首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 147 毫秒
1.
近40年来青藏高原湖泊变迁及其对气候变化的响应   总被引:7,自引:0,他引:7  
湖泊对气候波动有敏感记录。本文以GIS和RS技术为基础,在野外实地考察的基础上,从20世纪70年代、90年代、2000年前后和2010年前后4期Landsat遥感影像中提取了青藏高原所有湖泊边界信息,建立了青藏高原湖泊空间数据库。分析表明的青藏高原面积大于0.5 km2的湖泊总面积变化:(1)从20世纪70年代至90年代增加了13.42%; (2)从20世纪90年代至2000年前后增加了4.86%; (3)从2000年前后至2010年前后增加了13.04%。可见,近40年来,青藏高原湖泊个数和面积均呈增加的趋势。气象数据分析表明,青藏高原气候出现了由暖干向暖湿的转型,表现为气温升高、降雨量增加和蒸发量减小。笔者选取了研究区内面积大于10 km2的时间上合适做比较的所有湖泊,逐一分析了其在4个时期的动态变化情况,并根据变化结果进行了分区。不同时期的湖泊变迁具有区域差异性:(1)从20世纪70年代至90年代,西藏北部、中部、藏南、青海羌塘盆地和青海东部湖泊呈萎缩趋势; (2)20世纪90年代至2000年,青海北部湖泊萎缩; (3)2000年至2010年,除藏南外,青藏高原其余地区湖泊全面扩张。不同补给源的湖泊对气候变化的响应模式不同:(1)气温主要影响以冰雪融水及其径流为主要补给源的湖泊,如色林错、赤布张错等; (2)降雨量主要影响以大气降雨和地表径流为主要补给源的湖泊,如青海羌塘盆地; (3)蒸发量直接影响湖泊水量的散失,在青藏高原总体蒸发量减小的大环境下,部分地区因升温引起的湖泊蒸发效应超过了降水和径流量增加,湖泊出现萎缩的现象,如羊卓雍错流域。总之,地质构造控制了湖泊变迁的总格局,而短时间尺度的湖泊变迁主要受气候因素的影响。此外,湖泊动态变化还受冰川、人类活动、湖盆形状、补给和排泄区等因素的影响。  相似文献   

2.
1960-2010年黑河流域冰川变化的遥感监测   总被引:8,自引:6,他引:2  
别强  强文丽  王超  何磊  赵传燕 《冰川冻土》2013,35(3):574-582
利用1960年地形图、 1990年、 2000年和2010年TM影像, 采用基于冰雪指数(NDSII)和原始波段的面向对象解译方法, 提取黑河流域4个时期的冰川分布, 结合30 m分辨率的DEM数据, 利用遥感、 地理信息系统技术对冰川的时空分布变化及原因和不确定性进行分析. 结果表明: 从1960-2010年50 a间黑河流域上游冰川持续退缩, 面积共减少138.90 km2, 减少率为35.6%, 平均每年减少2.78 km2, 祁连山中段冰川属于强烈退缩型. 祁连山中段黑河流域冰川主要分布在海拔4 200~5 300 m之间, 冰川分布下限为海拔4 000 m; 冰川退缩主要发生在低海拔地区, 冰川的退缩上限为海拔4 600 m.气温的显著上升是研究区冰川退缩的关键因素, 气候持续变暖将会导致冰川退缩加剧.  相似文献   

3.
气候变化对青藏高原的水储量造成显著影响,严重威胁下游地区涉及10亿人口的水资源安全、水灾害防治和水生态保护。本研究集成多源卫星遥感(包括卫星重力、卫星测高、光学影像等)及相关反演融合算法和部分再分析数据,在前期工作基础上延长并生成了2000—2020年青藏高原各类水储量(湖泊、冰川、雪深和雪水当量、总水储量)变化数据,并分析其气候驱动机制。结果表明:① 2002—2020年间青藏高原外流区总水储量呈显著下降趋势(-10.90 Gt/a),主要由冰川质量损失主导;内流区总水储量呈显著上升趋势(6.40 Gt/a),其中湖泊水量扩张占主导。②青藏湖泊整体呈扩张趋势,并分为3个阶段:2000—2012年为平稳增长期(6.35 Gt/a),2012—2017年为相对稳定期(1.42 Gt/a),2017年后进入快速增长期(10.59 Gt/a);湖泊水量变化与降水量变化一致性较高。③藏东南地区的冰川呈快速消融趋势(-4.50 Gt /a),气温升高和降水年际波动是近年来该地区冰川后退的主要原因。④ 2016—2020年平均雪水当量较2001—2015年呈增加趋势,积雪变化主要受累积期平均气温和降水影响。  相似文献   

4.
应用遥感(RS)与地理信息系统(GIS)技术, 分析了位于青藏高原东北部, 可可西里地区、昆仑山脉中段的新青峰和马兰冰帽近30 a来的冰川变化.1971-2000年间新青峰冰帽总面积呈减小变化, 马兰冰帽面积有所增加;结合以往研究结果, 发现新青峰冰帽面积变化在1979年前后为突变点, 1979年前冰帽总体面积扩大, 之后面积迅速减小, 期间经历了1989-1994年相对稳定的时期. 进一步分析新青峰冰帽东南侧新青峰冰川和西北侧西新青峰冰川长度变化过程, 发现新青峰冰帽面积变化在很大程度上取决于这两条冰川的变化. 研究时段内两条冰川末端进退变化有较大差异, 西新青峰冰川在1971-1976和1994年之后为退缩期, 1976-1994年间为前进, 而新青峰冰川则有所不同, 该冰川1971年以来一直处于退缩之中, 但不同时段退缩速率不同, 且1994年后有加速退缩的趋势. 根据马兰冰帽冰芯δ18 O记录所反映的夏季气温变化, 近50 a来研究区在1976年之前为相对高温期, 之后为相对低温期, 两冰川不同的长度变化趋势可能与两冰川对气候变化具有不同的动力响应特征有关.根据两条冰川冰面地形特征分析认为, 受地形条件制约, 两条冰川可能具有不同的冰川表面物质平衡梯度, 这也可能是两冰川具有不同的动力响应特征的影响要素之一.  相似文献   

5.
1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测   总被引:9,自引:7,他引:2  
基于地形图、航空摄影相片和Landsat OLI遥感影像,对青藏高原东南部岗日嘎布山1980-2015年间的冰川变化进行了研究。结果表明: 1980-2015年,岗日嘎布山冰川面积减少679.50 km2(-24.91%),年平均面积退缩率为0.71%·a-1,末端海拔平均抬升了111 m。研究区范围内有10条冰川处于前进状态,冰川长度平均增加566.17 m;其余冰川均处于退缩状态,冰川长度平均减少823.49 m。与中国其他山系冰川相比,岗日嘎布山冰川面积年平均退缩速率较大,冰川长度变化速率最大,是冰川退缩最强烈的地区之一。岗日嘎布山冰川变化与气候变化关系密切,对研究区附近三个气象站5-9月平均气温和降水变化分析表明,自1980年以来,岗日嘎布山5-9月平均气温显著上升,降水变化不明显,是导致该区域冰川呈现快速退缩的主要原因。  相似文献   

6.
祁连山西段小冰期以来的冰川变化研究   总被引:66,自引:30,他引:36  
根据航空摄影相片、地形图、遥感影像数据,分析了祁连山西段自小冰期至1990年的冰川变化,得出该地区在小冰期至1956年间冰川面积减小幅度为16.9%,冰川储量减少了14.1%;1956-1990年间冰川仍以退缩为主,此时段冰川面积和储量减小量占1956年时相应量的10.3%和9.3%.分析认为冰川退缩主要与1956-1966年时段气温偏高、降水偏少有关,而且该流域区对应于1956-1966年间强负物质平衡的冰川退缩可能出现于1960年代中期至1970年代中期.  相似文献   

7.
西藏年楚河满拉水库上游冰川变化及其影响   总被引:5,自引:3,他引:2  
西藏年楚河流域满拉水库上游的冰川融水对"一江两河"地区的农业和水利发电十分重要,而气温升高导致青藏高原冰川普遍退缩.利用1980年地形图、1990年Landsat TM、2000年LandsatETM+和2005年CBERS遥感影像估算了满拉水库上游冰川面积的变化,并评价了其可能影响.结果表明,1980-2005年无表碛物覆盖的冰川面积减少了7.34%(13.42km2).冰川退缩近期将对农业灌溉、水利发电产生积极影响.然而,由于大量的小冰川(2km2)将会在未来快速退缩和消失,导致水资源短缺.同时,冰川补给湖泊呈快速扩张趋势,冰湖溃决洪水发生的可能性将大大增加.  相似文献   

8.
基于2000—2020年Landsat TM、ETM + 以及OLI遥感影像,采用目视解译的方法提取纳木错的湖泊边界并计算其面积和湖岸线长度,分析20年间纳木错湖泊面积和湖岸线的时空变化特征,同时,利用同时段的气温和降水数据对湖泊变化原因进行探讨,为研究纳木错水资源的时空变化特征提供科学依据。结果表明:(1)2000—2020年纳木错湖面面积增长38. 58 km22相似文献   

9.
青藏高原湖泊是气候变化的重要指示器,20世纪90年代中期以来,在暖湿化环境下降水增多和冰川冻土加速融化导致的湖泊扩张是青藏高原最为突出的环境变化特征。值得注意的是,湖泊水位变化的空间分布特征和西风带及印度季风带影响区的降水量变化具有高度的空间一致性。严酷的自然环境导致对青藏高原内陆湖泊的实地观测变得难以企及,而遥感技术的发展正好可以克服以上局限,该技术已经成为青藏高原湖泊变化监测的主要研究手段。本文围绕遥感监测技术与方法,综述了青藏高原湖泊面积、水量、冰物候、水体参数以及水量平衡定量估算等方面的研究进展。部分研究以流域为尺度应用多源遥感与水文模型进行水量平衡定量评估,结果表明青藏高原内陆地区的湖泊水量增加的主要贡献因素是降水增多,而冰川融化、冻土消融及其他因素的贡献程度却相对较小。当前,学术界一般认为:大尺度的降水年代际变化是青藏高原湖泊近期变化的主要原因,而冰川冻土加速消融又进一步加速湖泊扩张或抑制了部分湖泊收缩。过去,关于青藏高原湖泊变化的气候响应机制研究大多停留在对降水、蒸发、温度、风速、冰冻圈融化等气候因素的定性描述上;现在,在湖泊水量平衡方面,越来越多的研究开始在定量化方面取得进展;将来,随着更多遥感数据的开放共享,以及更多水文与气象站点的投入使用,将为青藏高原湖泊的水量平衡定量研究提供更好的数据条件。  相似文献   

10.
利用1964年美国CORONA间谍卫星影像和1976-2010年的Landsat MSS/TM/ETM+遥感影像, 对青藏高原长江源各拉丹冬地区的冰川进行监测, 获得每10 a间隔的冰川面积数据, 并对冰川制图中的不确定性进行了评估.由于冰川表面比较洁净, 认为该地区冰川变化的不确定性主要由分辨率(Landsat)和人为操作差异造成, 误差可达1%~2%.通过对比发现: 1964-2010年间, 各拉丹冬地区冰川面积总体上减少了45.75 km2, 相对变化为6.80%, 冰川年平均变化速度约为0.99 km2·a-1, 相对变化速度为0.15%·a-1; 该地区冰川总体退缩较为缓慢, 但部分冰川变化显著, 在138条冰川中, 有14条大冰川存在较为明显的变化.在过去的近50 a中, 该地区的冰川并不是都呈退缩状态, 先后有9条冰川出现过前进的现象, 其中有1条冰川一直处于前进状态, 长江源头冰川(姜古迪如北支冰川)先后出现过两次前进, 分别发生在1964-1977年间和2000-2010年间.  相似文献   

11.
近50a中国寒区与旱区湖泊变化的气候因素分析   总被引:41,自引:8,他引:33  
以青藏和蒙新两大湖区代表的我国寒区和旱区湖泊为对象,通过各湖区典型湖泊与气候变化的时间序列分析,揭示了湖泊与气候变化的动态关系;通过区域尺度湖泊面积的阶段性变化过程与区域气候变化的关系,分析了湖泊变化的区域气候影响背景.结果表明:位于我国寒区和旱区的湖泊对气候变化具有高度敏感性,从气候的角度来看,内蒙古的湖泊受降水影响较为明显,新疆湖泊总体上受降水影响显著,但由于冰川的存在气温对湖泊也有一定影响.青藏高原典型湖泊变化的分析表明,降水、气温对不同湖泊有着不同的影响,在区域上湖泊与气候的变化关系表现的更为复杂,在降水增加、气温上升的情况下由于升温引起的湖泊蒸发效应超过降水增加导致的补给影响,湖泊总体趋于萎缩.  相似文献   

12.
基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究   总被引:11,自引:0,他引:11  
基于多源多时相的数字遥感影像、地形图和DEM数据,利用遥感(RS)和地理信息系统(GIS)技术,对西藏玛旁雍错流域冰川地貌类型和空间分布进行了研究,并对流域内近30 a来冰川和湖泊的变化进行分析.结果表明:1974-2003年玛旁雍错流域冰川总面积减少了7.27 km2,平均退缩速率0.24 km2·a-1;湖泊总面积减少37.58 km2,平均退缩速率1.25 km2·a-1.多时相的监测表明,冰川在加速退缩,且阳坡冰川的消融速度大于阴坡,坡度陡、面积小的冰川消融比例大于坡度缓、面积较大的冰川;湖泊面积先减少后有所增加,但总面积还是减少了,不少小湖泊消失.分析流域附近气象资料可知,气温上升和降水量减少是玛旁雍错流域内冰川消融与退缩的主要原因.  相似文献   

13.
In the source regions of the Yangtze and Yellow Rivers of China, glaciers, frozen ground, the hydrological system, and alpine vegetation have changed over the past decades years. Climatic causes of these variations have been analyzed using mean monthly air temperature and monthly precipitation between 1956 and 2000, and monthly evaporation from φ20 evaporation pans between 1961 and 1996. In the source region of the Yangtze River, lower temperature and plentiful precipitation during the 1960s and continuing into the early 1980s triggered a glacier advance that culminated in the early 1990s, while a robust temperature increase and precipitation decrease since 1986 has forced glaciers to retreat rapidly since 1995. Permafrost degradation is another consequence of the climatic warming. The variations in the hydrological system and alpine vegetation are controlled mainly by the climate during the warm season. Warmer and drier summer climate is the major cause of a degradation of the vegetation, desiccation of the high-cold marshland, a decrease in the areas and numbers of lakes and rivers in the middle and north source regions of the Yangtze and Yellow Rivers, and a reduction in surface runoff in the source region of the Yangtze River for the last 20 years. The causes of eco-environmental change in Dari area, near the outlet from the source area of the Yellow River, are different from those elsewhere in the study area. A noticeable reduction in runoff in the source region of the Yellow River and degradation of alpine vegetation in Dari area are closely related to the permafrost degradation resulting from climate warming.  相似文献   

14.
It is important for both current monitoring and paleoenvironmental research conducted on proglacial lakes and their adjacent glaciers to clarify the hydrological processes operating on these lakes. However, in remote regions with limited accessibility it may be difficult to study hydrological processes by direct monitoring. In this study, we use measurements of stable isotopic compositions to trace the multiple water sources contributing to Ranwu Lake, a proglacial lake in south-eastern Tibet. Using stable isotopic data from precipitation, inflowing rivers and the lake water, a water and isotope mass balance modelling method was used to calculate the ratio of evaporation to input. Subsequently, using hydrological and climatic data for the outflow, the largest inflow and precipitation, other hydrological elements of the lake water balance were also calculated. The results demonstrate that the ratio of evaporation to inflow is as low as 0.009, the lowest value observed for the Tibetan Plateau, indicating that Ranwu Lake is a through-flow lake with a very short retention time. Glacial meltwater accounts for at least 55% of total runoff, the highest value observed for the Tibetan Plateau, indicating that the sediments of Ranwu Lake may have considerable potential for reconstructing variations in the activity of the local glaciers. Finally, we note that it may be inappropriate in this glacier-fed lake to use the intersection of the local meteoric water line with the lake water line for determining the isotopic composition of the input water, and this possibility must be carefully considered when stable isotope mass modelling is used in proglacial lakes.  相似文献   

15.
The Tibetan Plateau (TP) is particularly sensitive to the influences of climate change. As indicators of climate change, lakes on the TP play a key role in the Earth’s climatic system. Lake Yazi (LY), Lake Tuohepingco (LT) and Lake Changtiao (LC) in the Tuohepingco Basin are three inland lakes on the plateau. The extents of LY, LT and LC were obtained using object-based image analysis for remote sensing and 22 images from Landsat satellites (from September to December between 1972 and 2015). Inter-annual changes in the extent of LY, LT and LC were then analyzed. The results show that the total area of the three lakes underwent a change from shrinkage to expansion between 1972 and 2015. In general, there was a trend toward shrinkage during 1972–1999, distinct expansion during 2000–2007 and slight expansion during 2008–2015. Moreover, we found that 14 other lakes have also expanded dramatically since 2000. Lakes at 30°N and 35°N (LY, LT and LC are also located in this region) exhibited the same dramatic period of expansion between 2000 and 2005. In other words, 2000 appears to be a critical transition point for changes in lake size on the TP. Lakes at the same latitudes in the Tibetan Plateau interior may have a similar period of dramatic expansion after 2000. The warming-triggered deglaciation or permafrost degradation, increased precipitation and decreased evapotranspiration may be the influencing factors of lake expansion in the Tuohepingco Basin. Temperature showed relatively higher correlation with lake extent, while precipitation and evaporation were slightly correlated with lake area. Given the importance of wetlands to human society, these are no trivial issues, and we now need accelerated research based on long-term and continuous remote sensing.  相似文献   

16.
《China Geology》2023,6(2):216-227
Yanhu Lake basin (YHB) is a typical alpine lake on the northeastern Tibetan Plateau (TP). Its continuous expansion in recent years poses serious threats to downstream major projects. As a result, studies of the mechanisms underlying lake expansion are urgently needed. The elasticity method within the Budyko framework was used to calculate the water balance in the Yanhu Lake basin (YHB) and the neighboring Tuotuo River basin (TRB). Results show intensification of hydrological cycles and positive trends in the lake area, river runoff, precipitation, and potential evapotranspiration. Lake expansion was significant between 2001 and 2020 and accelerated between 2015 and 2020. Precipitation increase was the key factor underlying the hydrological changes, followed by glacier meltwater and groundwater. The overflow of Yanhu Lake was inevitable because it was connected to three other lakes and the water balance of all four lakes was positive. The high salinity lake water diverted downstream will greatly impact the water quality of the source area of the Yangtze River and the stability of the permafrost base of the traffic corridor.©2023 China Geology Editorial Office.  相似文献   

17.
近40a来江河源区生态环境变化的气候特征分析   总被引:69,自引:12,他引:57  
利用月气象资料,对过去40a江河源气候变化特征进行分析,并与全球、全国、青藏高原进行了比较.结果表明:江河源区气温具有增暖趋势,近40a两地年平均气温分别增加约0.8℃和0.7℃,为高原异常变暖区.黄河源区变暖的主要特征是最低气温变暖,日照时数增加;最低、最高气温的显著变暖,以及较黄河源区增加更长的日照时数是长江源区变暖的主要特征.长江源区冬季变暖的作用不是主要的,春季、夏季和秋季的变暖作用比冬季还要大;黄河源区的变暖也并不主要是冬季变暖造成的,秋季变暖的作用与其相当,其它季节的变暖作用也不能忽视.近40a来江河源区降水量略有增加,主要体现在20世纪80年代中后期以来春季与冬季降水量的明显增加,夏季降水量虽然总体上没有明显变化,且局地夏季降水量呈持续减少趋势.与全球、全国以及高原区对比显示,江河源区对全球气候变暖的响应最敏感,变暖首先从长江源和整个高原发端,之后15a.黄河源和全国才进入显著温暖期.黄河源与长江源北部降水量的增加表明,气候变暖有利于高原增加降水量.  相似文献   

18.
长江源区冰川对气候变化的响应   总被引:16,自引:7,他引:9  
长江源区是青藏高原冰川分布集中的地区之一,冰川总面积达1276.02km2.研究表明,该区属于青藏高原升温幅度最大的地区之一,到2050年气温将比1961—1990年平均气温高出2.3~2.7℃,降水增加1%~33%.基于冰川编目资料,采用有关对长江源区未来50a内的气温和降水预测数据,应用冰川系统对气候响应的模型,对该区未来50a内冰川变化趋势进行预测.结果表明:到2010年、2030年、2050年该区冰川面积平均将减少3.2%、6.9%和11.6%;冰川径流平均将增加20.4%、26%和28.5%;零平衡线上升值为14m、30m和50m左右.最后,针对气候变化的不确定性,对预测结果的不确定性进行了探讨.  相似文献   

19.
赵银  张勇  刘时银  王欣 《冰川冻土》2022,44(3):930-945
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61m w.e.·a^(-1)之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号