首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 127 毫秒
1.
杨涛  杨欢  阮一舟  李国维 《岩土力学》2016,37(2):323-330
基于悬浮不排水桩复合地基超静孔隙水压力解答,建立了变荷载条件下复合地基桩间土和下卧层土平均固结度的解析解。通过与有限元解答的对比,证明了解析解的正确性和有效性。利用解析解对桩间土和下卧层土的固结性状进行了分析。研究发现,桩间土的固结速率远大于下卧层土,并随置换率和桩土模量比的增加而增大。在工程设计采用的置换率范围内,桩的贯入比较小时,下卧层土的固结速率受置换率和桩土模量比的影响很小;桩的贯入比较大时,下卧层土的固结速率随置换率和桩土模量比的增加而增大。桩间土和下卧层土的固结存在临界置换率和临界桩土模量比,超过临界值后,桩间土和下卧层土的固结速率不随桩土模量比和置换率的增加而增大。桩间土和下卧层土的固结速率随加荷速率的增加而增大。  相似文献   

2.
赵明华  邓岳保  杨明辉 《岩土力学》2009,30(9):2623-2628
深入分析了路堤等柔性荷载作用下碎石桩复合地基的工作机理,对路堤-碎石桩-桩间土系统进行合理简化,建立了桩土应力比计算模型,并给出关键参数的求解过程。基于最小势能原理,导得路堤荷载下碎石桩复合地基桩土应力比计算解析表达式,结合大型室内模型试验,通过对比试验过程中的全程监测数据,验证了理论解的正确性。探讨了各主要影响因素与桩土应力比之间的关系,结果表明:桩土模量比和置换率是应力比的主要影响因素,路堤高度与路堤材料的影响次之;当路堤高度较小时,随着高度增加,桩土应力比提高明显;但当路堤高度增大到一定值时,桩土应力比基本不变;增大填料剪切模量可略微增大应力比。  相似文献   

3.
碎石桩复合地基承载力性状分析   总被引:2,自引:0,他引:2  
按等置换率原则建立碎石桩复合地基有限元计算模型,在考虑基础刚度、荷载强度变化条件下对比分析了天然地基与复合地基附加应力分布特征、塑性区扩展规律;根据有限元计算结果分析了桩身荷载传递规律并与实测结果对比确定桩身应力随桩身呈指数衰减。计算结果还表明:桩土应力比不仅与桩土模量比有关,也与荷载水平及置换率有关;在鼓胀破坏情形下桩体侧向变形性质取决于桩周土而与置换率、模量比、桩长无关。  相似文献   

4.
许崇华 《江苏地质》2013,37(4):668-674
依托某储油罐的碎石桩复合地基处理实例,进行了复合地基现场变形、荷载传递及固结速率的长期监测。参照工程实际建立了碎石桩复合地基三维有限元水土耦合分析模型,讨论了碎石桩桩长以及复合地基置换率对碎石桩复合地基工程性状的影响。监测结果和有限元数值分析结果表明:碎石桩复合地基对于沉降和水平位移的控制效果较好,保证了施工过程中地基的稳定性;随着上部荷载的增加,桩土应力比逐渐增大。碎石桩给地基提供了良好的排水通道,有效加快了地基的固结速率;碎石桩复合地基沉降随着桩长和置换率的增加而减小,但达到一定程度时,置换率和桩长对沉降的减少效果有限;复合地基桩土应力比随着桩长的增加而增大,随着置换率的增大而减小;置换率和桩长的增加都能加快碎石桩复合地基的固结速率,但是置换率对固结速率的影响更大一些。  相似文献   

5.
粉煤灰桩加固软基特性的室内试验研究   总被引:3,自引:0,他引:3  
通过粉煤灰桩的室内模型试验,分析了粉煤灰桩的变形破坏特性,桩土应力的变化规律及其加固软土地基的作用机理,随着荷载的增加,桩间土应力逐渐增大,桩体应力增长较快,达到峰值时桩体屈服,复合地基开始发生破坏,桩体应力下降;桩土应力比随着荷载和时间的变化而变化,并与桩土模量比,桩的长径比有关,在桩基设计时应把桩土应力比作为一个变值来考虑,粉煤灰桩强度较高且透水性好,加固软基时其挤密作用,置换作用和时间效应都  相似文献   

6.
近年来CFG桩复合地基技术在公路工程的软基处理中得到了应用,而在这些工程中路堤是一种柔性基础,与CFG桩复合地基技术的刚性基础假设不同.利用ABAQUS大型通用性有限元软件研究了桩长、桩土模量比、垫层厚度和模量、路堤土模量、桩端土和桩间土模量比对柔性基础下CFG桩复合地基桩土应力比的影响,得出了桩长、桩与桩间土模量对桩土应力比n有很好调控性,垫层刚度对桩土应力比影响不大,垫层效应主要体现在垫层厚度对桩土应力比的影响的结论.  相似文献   

7.
碎石桩复合地基承力性状有限元分析   总被引:4,自引:0,他引:4  
本文通过对碎石桩复合地基的简化,采用有限元方法分析了复合地基的附加应力与桩身应力的分布特征;讨论了桩土应力此与桩土模量比,以及荷载及置换率的相互关系;揭了桩体变形和复合地基塑性区扩展的基本规律。即从不同角度探讨了复合地基的承力性状。  相似文献   

8.
为了完善碎石桩复合地基固结理论,通过假设从桩体排出的水量等于流入桩体的水量与桩体体积变化之和以及地基扰动区土体水平渗透系数呈线性变化,并考虑上部荷载逐渐施加,推导了考虑桩体体积变化的碎石桩复合地基超静孔压及固结度解析解。当加载时间趋于零时,本文解可退化为瞬时加载情况下的解;当加载时间及桩径同时趋于零时,本文解可进一步退化为Terzaghi一维固结解,这证明了本文解的正确性。通过与已有解的比较,对地基固结性状进行了分析。结果表明,加载过程对地基固结度影响显著,加载历时越长,固结越慢;在各种条件下,不考虑桩体固结变形时地基固结始终比考虑桩体变形时快,并且其影响随着加载历时变小、桩径比变小、桩土模量比变小、桩土渗透系数变小而逐渐增大,这说明在实际工程固结计算中不考虑桩体固结变形是偏于不安全的。  相似文献   

9.
蔡燕燕  王海  戚志博  关云飞 《岩土力学》2015,36(Z1):639-645
混凝土芯砂石桩(CCSG)桩复合地基是一种新型多元复合地基。通过引入地基土体的e-lgσ和e-lgk对数模型,考虑地基土体固结过程中压缩模量和渗透系数非线性变化的特征,推导出基于等应变假设的CCSG桩复合地基非线性固结解析解,且现有的考虑土体非线性的砂井固结解和碎石桩复合地基固结解均是文中解的特例。根据该解析解得到桩土模量比、土体压缩指数与渗透指数比、荷载增量等无量纲参数变化时,CCSG桩复合地基的固结度曲线。分析结果表明,按应力和按变形定义的两种固结度不相等,通常按变形定义的固结速度较快;土体压缩模量和渗透系数的非线性变化对固结影响较大。最后通过和由实测数据获得的固结度曲线对比,验证了解析解的正确性。  相似文献   

10.
水泥粉煤灰碎石桩简称CFG桩。本文以某小区地基处理工程为例,采用数值模拟方法,从桩-桩间土、桩-桩端、桩-桩长、桩-桩身弹性模量等的沉降关系及复合地基-置换率、褥垫层―桩土应力的关系几个方面对CFG桩的桩土作用进行研究。结果表明,桩沉降量随着桩间土模量、桩端模量、桩身弹性模量、桩长、置换率等的增加沉降量减少。褥垫层越薄,桩顶应力越大,桩间土应力越小,垫层越厚,桩顶应力越小,但垫层厚度超过一定的临界值后,对桩土间应力就不会产生较大影响。得出CFG桩复合地基的适用性,为同类工程技术施工提供参考。  相似文献   

11.
Deformation analysis of soft ground reinforced by columnar inclusions   总被引:20,自引:0,他引:20  
A simple theoretical approach to predict the deformation behaviour of soft ground reinforced by columnar inclusions such as stone columns./granular piles, sand compaction piles, lime or cement columns, etc., is presented in this paper. The analysis is performed based on the deformation properties of the column material and the surrounding soil. The interaction shear stresses between the column and the surrounding soil are considered to account for the stress transfer between the column and the soil. The solution is obtained by imposing compatibility between the displacements of the column and the soil for each element of the column-soil system. Numerical evaluations are made for a range of parameters to illustrate the influence of various parameters on the predictions. The proposed method is verified with finite element analysis and a reasonable agreement is obtained between the predictions.  相似文献   

12.
A combined simulation–optimization-based methodology is proposed to identify the optimal design parameters for granular bed–stone column-improved soft soil. The methodology combines a finite difference-based simulation model and an evolutionary multiobjective optimization model. A combined simulation–optimization methodology is developed for two different formulations: (a) the minimization of maximum settlement and the minimization of differential settlement subject to stress constraints; (b) the minimization of maximum settlement, the minimization of differential settlement and the maximization of the degree of consolidation subject to stress constraints. The developed methodology is applied to an illustrative system. Different scenarios are evaluated to examine critical field conditions. The solution results show that the modular ratio and the ultimate stress carrying capacity of the stone column are the most important parameters for optimal design. The obtained results also show the potential applicability of the developed methodology.  相似文献   

13.
Stone columns in soft soil improve bearing capacity because they are stiffer than the material which they replace, and compacted stone columns produce shearing resistances which provide vertical support for overlying structures or embankments. Also stone columns accelerate the consolidation in the native surrounding soil and improve the load settlement characteristics of foundation. In this paper, the finite element method is utilized as a tool for carrying out analyses of stone column–soil systems under different conditions. A trial is made to improve the behaviour of stone column by encasing the stone column with geogrid as reinforcement material. The program CRISP-2D is used in the analysis of problems. The program allows prediction to be made of soil deformations considering Mohr-Coulomb failure criterion for elastic–plastic soil behaviour. A parametric study is carried out to investigate the behaviour of standard and encased floating stone columns in different conditions. Different parameters were studied to show their effect on the bearing improvement and settlement reduction of the stone column. These include the length to diameter ratio (L/d), shear strength of the surrounding soil and, the area replacement ratio (as) and others. It was found that the maximum effective length to diameter (L/d) ratio is between (7–8) for Cu, between (20–40) kPa and between (10–11) for Cu?=?10?kPa for ordinary floating stone columns while the effective (L/d) ratio is between (7–8) for encased floating stone columns. The increase in the area replacement ratio increases the bearing improvement ratio for encased floating stone columns especially when the area replacement ratio is greater than (0.25). The geogrid encasement of stone column greatly decreases the lateral displacement compared with ordinary stone column.  相似文献   

14.
黄小军  陈晨  边立杰 《岩土工程技术》2008,22(3):145-147,151
通过对经典的Priebe沉降计算法分析,以及面积置换率的变化对桩体压缩性假设作了改进;对桩土重度差异及承受荷载时应力和变形与深度的关系作了分析,归纳出相应的数学计算公式,用工程实例进行了验证。得到的结果表明改进是合理、适用的,可为今后的设计和施工提供参考。  相似文献   

15.
A parametric study of an embankment on soft soils reinforced with stone columns is performed using a computer program based on the finite element method. The cylindrical unit cell formulation is used by modeling one column and its surrounding soft soil with confined axisymmetric behaviour. The computer program incorporates the Biot consolidation theory (coupled formulation of the flow and equilibrium equations) with constitutive relations simulated by the pqθ critical state model. The following parameters are analysed: the replacement area ratio, the deformability of the column material, the thickness of the soft soil, the deformability of the fill and the friction angle of the column material. Based on the results of this study, a new design method is proposed, relating the settlement improvement factor to the two factors that revealed major influence: the replacement area ratio and the ratio between the deformability of the soft soil and the deformability of the column material.  相似文献   

16.
In the present work, a simplified model has been developed to study the behavior of stone column-supported embankment under axi-symmetric loading condition. The rate of consolidation of stone column-reinforced soft ground under axi-symmetric condition has also been presented in the paper. Mechanical model elements such as Pasternak shear layer, spring–dashpot system are used to model the different components such as granular layer, soft soil, stone columns etc. The governing differential equations are solved by finite difference technique. Parametric study has also been carried out to show the effect of different model variables on the settlement, stress concentration ratio of the foundation system. It is observed that for lower diameter ratio, at a particular time, the degree of consolidation predicted by the present method for axi-symmetric loading condition is almost same or lower than the degree of consolidation obtained by unit cell approach, but as the diameter ratio increases present analysis predicts higher degree of consolidation as compared to the unit cell approach. The maximum settlement decreases as the modular ratio increases and beyond the modular ratio value 30, the reduction rate of settlement decreases.  相似文献   

17.
The present study pertains to the development of a mechanical model for predicting the behavior of granular bed‐stone column‐reinforced soft ground. The granular layer that has been placed over the stone column‐reinforced soft soil has been idealized by the Pasternak shear layer. The saturated soft soil has been idealized by the Kelvin–Voigt model to represent its time‐dependent behavior and the stone columns are idealized by stiffer Winkler springs. The nonlinear behavior of the granular fill has been incorporated in this study by assuming a hyperbolic variation of shear stress with shear strain as in one reported literature. Similarly, for soft soil it has also been assumed that load‐settlement variation is hyperbolic in nature. The effect of consolidation of the soft soil due to inclusion of the stone columns has also been included in the model. Plane‐strain conditions are considered for the loading and foundation soil system. The numerical solutions are obtained by a finite difference scheme and the results are presented in a non‐dimensional form. Parametric studies for a uniformly loaded strip footing have been carried out to show the effects of various parameters on the total as well as differential settlement and stress concentration ratio. It has been observed that the presence of granular bed on the top of the stone columns helps to transfer stress from soil to stone columns and reduces maximum as well as differential settlement. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
In the present study, a mechanical model has been developed to study the behavior of multilayer geosynthetic-reinforced granular fill over stone column-reinforced soft soil. The granular fill and geosynthetic reinforcement layers have been idealized by Pasternak shear layer and rough elastic membranes, respectively. The Kelvin–Voight model has been used to represent the time-dependent behavior of saturated soft soil. The stone columns are idealized by stiffer springs and assumed to be linearly elastic. The nonlinear behavior of the soft soil and granular fill is considered. The effect of consolidation of soft soil due to inclusion of the stone columns on settlement response has also been included in the model. Plane strain conditions are considered for the loading and reinforced foundation soil system. An iterative finite difference scheme is applied for obtaining the solution and results are presented in nondimensional form. It has been observed that if the soft soil is improved with stone columns, the multilayer reinforcement system is less effective as compared to single layer reinforcement to reduce the total settlement as there is considerable reduction in the total settlement due to stone column itself. Multilayer reinforcement system is effective for reducing the total settlement when stone columns are not used. However, multilayer reinforcement system is effective to transfer the stress from soil to stone column. The differential settlement is also slightly reduced due to application of multiple geosynthetic layers as compared to the single layer reinforcement system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号