb, As, Bi, Pd, Pt, Au, Ni, Cd, Br, Zn, Cu, S, Pb, Se, Mo, Sc and Ag could be inferred to be tracers of anthropogenic pollution, whereas Al, Ti, Ga, Li, V, Co, Pt, Mn and Be were interpreted to be mainly inherited from parent materials. Iron, Ba, Sn, Pd and Br were interpreted to be affected by mixed sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号