首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Climate change alters ecohydrological processes on different temporal and spatial scales. The aim of this study was to estimate ecological instream flow requirements (EIFR) under climate change impacts and to ascertain optimum flow magnitude to maintain the health of river ecosystems. We used the Mann–Kendall test, the River2D Hydrodynamic model, and the frequency-weighted usable area (FWUA) model on an annual scale in the Juma River to investigate changes in EIFRs caused by climate change. Findings indicated that: (1) between 1956 and 2005, annual instream flow in the Juma River exhibited an abrupt downward trend (in 1981); (2) variation in instream flow governed the area of available fish habitat, and degrees of change for low flow threshold values and low and high FWUA threshold almost exclusively occurred in descending sequential order from winter, spring, autumn, and summer; (3) changes in hydrological regimes influenced both the quantity and quality of physical habitat area, contributing greater to quality than to the distribution of area of physical habitat for Pseudorasbora parva. Climate change, reflected in the changes in EIFR and the area of optimum physical habitat, has dramatically influenced ecological structure and function, even in the small river system investigated for this study. Findings indicated that more rational measures should be put into practice to help address climate change.  相似文献   

2.
基于栖息地突变分析的春汛期生态需水阈值模型   总被引:7,自引:0,他引:7       下载免费PDF全文
根据春汛期水生态系统的特点,应用河道内流量增量法,选用二维河流模型River2D,建立栖息地与流量变化的动态关系,进而应用Mann-Kendall方法,开发基于栖息地突变分析的生态需水阈值模型。以第二松花江支流辉发河五道沟断面附近河段为例,选择松花江流域分布较为广泛的鲤鱼作为对象物种,以流速和水深两个因素表征鱼类栖息地,利用1956~2000年45年的春汛期月径流资料,判定鱼类栖息地在1970年开始发生了突变。在突变前加权可用面积95%的置信区间范围为275.5~915.7m2/km,对应的流量范围为58.8~121.1m3/s,并将其作为研究区春汛期间的生态需水阈值。春汛发生在冰封期刚刚结束的时段,适宜的春汛期生态需水能够提高生态系统多样性,对于鱼类等水生生物乃至于整个生态系统都有重要的生态意义。  相似文献   

3.
适宜生态流量计算方法研究   总被引:6,自引:0,他引:6       下载免费PDF全文
从河流生态系统的特征出发,提出了以鱼类生境法和鱼类生物量计算适宜生态流量的途径。采用鱼类生境法和鱼类生物量法,对松花江流域的适宜生态需水开展应用研究。结果表明,两种方法计算的结果基本一致。在一般情况下,鱼类生境法和鱼类生物量方法可以互相验证,二者计算成果相差3%以下。在没有回水顶托的影响下,鱼类生境法适用于不同尺度的河流。而鱼类生物量方法,一般适用于较大的平原型河流,对于较小的山区河流,该方法需慎重使用。  相似文献   

4.
With the socio-economic development, water demand has increased, resulting in river environment flow often not being met. As an important indicator of river ecosystem, environment flow plays a key role in maintaining the sustainability of the ecosystem. This study fully considered the biological needs of river ecosystems, used food web models (Ecopath) to identify key species of fish, determined the ecological flow velocity, combined the river sections, and used the Adapted Ecological Hydraulic Radius Method (AEHRA) to calculate the environment flow. Based on the calculation results of the environment flow, the River2D model was used to simulate the river flow, and the environment flow satisfaction rate of the river was calculated. The calculation results show that the environment flow of each river in the flood season can be satisfied, and the environment flow of most rivers in the non-flood season cannot be satisfied, and the satisfaction rate is extremely low, which causes the ecosystem health to be destroyed. Therefore, ecological regulation of rivers during non-flood seasons should be strengthened to meet river environment flow. The new method for calculating the environment flow of the river provided in this paper can provide a method for aquatic ecological restoration, and the research results can provide important scientific basis for the aquatic ecological restoration and management of rivers in Jinan.  相似文献   

5.
We sampled nearshore fishes in the Sacramento-San Joaquin Delta, California, United States, during 2001 and 2003 with beach seines and gill nets. We addressed three questions. How and why did fish assemblages vary, and what local habitat features best explained the variation? Did spatial variation in assemblages reflect greater success of particular life history strategies? Did fish biomass vary among years or, across habitats? Nonmetric multidimensional scaling showed that habitat variables had more influence on fish assemblages than temporal variables. Results from both gear types indicated fish assemblages varied between Sacramento and San Joaquin River sampling sites. Results from gill net sampling were less pronounced than those from beach seine sampling. The Sacramento and San Joaquin river sites differed most notably in terms of water clarity and abundance of submerged aquatic vegetation (SAV), suggesting a link between these habitat characteristics and fish relative abundance. Among-site differences in the relative abundance of periodic and equilibrium strategist species suggested a gradient in the importance of abiotic versus biotic community structuring mechanisms. Fish biomass varied among years, but was generally higher in SAV-dominated habitats than the turbid, open habitats in which we found highest abundances of striped bassMorone saxatilis and special-status native fishes such as delta smeltHypomesus transpacificus, Chinook salmonOncorhyncus tschawytscha, and splittailPogonichthys macrolepidotus. The low abundance of special-status fishes in the comparatively productive SAV-dominated habitats suggests these species would benefit more from large-scale restoration actions that result in abiotic variability that mirrors natural river-estuary habitat than from actions that emphasize local (site-specific) productivity.  相似文献   

6.
Climate change is expected to have substantial impacts on flow regime in the Upper Yellow River (UYR) basin that is one of the most important biodiversity hotspots in the world. These impacts will most possibly exert negative effects on the habitat availability for riverine species. Thus, it is necessary to understand the alteration of river flow regime under climate scenarios. In this paper, we use the modified hydrological model HBV in conjunction with three general circulation models under three representative concentration pathways (RCP 2.6, 4.5, and 8.5) to address changes in flow regime under climate change for the UYR basin in the mid-term (2050s) and end-term (2080s) of the twenty-first century. Flow regime is quantified using the Indicators of hydrological alteration approach. Thereafter, the potential threats to riverine ecosystem in the UYR basin are identified based on the projected alterations of various flow characteristics and their ecological influences. The results showed that the magnitude of monthly flow would increase during the dry period. The date of the annual 1-day minimum streamflow will likely shift toward earlier time under different scenarios, and significant increases in magnitude of annual minimum flow of different durations were detected under both RCP 4.5 and 8.5 scenarios in the 2080s. In addition, assessments of the modification degree of the overall flow regime revealed that climate change would remarkably modify (medium level) the overall flow regime in the UYR basin, particularly by the end of the twenty-first century or under the high emission scenarios. Besides, destruction of habitat and reduced availability of food induced by substantially increased hydrological instability in the 2080s would make two endangered fishes more vulnerable in the UYR basin. These findings provide insights into potential adaptive countermeasures for water resource management and environmental system restoration in the Upper Yellow River.  相似文献   

7.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

8.
This research studies the impact of water level control structures on self-assimilative capacity of rivers and on fish habitat. Constructing a water level control structure in a river reach will alter its hydraulics as well as its water quality, thermal regime and fish habitat. A mathematical model is developed to simulate river hydraulics, water quality, temperature and fish habitat. Diurnal dissolved oxygen concentrations are investigated to show their impact on fish. A case of a Nile River reach was studied to investigate the impact of the existence of the Esna barrage on the water quality and fish in its upstream reach. The barrage has negative impacts on the upstream self-assimilative capacity of the rivers. The waste load that the river could absorb was only 54 % (at low flow) and 78 % (at high flow) of the entire load if no barrage was present. Including in the simulation of the effects of photosynthesis and respiration, the above mentioned percentages were raised to 54 % and 91 %, respectively. Although water level control structures have negative impacts on the upstream self-assimilative capacity of the rivers, they have positive effect on downstream dissolved oxygen concentrations due to reaeration that happens across them. Downstream dissolved oxygen concentration increased by 6 % from its upstream concentration value. The barrage has a positive effect on fish habitat in the upstream section. The weighted usable area of Tilapia fish is doubled in case of barrage existence. The barrage causes a slight decrease in water temperature that reaches an average of 0.13 degree in the month of June.  相似文献   

9.
The availability of methods for establishing freshwater inflow requirements for estuaries lags behind those for establishing flow requirements in riverine ecosystems. Some of the basic principles and approaches for establishing riverine flow requirements may be applicable to estuaries. An emerging approach for establishing freshwater inflow needs for the Suwannee River estuary involves maintaining a natural inflow regime (in terms of magnitude, frequency, duration, and timing of freshwater flows) and identifying important habitat targets to be protected. The salinity-river flow conditions needed to sustain the habitat targets in their existing condition are then identified. A variety of tools are employed, such as salinity metrics, biological metrics, limits of distribution of communities or habitats, and landscape-scale characteristics to define the salinity and corresponding flow ranges needed to protect and maintain the resource targets. With this information, combined with use of models to evaluate flow-salinity relationships and various withdrawal scenarios, river flow criteria can be set which address the freshwater inflow requirements to maintain these ranges. Subsequentmonitoring and research is undertaken to evaluate the effectiveness of the river flow criteria in protecting the estuarine resource targets. This information can be used to subsequently confirm, refine, or modity the flow criteria.  相似文献   

10.
Altered river flow has been suggested as a cause for the low recruitment of striped bass,Morone saxatilis, in the Roanoke River (North Carolina) because of its effect on the proximity of zooplankton and larval striped bass. This results in unsuccessful feeding and subsequent starvation, which was considered to be a major mortality factor. Other mortality factors, such as parasitism and copepod predation on age-0 fish, may also be regulated to some extent by changes in river flow. The relationship of cestode plerocercoids, trematode metacercaria, mussel glochidia, and cyclopoid copepod predators with age-0 fish was evaluated in the lower Roanoke River and western Albemarle Sound from plankton net collections made in 1984 to 1986 and 1988. Plerocercoid prevalence was higher under low river flow conditions than under high flow conditions in darters (Percidae; 16.7% vs. 9.2%), minnows (Cyprinidae; 28.8% vs. 4.7%), andMorone (1.9% vs. 0%). Gut analysis of the age-0 fish revealed that copepods (source of the plerocercoids) were a major diet component ofMorone and darters but not of minnows or herring (Clupeidae). Decreases in river flow were associated with increases in copepod density (Pearson r=?0.62; p=0.0001) and plerocercoid prevalence inMorone (Pearson r=?0.29; p=0.03). The low correlation value forMorone may be quite strong considering the complexity of the variables associated with prevalence. Metacercaria were found only inMorone and minnows, and prevalence and mean intensity were less than that found for plerocercoids. Mussel glochidia prevalence was less than 0.5% for all affected taxa, an order of magnitude less that that found in other studies. The low value may indicate that the mussel population in the Roanoke River is declining. Prevalence of attacks by the predatory copepodMesocyclops edax on age-0 fish was similar to that in Chesapeake Bay, and striped bass was the primary prey. Spatial and temporal proximity of copepods and fish prey may be the key factors in regulating copepod attacks. The low prevalence of parasites and copepod predators seen in this tudy would suggest that mortality from these sources may not be a major factor in age-0 recruitment in this system. Confirmation of these conclusions would require a more controlled experimental approach.  相似文献   

11.
河流潜流带是地表-地下水连通和交换的主要区域, 地表-地下水过程不仅促进了生源物质的迁移转化过程, 还能涵养水源、稳定区域生境, 为水生生物提供良好的栖息环境。因此掌握水生生物活动与地表-地下水交换关系是深刻认知和科学保护水生生态系统的关键。本文综述了前人有关水生生物活动反馈于地表-地下水交换过程的研究, 例如, 底栖微生物形成的生物膜可以吸收或滞留生源物质, 改变迁移的时间和路径; 水生动物的行为可能通过改变河床渗透系数和孔隙率等物理参数影响各类物质的地表-地下水交换通量; 水生植物对水流的阻滞和扰动也会作用于地表-地下水交换过程。基于目前研究, 本文提出了该领域的3个未来研究方向: 潜流交换和水生生物互馈理论, 水生生态功能与地表-地下水相互作用关系, 河流潜流带生物-地球-化学耦合过程。  相似文献   

12.
The purpose of this paper is to analyze downstream effects of freshwater flow diversion from a small, active-continental-margin river basin. The Skokomish River delta is a tributary estuary to Hood Canal in Washington state that receives drainage from the southeastern side of the Olympic Mountains. Its drainage basin is steep, and rainfall is high. Approximately 40% of the annual average runoff of the entire system has been diverted from the North Fork Skokomish River for power production since completion of two dams in 1930; this water does not pass through the lower river or over the delta. Extensive logging has occurred in the remainder of the basin. Comparison of prediversion (1885) and postdiversion (1972) bathymetric surveys shows that deposition (about 0.013 to 0.022 m yr?1) has occurred on the inner delta and erosion (up to 0.033 m yr?1) on the outer delta. This steepening of the delta surface has apparently been caused by a loss of sediment transport capacity in the lower river and estuary combined with an increased sediment supply due to logging. Although the total area of unvegetated tidal flats thas decreased by only about 6%, there has been a more than 40% loss of highly productive low intertidal surface area. A conservative estimate of loss of eelgrass (Zostera marina) beds is 18%; a reduction in the size of mesohaline mixing zone has also occurred. These habitat losses are similar to those observed elsewhere in the world in larger river basins that have suffered water withdrawals of the same magnitude, but their impacts cannot either be evaluated or understood causally through consideration of simple measures like changes total estuarine deltaic area. Evaluation of estuarine effects of anthropogenic modification must, therefore, include consideration of both changes in habitat function and in the physical processes. These must be evaluated within the totality of the river basin-estuary system that cause these changes. In this case, sediment transport constitutes the critical link between fluvial alterations and the remote downstream, estuarine consequences thereof.  相似文献   

13.
This paper analyzes downstream effects of freshwater flow diversion from a small, active-continental-margin river basin. The Skokomish River delta, a tributary estuary to Hood Canal in Washington state, receives drainage from the southeastern side of the Olympic Mountains. Its drainage basin is steep, and rainfall is high. Since completion of two dams in 1930, approximately 40% of the annual average runoff of the entire system has been diverted from the North Fork Skokomish River for power production; this water does not pass through the lower river or over the delta. Extensive logging has occurred in the remainder of the basin. Comparison of prediversion (1885) and postdiversion (1941 and 1972) bathymetric surveys suggest that deposition (about 0.013 m yr?1 to 0.022 m yr?1) has occurred on most of the inner delta and erosion (up to 0.011 m yr?1 to 0.033 m yr?1) on much of the outer delta. More rapid postconstruction deposition occurred within the river mouth itself, where the 1926 to 1941 deposition rate was 0.04–0.11 m yr?1. Nine of 12 historical bathymetric change cross-sections show steepening of the delta surface, two are neutral, and one shows aggradation. This steepening has apparently been caused by a loss of sediment transport capacity in the lower river and estuary combined with steady or increased (due to logging) sediment supply. Although the total area of unvegetated tidal flats has decreased by only about 2%, there has been a 15–19% loss of highly productive low intertidal surface area and an estimated 17% loss of eelgrass (Zostera marina) habitat. A reduction in the size of mesohaline mixing zone has also occurred. These habitat losses are similar to those observed elsewhere in the world in larger river basins that have suffered water withdrawals of the same magnitude, but their impacts either cannot be evaluated or understood casually through consideration of simple measures like changes in total estuarine deltaic area. Evaluation of estuarine effects of anthropogenic modification must, therefore, include consideration of both changes in habitat function and in the physical processes. These must be evaluated within the totality of the river basin-estuary system that cause these changes. In this case, sediment transport constitutes the critical link between fluvial alterations and the remote downstream, estuarine consequences thereof.  相似文献   

14.
During the 1992 spawning season of river herring, three sites in a tributary of the Rappahannock River, Virginia, were studied to characterize spawning and nursery habitats of alewife (Alosa pseudoharengus) and blueback herring (Alosa aestivalis) and to identify differences in habitat use along an upstream to downtream gradient. The sites were sampled (using drift and dip nets and a plankton sampler) and habitat variables were measured on a 5-d, four-time interval rotation: at the end of 5 d, each site had been sampled once at dawn, noon, dusk, and midnight. Considerable non-overlap in spawning seasonality was apparent between species. For both species, densities of river herring adults, eggs, and yolk-sac larvae were highest at the upstream site, indicating 1) that the upstream site is more important for spawning than downstream areas, and 2) these species do not use different spawning areas in this stream. Densities of post-yolk-sac larvae did not differ significantly among sites, indicating post-spawning dispersal to downstream areas. The upstream site was smaller in area, more acidic, had faster water flow, clearer water, more vegetation, and siltier substrate than the downstream sites. At times, pH levels in the upstream site were within the lethal range reported for blueback herring larvae. Possible reasons for selection of the upstream habitat include: 1) adults may migrate as far upstream as possible to avoid predation or potential competition with other species of fish for spawning habitat; or 2) adults may historically enjoy greater spawning success in the upstream habitat due to physicochemical features of this area. More study is needed to determine the reasons for river herring use of upstream habitats in Virginia streams.  相似文献   

15.
The Narmada River flows through the Deccan volcanics and transports water and sediments to the adjacent Arabian Sea. In a first-ever attempt, spatial and temporal (annual, seasonal, monthly and daily) variations in water discharge and sediment loads of Narmada River and its tributaries and the probable causes for these variations are discussed. The study has been carried out with data from twenty-two years of daily water discharge at nineteen locations and sediment concentrations data at fourteen locations in the entire Narmada River Basin. Water flow in the river is a major factor influencing sediment loads in the river. The monsoon season, which accounts for 85 to 95% of total annual rainfall in the basin, is the main source of water flow in the river. Almost 85 to 98% of annual sediment loads in the river are transported during the monsoon season (June to November). The average annual sediment flux to the Arabian Sea at Garudeshwar (farthest downstream location) is 34.29×106 t year−1 with a water discharge of 23.57 km3 year−1. These numbers are the latest and revised estimates for Narmada River. Water flow in the river is influenced by rainfall, catchment area and groundwater inputs, whereas rainfall intensity, geology/soil characteristics of the catchment area and presence of reservoirs/dams play a major role in sediment discharge. The largest dam in the basin, namely Sardar Sarovar Dam, traps almost 60–80% of sediments carried by the river before it reaches the Arabian Sea.  相似文献   

16.
长江中华鲟栖息地适合度模型研究   总被引:9,自引:0,他引:9       下载免费PDF全文
对与水生生物生存栖息相关的河流底质、水深、水温、流速、水质等生态因子进行研究。提出水生生物的栖息地适合度模型,从生物生存栖息地影响角度对河流治理工程进行科学的评价。以长江珍稀动物中华鲟为研究对象,通过对影响中华鲟的各种生态因子的统计研究,分析整理出适宜其生存繁殖的河流水温、水深、底质、流速、含沙量及食卵鱼10个因子的临界指标,得出了这些因素的适合度曲线。发展了适合评价长江中华鲟栖息地的适合度方程,并用12组实测数据对模型进行了修改验证,提出了适合评价长江中华鲟栖息地适合度模型。  相似文献   

17.
In recent decades, due to river regulations and their impact on river morphology, brown trout populations have been declining along Lar River downstream of Lar Dam located near Tehran, Iran. Considering the recent water scarcity in the country, development of river habitat assessment models seems necessary. Therefore, in this research, an analytically applied approach is adopted to evaluate brown trout habitat by creating a relation among the hydrologic, hydraulic, geomorphic and ecologic processes. After field survey, dimensionless shear stress of the stream flow thresholds including environmental flow, bankfull flow, surface and subsurface sediment flow thresholds was calculated for Lar, Dalichay and Sefidab Rivers using Shields formula. Then, by considering the dimensionless shear stress ranges of the stream flow thresholds, functional flows ranges and duration were calculated together with ecological efficiency of the cross sections. In addition, effects of annual water yield and entrenchment ratio of the cross sections on habitat functionality were also worked out as a result of which an exponential interaction was developed between the dimensionless shear stress and discharge. Results show that an increase in functional flows ranges and duration, together with rising of ecological efficiency, is directly proportional to an increase in median bed sediment size, entrenchment ratio and annual water yield. Therefore, flow regime, cross-sectional geometry, water-surface slope and bed sediment size could be effective on the ecological functions of the brown trout’s life cycle and functionality of river flow.  相似文献   

18.
水电工程水生态环境效应评价方法与调控措施   总被引:7,自引:3,他引:7       下载免费PDF全文
围绕水电工程的水生态环境问题,重点梳理了水库运行下关键生源要素生物地球化学循环的变化及其水生态效应、底栖动物生境和鱼类生境以及鱼类洄游通道的影响、水生态环境保护工程与非工程措施等方面的研究进展,剖析了当前科学研究和工程应用中存在的难题,从理论、方法与技术角度阐明了出现这些难题的原因。提出了水电开发水生态环境保护未来需要重点开展的研究:长期系统性观测,揭示库内生源要素的滞留-转化-输送过程与机制及水生态环境累积效应;水库调控导致的鱼类性腺发育有效积温和产卵临界水温节律变化以及两者对鱼类种群繁衍的联合作用。最后特别指出当前针对鱼类保护的部分强制性措施存在的问题,并提出了高坝多环境因子调控的生态调度和支流生境替代等鱼类保护技术以及保护效果量化评价新方法。  相似文献   

19.
围绕水电工程的水生态环境问题,重点梳理了水库运行下关键生源要素生物地球化学循环的变化及其水生态效应、底栖动物生境和鱼类生境以及鱼类洄游通道的影响、水生态环境保护工程与非工程措施等方面的研究进展,剖析了当前科学研究和工程应用中存在的难题,从理论、方法与技术角度阐明了出现这些难题的原因。提出了水电开发水生态环境保护未来需要重点开展的研究:长期系统性观测,揭示库内生源要素的滞留-转化-输送过程与机制及水生态环境累积效应;水库调控导致的鱼类性腺发育有效积温和产卵临界水温节律变化以及两者对鱼类种群繁衍的联合作用。最后特别指出当前针对鱼类保护的部分强制性措施存在的问题,并提出了高坝多环境因子调控的生态调度和支流生境替代等鱼类保护技术以及保护效果量化评价新方法。  相似文献   

20.
Environmental flow assessment and maintenance are relatively new practices, especially in developing countries. This paper describes the desktop assessment of environmental flows in a river with insufficient data on ecological features and values. In this study, the potential environmental flows in a typical river reach of the Shahr Chai River in Iran were investigated using a newly developed hydrological method (flow duration curve (FDC) shifting) and Global Environmental Flow Calculator software. This approach uses monthly flow data to develop an environmental FDC and to generate flow requirements corresponding to different features of the river ecosystem. Results were compared with those from four alternative hydrological methods: the desktop reserve model (DRM), Tennant, low-flow index, and flow duration curve analysis (FDCA). Comparisons of these methods indicated that to maintain the basic function of the river ecosystem, the river flows should be managed within an acceptable environmental level. The predictions from the Tennant method and the low-flow index (7-day low flow with a 10-year return period), and from the FDCA (for flows exceeding 90?% of occurrence) are not as reliable as those from the FDC shifting technique and DRM. Comparative results indicate that a minimum flow rate of 1.2?m3/s (equivalent to 23?% of the natural mean annual runoff, or flow with 80?% occurrence depicted from the FDC) is required for the Shahr Chai River to run toward the internationally recognized Urmia Lake in Iran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号