首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
滇东北镇雄煤田晚二叠世煤中硫的可选性   总被引:1,自引:0,他引:1  
通过对云南省东北部昭通市镇雄干沟乡荣兴煤矿C5煤层原煤筛分浮沉实验的研究,分析了该煤层中全硫及形态硫在不同粒度级和密度级中的分布规律。结果显示,全硫和黄铁矿硫在各粒度级煤中分布较均匀,其含量在各密度级煤中的分布随密度级的增大而增大。该煤层的破碎解离性质较差,但其粒度小于3.0 mm时,可分离出含2.35%全硫的浮煤(浮煤产率达88%)。总体来看,高密度级中,黄铁矿硫>95%;低密度级中,黄铁矿硫<65%,有机硫占30%左右,但其全硫较低。因此,可通过物理方法使浮煤中的硫分降低。  相似文献   

2.
3.
对云南省昭通地区晚二叠世C5煤层硫分和灰分进行测试及资料分析,编制了C5煤层硫分分布等值线图,分析了硫分、灰分分布特征及相关关系等。结果表明:研究区硫分大于1%的硫分赋存状态主要为硫铁矿硫,有机硫次之,硫酸盐硫最少;硫分分布主要受到成煤环境的控制,自西向东逐渐由陆相过渡为滨海相,硫分含量呈逐渐增加的趋势,而灰分分布与硫分呈负相关关系。在研究区中部陆相向滨海相过渡地带的洛旺向斜,硫分与灰分相对适中,是优质煤炭资源的有利勘探开发区。  相似文献   

4.
This paper describes coal petrographic characteristics, sulfur abundance, distribution and isotopic signature in coals in the Wuda coalfield, Inner Mongolia, northern China. Petrographic studies suggest that depositional environment influences petrographic composition. The No. 9 and No. 10 coal seams, which are thought to have formed on a tidal delta plain, have high collodetrinite contents (up to 66.1%) indicating enhanced gelification and bacteria activity during coal accumulation, and also have the highest sulfur content (3.46% and 3.42%). Both organic and pyritic sulfur isotope values (−12.3‰ to 5.8‰ and −18.7‰ to 1.1‰, respectively) are variable and generally tend to be more negative in high-sulfur coals than those in low-sulfur coals in the Wuda coalfield. The negative sulfur isotope values indicate that a large portion of sulfur in the high-sulfur coals has a bacterial origin. Sulfur isotopic compositions and variations within the section were used to propose a model to explain the origin of sulfur in these coals. The presence of pyritized rod-like bacteria, cyanophyte's gelatinous sheaths and degraded algae organic matter suggests that bacteria, and perhaps algae, may play an important role in the formation of these high-sulfur coals.  相似文献   

5.
Sulfur is one of the havardous elements in coal The concentrations of sulfur are relatively high in coal.The major forms of sulfur in coal are pyritic,organic and sulfate.Pyritic and organic sulfur generally account for the bulk of sulfur in coal.Elemental sulfur also occurs in coal,but only in trace to minor amounts.When coals are burned,leached and washed,sulfur will be released in the form of sulfide and H2S,which then reach with O2,water and other substances to change into vitriol,and in some places it may form acid rain.And they will impact water environment,acidify the soil and do great harm to plants and human health.In this paper,on the basis of the data from the Yanzhou mining district,the distribution and concentrations of sulfur are analyzed and the existing forms of sulfur are studied.The variation of sulfur and its impact on the environments also are described when coal is used.  相似文献   

6.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   

7.
潮控与河控下三角洲平原成煤的岩石学和地球化学特征   总被引:1,自引:0,他引:1  
从显微煤岩组成特征、不同显微组分中有机硫的含量、伴生元素组成、硫同位素的分布特征等方面对内蒙古乌达矿区潮控下三角洲平原形成的高硫煤 9煤层和河控下三角洲平原形成的低硫煤 13煤层进行了研究。结果表明 ,潮控下三角洲平原形成的煤层较之河控下三角洲平原形成的煤层具有较高的镜质组含量 ;伴生元素中 Na、K、V、Mg等含量偏高 ,而稀土元素含量较低 ,稀土元素的含量与煤中的粘土矿物含量成正比 ;黄铁矿和有机硫同位素都比较轻 ,表明高硫煤中硫的来源主要是海水中细菌还原的硫酸盐。  相似文献   

8.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

9.
The mineral transformations undergone by high sulfur coal ash were studied. An X-ray diffraction (XRD) experiment was carried out to reproduce experimentally the mineral transformations produced during coal combustion in coal-fired power stations. We have verified that the anhydrite is the main crystalline phase that contains sulfur in the solid combustion waste from 500°C until its decomposition at 1060±10°C. Thus, this calcium sulfate is the main crystalline phase involved in the sulfur retention in the combustion wastes at high temperatures. Therefore, a considerable proportion of the sulfur would not be emitted into the atmosphere at temperatures lower than 1060°C. Taking as a reference the annual coal consumption of the Teruel Mining District (6 million tons), the mean sulfur content and the anhydrite content at 900°C, it was shown that the SO2 emissions could be reduced by approximately 13 percent (83,000 ton/yr) provided that the combustion temperature was 900°C.  相似文献   

10.
华北晚古生代煤中有机硫的赋存状态及其成因   总被引:8,自引:0,他引:8  
为揭示煤中有机硫的赋存状态及其地质成因,采用电子探针微区分析和硫同位素分析技术对华北地区山西大同、太原西山、霍州以及安徽淮南4个矿区的8个层晚古生代的煤层进行了研究,海水的作用对有机硫的聚集起着十分重要的影响。煤的不同显微组分中有机硫的质量分数存在明显差异,镜质组中有机硫的质量分数高于其在惰质组的质量分数。硫在煤中的聚集是一个逐渐累积的过程,有机硫的聚集一般滞后于黄铁矿硫的聚集。泥炭沼泽条件控制着  相似文献   

11.
An immature humic coal (subbituminous rank) from the Mahakam delta (Kutei basin, Kalimantan, Indonesia) was isothermally pyrolyzed in confined conditions at temperatures ranging from 250 to 400°C (10°C steps) at 700 bar pressure for 72 h. Solid, liquid and thermodesorbable phases originating from the pyrolyzates have been analyzed by different analytical techniques. Results indicate that a 10°C pyrolysis step is necessary to determine the timing and the sequence of the different transformations affecting the kerogen as well as the effluents. Four maturation/coalification stages are distinguished. Stage 1 (75–80 wt.% C) occurs when modifications mainly concern the oxygen-bearing functions of the kerogen. Stage 2 (82–85 wt.%o C) is characterized by the decrease of the aliphaticity and the primary cracking of the coal. Stage 3 (86–89 wt.% C) corresponds to the production of methane and the condensation of aromatic rings in the solid residue.  相似文献   

12.
Although there is published information on the mechanism of sedimentary pyrite formation resulting from bacterial reduction of sulfate, little is known about the distribution of forms of sulfur, including organic, in peats. In order to increase understanding of the geochemistry of sulfur in coals, we have determined distributions of forms of sulfur in five cores of saline peat and one of brackish peat, all from areas near the Shark River and Whitewater Bay in the coastal swamps of south Florida. All concentrations vary widely with depth. Total sulfur concentrations range up to 6% of dry solids. Minor amounts of sulfur are present as H2S, S0, SO42−, and acid-soluble sulfide, but the principal forms are usually pyritic and organic. The ratio, organic/pyritic, is highly variable, but at a majority of levels in a profile is considerably greater than unity. It is inferred that topochemical factors are important in determining the distribution of sulfur forms in any element of volume.  相似文献   

13.
14.
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.  相似文献   

15.
This study evaluates Greek peat and coal samples for applications in the agricultural/horticultural sector and assesses the suitability of a certain peat/coal either as soil conditioner or as raw material for manufacturing organic fertilizers.Twenty-six samples of different rank ranging from peat to subbituminous coal obtained from several Greek peat/coal deposits, were studied. The laboratory tests included: a) pH and electrical conductivity (EC) determinations, as well as proximate, ultimate and maceral analyses, in order to characterize the samples, b) major and trace element analyses of both the total and the easily exchangeable fractions (EEF), in order to assess the phytotoxicity effect, c) cation exchange capacity (CEC) determination in mixtures of the samples (5 wt.%) with a certain soil (95 wt.%), in order to evaluate the peat/coal impact, and d) the determination of the contents of humic substances (HS), as well as of carboxylic and phenolic groups.The majority of the samples reveal moderate to high ash yields (16–80 wt.%), a slightly acidic to neutral character and electrical conductivity ranging from 100–2500 μS/cm. Concerning the environmental impact of the sensitive trace elements, which might be leached, As, Mn, Ni and Sr show relatively strong mobilization in some samples, although severe impacts are not expected. The soil's CEC is generally improved, although it remains at moderate levels. The most interesting aspect is the humic acids content, which ranges between 9.6 and 52.2 wt.% on a dry basis, exceeding 25 wt.% for most of the samples. The obtained results enable an initial correlation among the different parameters and a rating of the samples according to their suitability for soil-amelioration agents.  相似文献   

16.
煤中硫是多种有害微量元素的重要载体。基于形态硫分析、电感耦合等离子质谱及X射线衍射等方法分析沁水盆地晚古生代煤中硫和有害微量元素的分布规律,探讨了煤中硫对有害微量元素富集的影响,运用带能谱的扫描电镜和光学显微镜划分煤中硫化物的微观赋存特征。结果表明,沁水盆地煤中硫整体上以有机硫为主,平均占全硫的78%,只有在太原组个别高硫煤中以黄铁矿硫为占优势。显微镜和扫描电镜下可识别出煤中黄铁矿的微观赋存状态包括莓球状、薄膜状、晶粒状、结核状、团窝状黄铁矿和细粒黄铁矿集合体,白铁矿的微观赋存特征包括聚片状、板状和矛头状白铁矿,部分白铁矿与黄铁矿共生。沁水盆地煤中有害微量元素含量整体较低,黄铁矿是有害微量元素As、Se和Hg的重要载体,而有机硫决定了煤中U的富集。研究认为,成煤时期海水对泥炭沼泽的影响导致太原组煤中全硫和黄铁矿硫较高,太原组煤中硫的来源具有多样性,煤中黄铁矿具有多阶段演化的特点。  相似文献   

17.
Six sulfur forms were investigated in profiles of freshwater- and marine-derived peat-forming systems of the Okefenokee Swamp, Georgia and Everglades Swamp, Florida. Total sulfur levels of 0.1–10% were found, thus indicating a major incorporation of sulfur in the very early stages of coal formation. The quantities of hydrogen sulfide and elemental sulfur observed appeared to be indicative of whether marine or freshwater conditions prevailed at the site of deposition. Carbon-bonded sulfur accounted for 70% of the total sulfur in the freshwater peat and 50% of the total sulfur in the marine peat. Over 15% of the total sulfur was in pyritic combination in the marine environment, while levels of pyrite in the freshwater peats were an order of magnitude lower. An ester-sulfate fraction represented 25% of the total sulfur in both freshwater and marine peats. The levels of sulfur forms in the peat profiles are compared to those observed in living plants and to various coals; levels of pyrite and organic sulfur in the peat are similar to those found by other investigators in freshwater-derived and marine-derived coals.  相似文献   

18.
中国煤中硫的地球化学研究   总被引:16,自引:0,他引:16  
燃烧过程中,煤中硫会以硫氧化物等形式释放出来,污染大气以至形成酸雨,对环境造成极大的影响。本文在对中国煤中硫全面分析的基础上.总结并分析了中国煤中硫在不同地区、不同煤层和不同形成环境中的含量与分布规律,阐述煤中硫形成的地质成因和影响因素.以及育机硫、无机硫和元素硫的赋存状态.概述了煤利用过程中硫的转化机理及其对环境的影响.提出了对煤中硫的研究趋势和今后研究方向与热点问题。  相似文献   

19.
Rodlets, occurring in shale and coal (uppermost Berriasian to middle Aptian, Lower Cretaceous), were identified from drill cuttings taken from depths between 9330 ft (2844 m) and 11, 460 ft (3493 m) in the Texaco et al., Federal Block 598, No. 2 well, in the Baltimore Canyon Trough. Under the binocular microscope, most of the rodlets appear black, but a few are reddish brown, or brownish and translucent on thin edges. They range in diameter from about 0.4 to 1.7 mm and are commonly flattened. The rodlets break with a conchoidal fracture, and some show an apparent cellular cast on their longitudinal surfaces. When polished and viewed in reflected light, the rodlets appear dark gray and have an average random reflectance of less than 0.1% whereas mean maximum reflectances are 0.48–0.55% for vitrinite in the associated shale and coal. These vitrinite reflectances indicate either subbituminous A or high-volatile C bituminous coal. The rodlets fluoresce dull gray yellow to dull yellow. The scanning electron microscope (SEM) and light microscope reveal the presence of swirl-like features in the rodlet interiors. Minerals associated with the rodlets occur as sand-size grains attached to the outer surface, as finely disseminated interior grains, and as fracture fillings. Electron microprobe and SEM-energy-dispersive X-ray (EDX) anlayses indicate that the minerals are dominantly clays (probably illite and chlorite) and iron disulfide; calcium carbonate, silicon dioxide, potassium aluminum silicate (feldspar), titanium dioxide, zinc sulfide, and iron sulfate minerals have been also identified. The rodlets were analyzed directly for C, H, N, O, and total S and are interpreted as true resins on the basis of C and H contents that range from 75.6 to 80.3 and from 7.4 to 8.7 wt. % (dry, ash-free basis), respectively. Elemental and infrared data support a composition similar to that of resinite from bituminous coal. Elements determined to be organically associated in the rodlets include S (0.2–0.5 wt.%), Cl (0.03–0.1 wt.%), and Si (0.05–0.08 wt.%). The ash content of the resin rodlets ranges from 4 to 24 wt.% and averages 12 wt.%. Total sulfur contents range from 1.7 to 3.6 wt.%. Resins of fossil plants are known to have little or no sulfur and ash; therefore, these data and the presence of minerals in fractures indicate that most of the sulfur and mineral matter were introduced into the resin partly or wholly after the time of brittle fracture of the resin. The probable source of the resin rodlets is fossil pinaceous conifer cones, which are known to have resin canals as much as 2400 μm in diameter.  相似文献   

20.
The effect of sulfur on phosphorus solubility in rhyolitic melt and the sulfur distribution between apatite, ±anhydrite, melt and fluid have been determined at 200 MPa and 800–1,100 °C via apatite crystallization and dissolution experiments. The presence of a small amount of sulfur in the system (0.5 wt.% S) under oxidizing conditions increases the solubility of phosphorus in the melt, probably due to changing calcium activity in the melt as a result of the formation of Ca-S complexing cations. Apatite solubility geothermometers tend to overestimate temperature in Ca-poor, S-bearing system at oxidizing conditions. In crystallization experiments, the sulfur content in apatite decreases with decreasing temperature and also with decreasing sulfur content of the melt. The sulfur partition coefficient between apatite and rhyolitic melt increases with decreasing temperature (KdSapatite/melt=4.5–14.2 at T=1,100–900 °C) under sulfur-undersaturated conditions (no anhydrite). The sulfur partition coefficient is lower in anhydrite-saturated melt (~8 at 800 °C) than in anhydrite-undersaturated melt, suggesting that KdSapatite/melt depends not only on the temperature but also on the sulfur content of the melt. These first results indicate that the sulfur content in apatite can be used to track the evolution of sulfur content in a magmatic system at oxidizing conditions.Editorial responsibility: J. Hoefs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号