首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metamorphosed volcanic and sedimentary rocks of the Jaglot Group are exposed along the west bank of the Indus River near Thelichi. The structural bottom unit, the Thelichi Formation, is composed of metavolcaniclastic, metavolcanic, metapelitic, and metacalcareous rocks. Bedding planes of the Thelichi Formation trend E–W or NW–SE and dip steeply to the N. The middle unit, Gashu-Confluence Volcanics, is composed of metavolcaniclastic, metavolcanic, and metacalcareous rocks. Bedding planes trend NW–SE and dip moderately to the N. The top unit, the Gilgit Formation, is composed of interlayered metapsammitic and metapelitic rocks. Graded bedding, cross-bedding, and pillow structures are preserved in these metamorphic rocks of the Jaglot Group. Those indicate clastic sedimentary and volcanic origins. There is no major repetition of layers due to folding (so-called “the Jaglot syncline”) as is evidenced by the consistent northward younging of the beds. The three lithological units constitute a north-dipping tectonic stack. The tectonic stack was provably caused by the northward subduction of the back-arc basin under the Asian margin and subsequent collision between the Asia and the Kohistan (the closure of back-arc basin).  相似文献   

2.
A PETROLOGICAL OVERVIEW OF THE KOHISTAN MAGMATIC ARC, NW HIMALAYA, N. PAKISTAN1 TahirkheliRAK ,MattauerM .ProustF ,etal.1979.In :GeodynamicsofPakistan[C].FarahA ,DeJongKA ,eds.GeolSurvPakistan ,Quetta ,1979.12 5~ 130 . 2 CowardMP ,WindleyBF ,BroughtonRD ,etal.In :CollisionTectonics[C]..CowardMP ,RiesAC ,eds.GeolSoc,London ,SpecPub ,1986 ,19:2 0 3~ 2 19. 3 BardJP ,MaluskiH ,MattePh ,etal.GeolBull ,PeshawarUniversity ,1980 ,13:87~ 93. …  相似文献   

3.
伊宁地块不是一个之前一贯认为的"均匀地块"或"均一地块",而是以乌孙山-塔勒得近东西向区域性大断裂为界的南、北两大次级构造带("弧-盆"体系)叠加拼贴增生而成,火山岩浆作用为这一新的构造单元划分与建立提供了佐证。南构造带由喀拉峻岛弧带和其北的阿腾套弧后盆地构成,主要发育于晚泥盆世-早石炭世早期,火山岩同位素年龄峰值为355~350Ma,17个年龄平均值为351Ma;北构造带由北而南可再细分出清水河-苏布台弧后盆地→阿吾拉勒叠加岛弧带→特克斯-新源弧前盆地,主要发育于早石炭世中-晚期,同位素年龄峰值集中于345~329Ma,18个火山岩年龄平均值为340Ma。这两个"弧-盆"体系以大哈拉军山组钙碱性火山岩为主体,共生早石炭世海相阿克沙克组弧前及弧后沉积岩组合。大哈拉军山组火山岩主体以岛弧火山岩为主,见有富Nb玄武岩、高镁安山岩等,共生埃达克岩和高分异I型花岗岩等小岩体;在弧后还见有碱性火山岩、碱性球泡流纹岩,共生双峰式火山岩。不仅大哈拉军山组火山岩在各构造相中显著有别,而且共生的阿克沙克组在各构造相中差异极为显著。两大次级构造带具有独立的基底建造史,差异显著的盆地沉积史,独特的火山岩浆史和构造演化史。早晚石炭世之间的鄯善运动使南、北两个次级构造带叠加拼贴,构成统一的伊宁地块,晚石炭世进入统一的陆内构造发展演化阶段,发育以伊什基里克组碱性双峰式火山岩为代表的裂谷火山岩浆建造。  相似文献   

4.
VARIATIONS IN KAMILA AMPHIBOLITES FROM SOUTHEASTERN PART OF THE KOHISTAN ISLAND-ARC TERRANE,PAKISTAN  相似文献   

5.
Major and trace elements of lavas, dykes and plutonic rocks of the late Proterozoic orogenic sequence in SE Sinai, the Kid Group, have been analysed. The dykes and lavas of the southermost sequences, the Tarr Complex and Heib Formation, are calc-alkaline, whereas the lavas of the Malhak Formation and the Sharira Gabbro (to the north of the Heib Formation) show both calc-alkaline and tholeiitic trends. The trace element characteristics of the Tarr Complex and the Heib and Malhak Formations, despite between-sequence variations, are all comparable with ensialic island arc magmatism, whereas the Sharira Gabbro shows some MORB characteristics in addition to the island arc imprints. The Sharira Gabbro and the lavas of the Malhak Formation possibly formed in a developing back-arc basin behind a continental-marginal ensialic island arc (the Tarr Complex and Heib Formation). During the Pan-African orogeny, the constituent units of the Kid Group were mutually juxtaposed along major ductile shear zones of thrust-fault character. This plate-convergence regime involved initial magmatic arc development following northward subduction, and subsequent collision between the arc complex and the Proterozoic continental margin.  相似文献   

6.
印度与亚洲大陆的碰撞是青藏高原演化的重要构造事件,碰撞过程被记录在拉萨地块南部的晚白垩世到古新世的沉积-岩浆作用中。林周盆地的晚白垩世设兴组及其之后不整合覆盖的林子宗火山岩,是解析碰撞过程的重要记录。本文对设兴组最高层位的砂岩和玄武岩夹层进行了岩石学、地球化学和年代学研究,探讨了岩石成因和构造意义。设兴组砂岩属于杂砂岩,碎屑物质主要来自中酸性岩浆岩源区;锆石Hf同位素指示设兴组大部分碎屑物质来源于盆地北面的中部拉萨地块,少部分来自盆地南部的冈底斯岩基;砂岩中最年轻的碎屑锆石年龄指示林周盆地设兴组是在98Ma之后接受沉积的。以夹层产出在设兴组顶部的玄武岩和玄武安山岩,富集轻稀土元素、亏损重稀土元素、弱负Eu异常,强烈富集Ba、Th、U、Pb等大离子亲石元素,显著亏损Nb、Ta等高场强元素,属于高钾钙碱性玄武岩系列,与典型安第斯型玄武岩特征吻合。玄武岩和玄武安山岩的锆石均为捕获锆石,其最年轻碎屑锆石年龄限定了设兴组玄武岩的喷发晚于110Ma。综合分析表明,林周盆地晚白垩世时期为夹持在冈底斯岩浆弧与中部拉萨地块之间的弧后盆地,新特提斯洋壳晚白垩世俯冲到冈底斯弧和弧后盆地之下,大约在98~110Ma之后喷发到林周盆地的很少量中基性岩浆构成了设兴组顶部的玄武岩和玄武安山岩夹层,是新特提斯洋俯冲相关的幔源岩浆作用。林周盆地设兴组(晚于98Ma)与上覆的林子宗火山岩(底部约为65Ma)之间呈大约33Myr的构造间断,可能代表了冈底斯弧的碰撞之前的隆升剥蚀过程。  相似文献   

7.
北祁连山奥陶纪弧后盆地火山岩浆成因   总被引:27,自引:6,他引:27       下载免费PDF全文
本文对北祁连山早古生代弧后盆地熔岩的岩石地球化学研究结果加以报道。样品的分布将南部弧后盆地拉伸最早阶段发育的岛弧裂谷化区和北部的弧后海底扩张区联系起来。熔岩的岩相学和地球化学特点反映了拉伸方式的改变,北部是典型的弧后盆地基性熔岩,向南则逐渐向岛弧熔岩过渡。海底扩张区以玻质(现已脱玻化)、少斑基性熔岩为特征,长英质熔岩和斑状基性熔岩产于南部岛弧裂谷化区。成熟岛弧部分(Y<20×10-6,TiO2<0.60%,Th/Yb>0.60)和弧后扩张区(Y>20×10-6,TiO2>1.0%,Th/Yb<0.60)在地球化学上相互有别。从由海底扩张形成的弧后盆地基性熔岩,向南经过逐渐与岛弧岩石相似的熔岩,直至裂谷区最南部的岛弧熔岩,它们的地球化学成分显示逐渐的变化。这种变化反映了弧后盆地形成过程中弧后盆地之下地幔对流方式和熔体产生作用的改变:从初始岛弧裂谷之下由消减板片俯冲引起的地幔下沉,转变为弧后海底扩张带之下的地幔上隆。早期岛弧裂谷阶段,裂谷轴捕获了岛弧岩浆流,从而使得喷出的熔岩在成分上与岛弧熔岩无法区分;随着弧后拉张继续,弧后盆地变宽,岛弧岩浆流逐渐离开裂谷轴,最终产生一个似洋中脊的减压熔融系统———弧后盆地岩浆系统。  相似文献   

8.
9.
Geochemical characteristics of Ordovician basic volcanic rocks help to define the evolving tectonic setting of the Argentine Puna and northern Chile. Four spatially distinct magmatic groups are defined on geological, petrographical, geochemical and isotopic bases, each associated with particular geodynamic environments.The Tremadoc western group of subalkaline low K tholeiites with arc and modified MORB like signatures represent early stages of a back-arc basin, where spreading was incipient.The Arenig western group, medium K calc-alkaline basalts to andesites have volcanic arc in transition to back-arc signatures.The Tremadoc subalkaline basalts of the eastern group have REE patterns similar to E-MORB and at the same time weak subduction characteristics suggesting a rather mature supra-subduction zone (SSZ) basin. In contrast, the Late Tremadocian-Arenig basalts of the same group have intra-plate signatures, interpreted as magmas that ascended along pull apart regions associated with a transtensional regime.The geochemical patterns were applied to correlate basic sequences of doubtful geological setting. So, basalts from Chile were related to the Tremadocian western group, where they represent a slightly more mature stage of spreading of the basin. Basic rocks from Pocitos and part of Calalaste represent pre-Ordovician records of a back-arc system similar to that of the Tremadoc western group. Clearly similar arc patterns to those of the Arenig western group allow extending the arc environment to the southern Puna. The Tremadocian basalts from the eastern group were related to metabasites from the southern Puna, as part of a back-arc environment at that time.  相似文献   

10.
位于巴基斯坦北部西喜马拉雅的科希斯坦地体为夹持于亚洲板块与印度板块之间的倾斜的岛弧型壳体。科希斯坦岛弧北界为主地幔逆总断层(MMT),北界为北部缝合带(或喀啦昆仑主逆冲断层,MKT),可将其划分为几个地质单元。奇拉斯(Chilas)杂岩体为一长约300km、宽50km的巨型基性侵入岩体,与MMT和MKT近平行展布。它被认为是科希斯坦岛弧的岩浆房根区。奇拉斯杂岩体主要由辉长苏长岩和几个超镁铁质岩-镁铁质岩(简称UMA)岩体组成。前侵入后之中。奇拉斯杂岩体岩石普遍发生轻微变形,出现叶理化和韧性剪切带。UMA主要由橄榄石(含或不含单斜辉石)堆积岩(纯橄岩,异剥橄岩)和斜长石-单斜辉石-斜方辉石堆积岩(二辉辉长岩)组成,含有少量单斜辉石-斜方辉石堆积岩(辉石岩)。辉长苏长岩的地球化学特征表明其为岛弧环境下形成的非堆积岩,而UMA的地球化学特征表明其为岛弧环境下的堆积岩。辉长苏长岩和UMA的主元素地球化学特征在AFM图解上可用堆积和非堆积的模式来解释,辉长苏长岩的稀土和微量元素地球化学特征在100MgO/(MgO TFeO)图解上显示岛弧型特点,且UMA表明其堆积特性。  相似文献   

11.
GENESIS OF COPPER MINERALIZATION IN THE WESTERN KOHISTAN ISLAND ARC TERRANE,NW HIMALAYA—HINDUKUSH, N. PAKISTAN  相似文献   

12.
内蒙古中西部多岛海构造演化   总被引:10,自引:0,他引:10  
内蒙古中西部大陆由一个微大陆、三条弧后盆地和三条火山岛弧,即华北微大陆、白云鄂 傅弧后盆地、白乃庙火山岛弧、温都尔庙弧后盆地、苏尼特左-锡林浩特火山岛弧、贺根山弧后盆 地和二连浩特-锡林郭勒火山岛弧组成。经过了长期而复杂的微大陆和火山弧的裂解、弧后盆地 的消减衰亡及弧-陆和弧-弧碰拉等构造演化,才最终形成今天所见到的这种构造样式。  相似文献   

13.
内蒙朝克山蛇绿岩地球化学: 洋内弧后盆地的产物?   总被引:8,自引:6,他引:2  
王树庆  许继峰  刘希军  侯青叶 《岩石学报》2008,24(12):2869-2879
朝克山蛇绿岩是内蒙贺根山地区出露最好的蛇绿岩之一,可能形成于中晚石炭世。朝克山蛇绿岩中的基性岩具有LREE亏损、类似N-MORB的稀土配分模式,而相对N-MORB富集大离子亲石元素,亏损Nb、Ta等高场强元素又类似岛弧火山岩的成分特征,因此,我们认为朝克山蛇绿岩应形成于弧后盆地。将朝克山蛇绿岩的基性岩与现代Mariana洋内弧后盆地和Okinawa陆缘弧后盆地的玄武岩及同属中亚造山带的、形成于洋内弧后盆地的新疆库尔提蛇绿岩对比,朝克山蛇绿岩更类似于Mariana玄武岩和库尔提蛇绿岩,因此其很可能形成于洋内弧后盆地而不是大陆边缘弧后盆地环境。  相似文献   

14.
贺根山蛇绿岩(套)中发育有气孔杏仁状玄武岩,为蛇绿岩套的组成部分。通过对其锆石U-Pb测年,其加权平均年龄为395.9 Ma±3.0 Ma,结合区域地质背景,认为贺根山蛇绿岩(套)形成时代为中泥盆世—早石炭世。玄武岩为亚碱性系列,具有LREE亏损、类似N-MORB的稀土配分模式,同时具备大洋玄武岩和岛弧玄武岩特征,认为贺根山蛇绿岩(套)应形成于弧后盆地;通过与现代典型Mariana洋内弧后盆地和Okinawa陆缘弧后盆地的玄武岩以及同属中亚造山带的新疆库尔提洋内弧后盆地蛇绿岩对比,发现贺根山玄武岩同Mariana玄武岩和库尔提蛇绿岩更加类似,由此认为贺根山蛇绿岩(套)很可能形成于洋内弧后盆地环境,而非大陆边缘弧后盆地环境。  相似文献   

15.
北秦岭小寨变质沉积岩系的地质特征及其构造意义   总被引:1,自引:0,他引:1  
李亚林  王根宝 《沉积学报》1999,17(4):596-600
原岩恢复、沉积建造及变形变质综合研究表明,北秦岭小寨变质沉积岩系属活动陆缘性质沉积建造,形成于二郎坪弧后盆地消减俯冲带的海沟盆地-海沟斜坡环境,是古俯冲带的重要证据之一,其变形序列反映了弧后盆地构造演化过程,并与构造混杂岩、俯冲型花岗岩及高压变质带一起构成相对完整的古俯冲带标志,为探讨秦岭古生代板块构造演化提供了重要信息。  相似文献   

16.
We present major and trace element analyses and U–Pb zircon intrusion ages from I-type granitoids sampled along a crustal transect in the vicinity of the Chilas gabbronorite of the Kohistan paleo-arc. The aim is to investigate the roles of fractional crystallization of mantle-derived melts and partial melting of lower crustal amphibolites to produce the magmatic upper crust of an island arc. The analyzed samples span a wide calc-alkaline compositional range (diorite–tonalite–granodiorite–granite) and have typical subduction-related trace element signatures. Their intrusion ages (75.1 ± 4.5–42.1 ± 4.4 Ma) are younger than the Chilas Complex (~85 Ma). The new results indicate, in conjunction with literature data, that granitoid formation in the Kohistan arc was a continuous rather than punctuated process. Field observations and the presence of inherited zircons indicate the importance of assimilation processes. Field relations, petrographic observations and major and trace element compositions of the granitoid indicate the importance of amphibole fractionation for their origin. It is concluded that granitoids in the Kohistan arc are derivative products of mantle derived melts that evolved through amphibole-dominated fractionation and intra crustal assimilation.  相似文献   

17.
Precambrian metaplutonic rocks of the São Gabriel block in southernmost Brazil comprise juvenile Neoproterozoic calc-alkaline gneisses (Cambaí Complex). The connection with associated (ultra-)mafic metavolcanic and metasedimentary rocks (Palma Group) is not well established. The whole complex was deformed during the Brasiliano orogenic cycle. Both metasedimentary and metavolcanic rocks as well as metaplutonic rocks of the Cambaí Complex have been sampled for geochemical analyses in order to get constraints on the tectonic setting of these rocks and to establish a tectonic model for the São Gabriel block and its role during the assembly of West-Gondwana. The major element compositions of the igneous rocks (Palma Group and Cambaí Complex) indicate a subalkaline character; most orthogneisses have a calc-alkaline chemistry; many metavolcanic rocks of the Palma Group show signatures of low-K tholeiitic volcanic arc basalts. Trace element data, especially Ti, Zr, Y, Nb, of most igneous samples from both the lower Palma Group and the Cambaí Complex indicate origin at plate margins, i.e., in a subduction zone environment. This is corroborated by relative enrichment in LREE, low contents of Nb and other high field strength elements and enrichment in LILE like Rb, Ba, and Th. The data indicate the possible existence of two suites, an oceanic island arc and a continental arc or active continental margin. However, some ultramafic samples of the lower Palma Group in the western São Gabriel block indicate the existence of another volcanic suite with intra-plate character which possibly represents relics of oceanic island basalts (OIB). Trace element data indicate contributions from andesitic to mixed felsic and basic arc sources for the metasedimentary rocks. The patterns of chondrite- and N-MORB-normalized spider diagrams resemble the patterns of the igneous rocks, i.e., LILE and LREE enrichment and HFS depletion. The geochemical signatures of most igneous and metasedimentary samples and their low (87Sr/86Sr)t ratios suggest only minor contribution of old continental crust.A geotectonic model for the São Gabriel block comprises east-ward subduction and following accretion of an intra-oceanic island arc to the eastern border of the Rio de la Plata Craton at ca. 880 Ma, and westward subduction beneath the newly formed active continental margin between ca. 750 and 700 Ma. The São Gabriel block represents relics of an early Brasiliano oceanic basin between the Rio de la Plata and Kalahari Cratons. This ocean to the east of the Rio de la Plata Craton might be traced to the north and could possibly be linked with Neoproterozoic juvenile oceanic crust in the western Brasília belt (Goiás magmatic arc).  相似文献   

18.
根据义敦岛弧造山带区域地层特征,将该区划分为六个构造地层带。根据区域地层的沉积演化序列和受构造改造作用程序,将该区域区地层划分为史密斯地层、有限史密斯地层和非史密斯地层三种类型。据此提出了在川西造山带地区进行1:5万、1:25万区调填图的工作方法。  相似文献   

19.
五台山早元古代碰撞造山带初步认识   总被引:36,自引:5,他引:36       下载免费PDF全文
五台山地区分布着复杂的变质杂岩。过去人们把这些变质岩作为地层分成群组段。龙泉关剪切构造岩的发现突破了这种传统观念。野外工作中发现所谓五台群主要包含了三个蛇绿混杂带;阜平群和恒山群的主要成分是灰片麻岩,它们构成两个太古代陆块的基底。五台地区的花岗岩类由代表弧环境的双花岗岩带的I型和S型花岗岩组成,它们与变质的钙碱性火山岩代表了古代的岩浆弧。滹沱群的豆村和东冶亚群以及过去划入阜平群和五台群的某些变沉积岩是阜平陆块被动大陆边缘的沉积。滹沱群的郭家寨亚群则是前陆盆地的磨拉石沉积。因此可以认为,这是一个由恒山仰冲陆块、北台-车厂弧和阜平俯冲陆块构成的碰撞造山带,碰撞时间大致是距今2050Ma。闭合的弧前大洋和弧后盆地形成了三条蛇绿混杂带。  相似文献   

20.
Fault blocks and inliers of uppermost Silurian to Middle Devonian strata in the Yarrol Province of central coastal Queensland have been interpreted either as island-arc deposits or as a continental-margin sequence. They can be grouped into four assemblages with different age ranges, stratigraphic successions, geophysical signatures, basalt geochemistry, and coral faunas. Basalt compositions from the Middle Devonian Capella Creek Group at Mt Morgan are remarkably similar to analyses from the modern Kermadec Arc, and are most consistent with an intra-oceanic arc associated with a backarc basin. They cannot be matched with basalts from any modern continental arc, including those with a thin crust (Southern Volcanic Zone of the Andes) or those built on recently accreted juvenile oceanic terranes (Eastern Volcanic Front of Kamchatka). Analyses from the other assemblages also suggest island-arc settings, although some backarc basin basalt compositions could be present. Arguments for a continental-margin setting based on structure, provenance, and palaeogeography are not conclusive, and none excludes an oceanic setting for the uppermost Silurian to Middle Devonian rocks. The Mt Morgan gold–copper orebody is associated with a felsic volcanic centre like those of the modern Izu–Bonin Arc, and may have formed within a submarine caldera. The data are most consistent with formation of the Capella Creek Group as an intra-oceanic arc related to an east-dipping subduction zone, with outboard assemblages to the east representing remnant arc or backarc basin sequences. Collision of these exotic terranes with the continent probably coincided with the Middle–Upper Devonian unconformity at Mt Morgan. An Upper Devonian overlap sequence indicates that all four assemblages had reached essentially their present relative positions early in Late Devonian time. Apart from a small number of samples with compositions typical of spreading backarc basins, Upper Devonian basalts and basaltic andesites of the Lochenbar and Mt Hoopbound Formations and the Three Moon Conglomerate are most like tholeiitic or transitional suites from evolved oceanic arcs such as the Lesser Antilles, Marianas, Vanuatu, and the Aleutians. However, they also match some samples from the Eastern Volcanic Front of Kamchatka. Their rare-earth and high field strength element patterns are also remarkably similar to Upper Devonian island arc tholeiites in the ophiolitic Marlborough terrane, supporting a subduction-related origin and a lack of involvement of continental crust in their genesis. Modern basalts from rifted backarc basins do not match the Yarrol Province rocks as well as those from evolved oceanic arcs, and commonly have consistently higher MgO contents at equivalent levels of rare-earth and high field strength elements. One of the most significant points for any tectonic model is that the Upper Devonian basalts become more arc-like from east to west, with all samples that can be matched most readily with backarc basin basalts located along the eastern edge of the outcrop belt. It is difficult to account for all geochemical variations in the Upper Devonian basalts of the Yarrol Province by any simplistic tectonic model using either a west-dipping or an east-dipping subduction zone. On a regional scale, the Upper Devonian rocks represent a transitional phase in the change from an intra-oceanic setting, epitomised by the Middle Devonian Capella Creek Group, to a continental margin setting in the northern New England Orogen in the Carboniferous, but the tectonic evolution must have been more complex than any of the models published to date. Certainly there are many similarities to the southern New England Orogen, where basalt geochemistry indicates rifting of an intra-oceanic arc in Middle to Late Devonian time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号