首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
武当地块耀岭河群中两类不同性质的酸性火山岩研究   总被引:1,自引:0,他引:1  
耀岭河群火山岩中可划分出两类不同性质的酸性火山岩:酸性岩A主要属碱流岩-白碱流岩类,酸性岩B主要属流纹英安岩/英安岩类。总体上看二者主量元素组成差异不大:SiO2含量为65.00%~79.85%,(Na2O+K2O)为5.26%~9.68%。强烈富集Th、Nb、Ta、La、Ce、Nd、Zr、Sm和Hf等微量元素,强烈亏损Ba、K、Sr、P、Ti等元素,稀土元素特征表现为∑REE很高(339.94~1152.85μg/g),具有强烈的铕负异常(δEu=0.18~0.32),与典型的大陆裂谷流纹岩的稀土曲线一致。酸性火山岩B显示K、Rb、Ba、Th和LREE的正异常和Sr、P、Ti和Nb的负异常,Eu具弱负异常(δEu=0.64~0.88),表现出与酸性火山岩A迥然不同的微量元素及稀土元素特征,而与耀岭河群基性火山岩相似,显示其成因可能与之有相同源区。  相似文献   

2.
对采自北京周边的二叠系山西组露头及钻井泥岩样品进行了岩石学和地球化学研究,结果表明:岩石主要由粘土矿物和石英组成,兼有少量碳酸盐岩和长石;岩石中碳酸盐岩含量的高低与CaO、MgO含量有很好的对应关系;SiO2、Na2O和K2O亏损,TiO2和Fe2O3T富集,反映了基性物源的存在;微量元素特征比值显示源区母岩为非单一物源,稀土元素总量较高,轻稀土元素富集,重稀土元素平坦,铕大部分具明显负异常、少部分微弱正异常,Ce基本无异常,显示为多物源,各样品稀土元素配分模式与大陆上地壳一致,显示了沉积物具有同源性。源岩应为来自于华北地块北缘的大陆上地壳的沉积岩、花岗岩和碱性玄武岩的混合。二叠系山西组泥岩沉积于覆水较深的还原环境,源区构造背景为大陆岛弧与活动大陆边缘。  相似文献   

3.
为探究内蒙古苏宏图地区黏土岩的地球化学特征、沉积物质来源和构造环境,利用多晶X射线衍射(XRD)和ICP-AES/MS分析法对苏宏图地区SZK-2井20件黏土岩岩芯样品进行分析测试。结果表明:XRD分析显示苏宏图地区黏土岩中黏土矿物组成以伊利石为主,伊利石质量分数平均值为37.64%;与大陆上地壳相比,黏土岩相对富集SiO2、Al2O3、Zr、As,贫P2O5、MgO、MnO、Cr、Ni,两者的K2O、TiO2、Sr、Ba含量接近。黏土岩中稀土元素特征为轻稀土元素富集,重稀土元素相对亏损,表现为明显的右倾,出现明显的Eu(平均值=0.60)负异常和Ce(平均值=1.01)轻微负异常,与大陆上地壳稀土元素的配分模式较为相似;K2O/Na2O-SiO2和微量元素构造背景判别图解中,样品多数落在大陆岛弧区,少量落在活动大陆边缘,反映了苏宏图地区沉积时期的物源来自于上地壳长英质物源且形成于大陆岛弧的构造背景中。  相似文献   

4.
寻乌岩组变沉积岩发育在江西南部新元古代—早古生代南城—寻乌盆地内,时代为震旦—寒武纪。寻乌岩组的Si O2含量变化较大,除1个含量较低的样品外,平均为63.01%,具有相对较高的K2O、Al2O3及(TFe O+Mg O)值,较低的Na2O、Ca O。相容元素含量与后太古代澳大利亚页岩(PAAS)十分接近,高于中国东部上地壳,与其较高的(TFe O+Mg O)特征相吻合,说明源区具有一定数量的中基性组分。稀土元素总量高于上地壳及PAAS,但其球粒陨石标准化配分模式与典型的上地壳及PAAS相似,表现为明显向右倾斜,轻稀土富集,重稀土平坦,铕负异常显著,铈负异常不明显。岩石地球化学特征显示其原岩属于一种中等成熟度的陆源碎屑岩,物源主要为被改造的上地壳长英质和花岗质物源区,少部分物源为中基性火山岩。高场强元素及稀土元素等不活动元素地球化学特征表明其沉积环境为浅海—半深海,其构造环境属于发育有裂谷系的被动大陆边缘,该认识从沉积岩地球化学方面为华南早古生代构造属性提供了新资料。  相似文献   

5.
上黑龙江盆地中侏罗统绣峰组的沉积环境与大地构造背景   总被引:1,自引:1,他引:1  
对上黑龙江盆地中侏罗统绣峰组的岩石学特征、砂岩类主要化学成分、微量元素、稀土元素及C、O同位素的定量分析表明,其主要化学成分具有K2O/Na2O、SiO2较高和SiO2/Al2O3、Fe2O3 MgO较低的特征,显示了活动大陆边缘的性质;微量元素中B、Sr/Ba值较低,Fe/Mn值高,C、O同位素Z值低,显示了内陆淡水沉积的特点;稀土元素具有轻稀土富集、分馏好、Eu弱亏损的特点,与活动大陆边缘及上黑龙江盆地南缘古生代花岗岩的稀土模式相似。综合分析绣峰组岩石学及岩石地球化学特征,认为绣峰组沉积于淡水河流环境,物质主要来源于蒙克山以南晚石炭世塔林超单元及中元古界—下寒武统大网子岩组;上黑龙江盆地的形成与蒙古-鄂霍次克造山作用有关,属活动大陆边缘盆地。  相似文献   

6.
沉积岩中的微量元素和稀土元素特征对沉积环境、沉积物的物源和构造背景具有十分重要的示踪与指示作用。对采自中扬子北缘晚侏罗世-白垩纪地层的泥质岩样品中微量元素和稀土元素进行了测试与分析,结果表明,研究区微量元素中的深源元素普遍低于地壳粘土岩中的平均值,说明沉积物的来源为陆源物质。而典型陆源元素Zr、Hf的平均含量远高于地壳粘土岩中的平均含量,反映了大量的陆源物质的快速堆积。上侏罗统与下白垩统泥质岩的微量元素特征相似,而上白垩统则发生了明显的变化,表现为深源性微量元素含量较上白垩统明显降低,而陆源性微量元素含量显著增加,反映早晚白垩世之间沉积背景发生了变化。纵向上,稀土元素的变化规律显示,上白垩统与下白垩统的稀土元素特征具明显的差异,表现为Eu的负异常明显减小,Ce的负异常增大,轻稀土富集程度降低,反映了沉积作用分异度较低的特点。La-Th-Sc、Th-Co-Zr/10和Th-Sc—Zr/10构造环境判别图及La/Th-Hf和Th/Sc-Sc比值图表明,中扬子北缘晚侏罗世.白垩纪沉积岩物源区的构造背景以大陆岛弧型为主,可能也存在类似被动大陆边缘构造背景。  相似文献   

7.
秦何星  陈雷  卢畅  胡月  熊敏  谭秀成  计玉冰  陈鑫  王高翔 《地质论评》2024,70(1):2024010004-2024010004
为深入探讨上扬子地区南缘晚奥陶世—早志留世黑色页岩的物质来源、风化作用和源区构造背景,本文选取典型野外剖面,对五峰组—龙马溪组页岩主量、微量和稀土元素地球化学特征进行系统研究并探讨其地质意义。结果显示:上扬子南缘五峰组—龙马溪组黑色富有机质页岩具有与上地壳相似的贫高场强元素、富集大离子亲石元素特征,∑REE值(103.66×10-6~295.98×10-6,平均180.57×10-6)整体较高,稀土元素标准化配分模式与上地壳极为相似,呈现“V”型向右倾斜、轻稀土元素富集、重稀土元素平坦、轻重稀土分异明显、Eu负异常明显的特征;特征微量、稀土元素含量及比值,如:La、Ce、La/Yb、Sc/Cr,均表现出与被动大陆边缘特征值相接近;样品成分变异指数ICV值(0.55~14.1,平均2.28)和Zr/Sc—Th/Sc图解指示物源为构造带首次快速沉积产物,不具备沉积再循环特征;较低的CIA值(54.89~71.61,平均65.27)、A—CN—K图解和K2O/Al2O3—Ga/Rb图解表明物源受化学风化作用较小,沉积环境为寒冷、干燥环境;K2O、Rb、Al2O3/TiO2含量较高及Eu负异常指示其源岩以长英质火成岩及花岗岩类的偏酸性地质体为主;综合物源、构造背景判别图解,推断上扬子南缘五峰组—龙马溪组页岩主体形成于被动大陆边缘,物源主要来自于西侧康滇古陆新元古代早期地台盖层,黔中隆起次之,伴随扬子板块东南部中酸性火山物质涌入沉积。  相似文献   

8.
内蒙古中东部沿凉城—土贵乌拉一线分布着大量强过铝质石榴石花岗岩及少量淡色花岗岩。石榴石花岗岩SiO2含量、A12O3/TiO2比值(小于100),Rb/Sr比值和Rb/Ba比值低,但CaO/Na2O比值高(大于0.3)。铕均为负异常,呈重稀土元素平坦、轻稀土元素中等富集的配分模式。淡色花岗岩SiO2含量高,A12O3/TiO2比值,Rb/Sr比值和Rb/Ba比值以及CaO/Na2O比值变化大。稀土元素复杂,正Eu异常、Eu异常不明显均发育。两类花岗岩微量元素特征总体相似,均显示出大离子亲石元素(K,Rb,Ba)相对富集,高场强元素(Nb,Ti,P)亏损。两类花岗岩不同的地球化学特征暗示了其源区成分及构造背景的差异。石榴石花岗岩的源区成分应为杂砂岩,熔融温度较高,来源较深;而淡色花岗岩的源区成分复杂,熔融压力较高。  相似文献   

9.
文章通过详细的野外地质调查和系统的岩石化学、稀土元素、微量元素及硅、氧同位素等研究,探讨了羊蹄子山-磨石山钛矿区无矿白色硅质岩和富钛硅质岩的成因及形成地质构造环境。研究结果表明,呈厚层状产出的无矿白色硅质岩具较高的SiO2、Al2O3含量及Al/(Al Fe Mn)、Al2O3/(Al2O3 Fe2O3)比值,稀土元素总量很低,其北美页岩标准化配分模式为向右倾的曲线,无明显铈异常和铕异常,表明其形成于受陆源影响的大陆边缘构造环境;赋矿岩系中薄层状富钛硅质岩的TiO2、Fe2O3、Cu、V含量较高,但Al/(Al Fe Mn)、Al2O3/(Al2O3 Fe2O3)比值较低,稀土元素总量较高,北美页岩标准化曲线为明显左倾型-平坦型,具弱的负铈异常,表明其形成于洋脊及附近环境。两种硅质岩的δ30Si值为变化较小的负值,与热水沉积和某些生物成因硅质岩的硅同位素组成相似,两者的δ18O值范围和平均值均相似。两类硅质岩的成因及形成构造环境不同,富钛硅质岩的地球化学特征表明,该矿床的形成与本区元古宙海底火山热液喷流作用有关。  相似文献   

10.
四川盆地东北缘万州地区中侏罗世上沙溪庙组产出稳定层状浅色粘土岩。利用X射线、X荧光光谱、等离子光谱(ICP)等方法对矿物成分、常量、微量和稀土元素进行了测试分析,粘土岩主要矿物为蒙脱石、伊利石和绿泥石。通过与澳大利亚后太古代平均页岩(PAAS)、北美平均页岩(NASC)、地壳粘土岩背景值以及其它具有代表性岩石的对比发现,本区粘土岩微量元素具有明显的低V,低Ti和低铁族元素的特点,高Al2O3/TiO2比值和低Ti/Th比值特征显著,某些层位具有明显的Eu负异常。推断本区粘土岩沉积物源具有火山灰和陆源碎屑的二元混合成因,各层位成分的差异显示了不同沉积时间内二者的混合比例发生变化。区域对比和地球化学资料显示火山灰可能来自于西部600km远的特提斯洋岛弧火山。  相似文献   

11.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

12.
The Datangpo‐type manganese ore deposits, which formed during the Nanhuan (Cryogenian) period and are located in northeastern Guizhou and adjacent areas, are one of the most important manganese resources in China, showing good prospecting potential. Many middle‐to‐large deposits, and even super‐large mineral deposits, have been discovered. However, the genesis of manganese ore deposits is still controversial and remains a long‐standing source of debate; there are several viewpoints including biogenesis, hydrothermal sedimentation, gravity flows, cold‐spring carbonates, etc. Geochemical data from several manganese ore deposits show that there are positive correlations between Al2O3 and TiO2, SiO2, K2O, and Na2O, and strong negative correlations between Al2O3 and CaO, MgO, and MnO in black shales and manganese ores. U, Mo, and V show distinct enrichment in black shales and inconspicuous enrichment in Mn ores. Ba and Rb show strong positive correlations with K2O in manganese ores. Cu, Ni, and Zn show clear correlations with total iron in both manganese ores and black shales. ∑REE of manganese ores has a large range with evident positive Ce anomalies and positive Eu anomalies. The Post Archean Australian Shale (PAAS) normalized rare earth element (REE) distribution patterns of manganese ores present pronounced middle rare earth element (MREE) enrichment, producing “hat‐shaped” REE plots. ∑REE of black shales is more variable compared with PAAS, and the PAAS‐normalized REE distribution patterns appear as “flat‐shaped” REE plots, lacking evident anomaly characteristics. δ13C values of carbonate in both manganese ores and the black shales show observable negative excursions. The comprehensive analysis suggests that the black shales formed in a reducing and quiet water column, while the manganese ores formed in oxic muddy seawater, which resulted from periodic transgressions. There was an oxidation–reduction cycle of manganese between the top water body and the bottom water body caused by the transgressions during the early Datangpo, which resulted in the dissolution of manganese. Through the exchange of the euphotic zone water and the bottom water, and episodic inflow of oxygenated water, the manganese in the bottom water was oxidized to Mn‐oxyhydroxides and rapidly buried along with algae. In the early diagenetic stage, Mn‐oxyhydroxides were reduced and dissolved in the anoxic pore water and then transformed into Mn‐carbonates by reacting with HCO3? from the degradation of organic matter or from seawater. In the intervals between transgressions, continuous supplies of terrigenous clastics and the high productive rates of organic matter in the euphotic zone resulted in the deposition of the black shales enriched in organic matter.  相似文献   

13.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

14.
The Metasedimentary rocks from the Adola metamorphic belt has been analysed for major, minor, and trace elements, including REEs, in order to investigate the provenance and tectonic setting of these rocks.On the basis of filed work, petrographic data and major element geochemistry the Adola sedimentary rocks are essentially greywackes with subordinate lithic arenite. Among the 27 samples analysed, only two samples are quartz arenite with SiO2 values above 89%. CaO-Na2O-K2O diagrams showed that most sample cluster around the average plots of granites and granodiorites. In order to determine the tectonic setting and provenance of the rocks, the samples are plotted on various binary and ternary diagrams. The plots on Fe2O3T+MgO versus TiO2, K2O/Na2O, Al2O3/SiO2 and Al2O3/(CaO+Na2O) plots show that the Adola sediments have Oceanic Island Arc(OIC), Continental Island Arc(CIA), Active Continental Margin(ACM) and Passive Margin(PM) characteristics. Most samples, however, show island arc affinity. Only two samples (the quartz arenites) fall in the Passive Margin (PM) field.The trace element characteristics of these rocks discriminate the rocks only into oceanic and continental arc fields. The relatively high abundance of the transition metals, mainly Co, Ni, Cr and the low concentration of TiO2 correlates well with the previously determined geochemical affinity of the basic rocks of Adola suggesting the dominance of the low- Ti oceanic tholeiites and even boninites in the source region.The REE patterns show three distinct groupings; a)With strong LREE enrichment, flat HREE and with out Eu anomaly, shows similar patterns with that of the oceanic island arc rocks; b) samples with strong Light REE enrichment, flat HREE pattern and strong negative Eu anomaly showing similar patterns to the Andean type andesites, probably derived from granitic gneisses and are affiliated to Active Continental Margin settings; c) this group is represented by a single plot having an enriched LREE pattern, flat HREE pattern and strong positive Eu anomaly. It is most likely that this pattern is related to a high normative plagioclase content due to local accumulation of feldspar during sedimentation rather than representing excessive Eu content of the precursor rock. The REE pattern represented by this sample is roughly similar to that of the Devonian greywackes of Australia.In conclusion, the use of geochemical characteristics of the sediments coupled with the geological information from the area strengthens the suprasubduction zone (SSZ) ophiolitic tectonic setting interpretation suggested (Yibas 1993) for the Adola belt. The trace element plots and their absolute abundance, and the REE patterns strongly constrain the tectonic setting and the provenance of the metasediments to an arc related setting.  相似文献   

15.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

16.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

17.
徐跃通 《地质科学》1998,33(1):39-50
在信江盆地中存在数层和石炭纪海相火山岩及其海底块状硫化物矿层相伴生,与石炭纪地层整合产出的层状硅质岩。由对硅质岩常量元素、微量元素、稀土元素、硅和氧同位素等地球化学特征研究表明,本区硅质岩具有一定的热水沉积硅质岩地球化学特征。在Al-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上,本区硅质岩属热水沉积硅质岩。由硅质岩MnO/TiO2比值、δCe值和δ30Si值分析表明,信江盆地石炭纪硅质岩的沉积环境主要为浅海。  相似文献   

18.
Two cores of sediments, named NR and EB, were collected in the Simbock Lake (Mefou watershed, Yaoundé) to assess their provenance and the degree of heavy metal pollution based on mineralogical and geochemical data. The sediments are sandy, sand-clayey to clayey, and yellowish brown to greenish brown, and with high amounts of organic matter (average value of TOC is 1.95%). The sediments are mainly composed of quartz, kaolinite, accessory goethite, smectite, rutile, feldspars, illite, gibbsite, and interstratified illite-vermiculite. Fourier transform infrared (FT-IR) spectroscopy shows that kaolinite is less crystallized in the NR core than in the EB core. The Index of Compositional Variability (ICV), Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA), and the Rb/Sr and K2O/Rb ratios indicate a high weathering intensity in the source area. These sediments have low contents in Al2O3, Fe2O3, Na2O, K2O, MgO, and CaO as well as high values in SiO2, P2O5, TiO2, and MnO relative to the upper continental crust. The concentrations of Cr, V, Ba, and Zr are higher in the NR core than those in EB. The total rare earth element (REE) content varies between 78 and 405 ppm. The light REE are abundant (LREE/HREE ~?18–59; avg.?=?25.61). The chondrite-normalized REE patterns exhibit (i) negative Eu anomaly (Eu/Eu* ~?0.38–0.62; avg.?=?0.5), (ii) slight positive Ce anomaly (Ce/Ce* ~?1.11–1.34; avg.?=?1.11), and (iii) high REE fractionation ((La/Yb)N ~?12.3–51.75; avg.?=?25.61). The enrichment factor (EF) shows that the Mefou watershed through the Simbock Lake sediments is slightly polluted by the agricultural and urban activities.  相似文献   

19.
Shales of the ∼2.7 Ga Zeederbergs Formation, Belingwe greenstone belt, Zimbabwe, form thin (0.2-2 m) horizons intercalated with submarine lava plain basalts. Shales of the overlying Cheshire Formation, a foreland basin sedimentary sequence, form 1-100 m thick units intercalated with shallow-water carbonates and deep-water, resedimented basalt pebble conglomerates. Zeederbergs shale is characterized by high contents of MgO and transition metals and low concentrations of K2O and LILE as compared to average Phanerozoic shale, indicative of an ultramafic to mafic source terrain. Cheshire shales have similar major and trace element contents, but MgO and transition metals are less enriched and the LILE are less depleted. Zeederbergs shales have smoothly fractionated REE patterns (LaN/YbN = 2.84-4.45) and no significant Eu anomaly (Eu/Eu* = 0.93-0.96). REE patterns are identical to those of the surrounding basaltic rocks, indicating local derivation from submarine reworking. Cheshire shales have rather flat REE patterns (LaN/YbN = 0.69-2.19) and a small, negative Eu anomaly (average Eu/Eu* = 0.85), indicative of a mafic provenance with minor contributions of felsic detritus. A systematic change in REE patterns and concentrations of transition metals and HFSE upwards in the sedimentary succession indicates erosion of progressively more LREE-depleted basalts and ultramafic volcanic rocks, followed by unroofing of granitoid crust. Weathering indices confirm the submarine nature of Zeederbergs shale, whereas Cheshire shale was derived from a source terrain subjected to intense chemical weathering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号