首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apatite fission-track analyses along a W–E-orientated transect across northern Corsica indicate an important episode of crustal exhumation in late early Miocene time. Samples taken from the Alpine orogenic wedge, from the adjacent foreland basin and from the crystalline basement complex flooring the basin are completely reset. This implies that a ≥ 2.0–2.3-km-thick crustal section made of thrust sheets and/or autochthonous foreland deposits has been removed by erosion since early Miocene time. A geometric projection of this lost cover towards the west indicates that all of northern Corsica was covered either by Alpine nappes or middle Eocene foreland deposits. Fission-track ages are the same across the main boundary fault system separating the Alpine orogenic wedge and the foreland, indicating the absence of significant differential vertical displacement between upper and lower plates during Neogene unroofing.  相似文献   

2.
An exhumed crustal section of the Mesozoic Torlesse terrane underlies the Southern Alps collision zone in New Zealand. Since the Late Miocene, oblique horizontal shortening has formed the northeastern–southwestern trending orogen and exhumed the crustal section within it. On the eastern side, rocks are zeolite- to prehnite–pumpellyite-grade greywacke; on the western side rocks, they have the same protolith, but are greenschist to amphibolite facies of the Alpine Schist. Zircon crystals from sediments in east-flowing rivers (hinterland) have pre-orogenic fission-track ages (>80 Ma) and are dominated by pink, radiation-damaged grains (up to 60%). These zircons are derived from the upper 10 km crustal section (unreset FT color zone) that includes the Late Cenozoic zircon partial annealing zone; both fission tracks and color remain intact and unaffected by orogenesis. Many zircon crystals from sediments in west-flowing rivers (foreland) have synorogenic FT ages, and about 80% are colorless due to thermal annealing. They have been derived from rocks that originally lay in the reset FT color zone and the underlying reset FT colorless zone. The reset FT color zone occurs between 250 and 400 °C. In this zone, zircon crystals have color but reset FT ages that reflect the timing of orogenesis.  相似文献   

3.
Apatite fission-track analysis has been applied to the Raniganj and Panchet formations of Raniganj basin of Gondwana Supergroup to unravel its thermal and provenance history. Apatite fission track age population from both Raniganj and Panchet formations indicate partial annealing and point to a maximum temperature of around ~100-110°C during their post depositional evolution. The sandstone of Raniganj Formation has five peak ages at 26.3, 59.3, 109.7, 173.7 and 299.9 Ma, while Panchet Formation has three peak ages at 25.4, 143.5 and 281.3 Ma. This implies that the provenance of the Raniganj Formation of late Permian and Panchet Formation of early Triassic changed obviously. According to thermotectonic evolution of the Gondwana basin, these apatites with different FT ages possibly represent different source components, although partial annealing had occurred to these apatites. Possibly all the apatites had transported from the Precambrian basement which was undergoing deformation due to Gondwana rifting initiated during Carboniferous period. Due to this, the basement was undergoing inhomogeneous thermal history which became source of sediments for Raniganj basin. Apatite FT ages of both Raniganj and Panchet formations have peak ages between 25 and 60 Ma, which perhaps recorded the cooling/uplift history during Cenozoic Alpine-Himalayan orogeny. Given a palaeo-thermal gradient of 40° C/km, it can be deduced that the Raniganj basin has uplifted about 3km at an average rate of about 0.09mm/a since 25–60 Ma.  相似文献   

4.
Heeremans  & Wijbrans 《地学学报》1999,11(5):216-222
The post-Svecofennian tectonic development of southern Finland is controlled by intrusion of rapakivi granites (and associated rocks), reactivation of Svecofennian wrench zones, formation of sedimentary basins and successive intrusion of olivine dolerite dykes and sills. Relative age determinations have revealed that fault reactivation acted before, simultaneously and after intrusion of the rapakivi granites. Results of 40Ar/39Ar geochronometry of the Porkkala–Mäntsälä fault (30 km west of Helsinki) reveal ages predominantly in the range 950–1300 Myr. These ages are all significantly younger than the intrusion age of the rapakivi granites. It is suggested that these ages represent tectonic events related to the intrusion of olivine dolerite dykes and sills in SW Finland and the Sveconorwegian Orogeny active further west. 40Ar/39Ar ages of a sample taken from the Obbnäs granite (U–Pb zircon ages of 1645 ± 5 Myr) show ages predom-inantly in the range of 1400–1550 Myr. These ages are suggested to represent either cooling ages of the granite or ages associated with the formation of the sedimentary grabens.  相似文献   

5.
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland.  相似文献   

6.
The provenance of Cenomanian to Eocene flysch deposits accreted along the northern margin of the Eastern Alps has been investigated by means of zircon fission-track (FT) geochronology and zircon morphology. The Rhenodanubian flysch and Ybbsitz klippen zone comprise several nappes representing the Main flysch and Laab basins. The Laab basin received sediments of stable European provenance, indicated by pre-Variscan, Variscan, and Permian–Triassic zircon FT ages, and was thus located in the immediate south of the European margin. The Main flysch basin was supplied mainly from the evolving Eastern Alps and was therefore situated south of the Laab basin. Zircon populations with Permian to Jurassic cooling ages in the Main flysch basin are related to increased heat fluxes during the break-up of Pangaea and are probably derived from the northwestern part of the Eastern Alps. The dominant Cretaceous zircon FT cooling ages reflect Eoalpine metamorphism in the Austroalpine realm.  相似文献   

7.
Two granitoid intrusions within the Bu Khang extensional complex in central Vietnam have been dated by U–Pb and Rb–Sr geochronology. A monazite U–Pb age of 26.0 ± 0.2 (2σ) Myr was obtained for the Bu Khang pluton and 23.7 + 1.6/–1.7 Myr for monazite, allanite and zircon from the Dai Loc intrusion. These ages date crystallization of magmas previously assigned Precambrian to Devonian. Rb–Sr analyses of K-feldspar and biotite fractions from the samples yield ages of 19.8 ± 0.6 (2σ) Myr and 19.6 ± 0.5 Myr, respectively. The thermal history recorded by the different geochronometers implies an average exhumation rate of ∼2 mm yr−1 corresponding to ∼9 km of unroofing. Magmatism was either (i) induced passively by lithospheric thinning driven by changes in regional tectonic stresses, or (ii) triggered actively by an ascending plume. Tertiary exhumation and magmatism documented elsewhere in Indochina (e.g. Ailao Shan-Red River and Wang Chao shear zones) favours a regional tectonic cause for extension and granitoid magmatism in the Bu Khang complex. On the other hand, the presence of an upwelling thermal anomaly since at least 35 Ma, causing mantle melting below Indochina, is supported by shear-wave velocity variations in the mantle, and source geochemistry of both the Bu Khang plutons and the Red River belt intrusions. In either case, Tertiary exhumation of the Bu Khang complex can account for previously undocumented NE–SW-directed extension, which is required in northern Vietnam to account for structural changes related to the opening of the South China Sea.  相似文献   

8.
The physical characteristics of sedimentary record are governed largely by grain size distribution in Mohand area where Middle and Upper Siwalik successions are investigated to characterize the sediments deposited in response to the prevailing tectonic activities and climatic conditions. Here we show with the help of cluster analysis that precipitation and tectonic perturbations generate characteristic patterns of grain sizes and stratigraphic succession. Previous studies suggested an increase in precipitation represented by the abrupt accumulation of sediments to foreland Siwalik basin around 11 to 10 Ma. First appearance of diagnostic minerals of the Great Himalayan complex in Siwalik sediments at 9.2 Ma implies the accelerated erosion of Himalaya during Middle to Late Miocene. The response of sedimentation to tectonic activity is resulted by the presence of coarse grained gravel units in Siwalik succession of Mohand area. Apatite fission-track dates and muscovite cooling ages confirm the strong activity on boundary thrusts during 8-6 Ma. Although the responses are non-linear and transient, we clusterize these non-linear responses to tectonics and climate and quantify them to find out the role of tectonics and climate in architecture of sedimentary succession.  相似文献   

9.
The eastern syntaxis of the Himalaya, Namche Barwa, is dominated by a north-plunging antiform which began to decompress/grow at approximately 4 Ma. New fission-track analyses on both apatite and zircon, combined with previous geochronological ages, indicate that the Namche Barwa Dome also extended laterally while growing vertically. Zircon fission-track ages range from 17.6 to 0.2 Ma and have a strong relationship to the main faults of the region, including the Tertiary Tsangpo Suture, with the younger ages inside the fault bounds towards the syntaxis core on the Indian Plate and the older ages away from the fault. Apatite ages reveal that the dome has grown laterally and now impinges over the older faulted margin onto the Asian Plate. The dome is traversed by the Tsangpo which has followed the trace of the Suture for over 1300 km from its source to the entrance of the dome near Dania. As the Tsangpo crosses the dome it departs from the Suture but rejoins it some 60 km northeastwards. We construe that the Suture has been displaced by the growing antiform and as a consequence, the antecedent river has been “dragged” in a left-lateral sense along the exhuming north-plunging dome. Restoring the Suture to its position prior to 4 Ma reveals a path of the Tsangpo eastwards across the present southwestern position of the Namche Barwa indentation. This geometric reconstrunction implies that the Tsangpo and the Brahmaputra were always one and the same river. In addition, the Tsangpo was tectonically forced into juxtaposition with a tributary of the Jiali-Parlung which it probably then captured. The capture was due to tectonic forcing, in the last 4 Ma, rather than headward retreat of the paleo-Brahmaputra as has been previously suggested.  相似文献   

10.
The Bitterroot metamorphic core complex is an exhumed, mid-crustal, plutonic–metamorphic complex that formed during crustal thickening and subsequent extension in the hinterland of the North American Cordilleran Orogen, in the northern Idaho batholith region. Extension was accommodated mainly on the Bitterroot mylonite zone, a 500–1500-m-thick shear zone that deforms granitic intrusive rocks as young as 53–52 Ma, as well as older high-grade metamorphic rocks and plutons. Exhumation of the core complex, in Eocene time, is marked in the shear zone by the transition from amphibolite-facies mylonitization, to greenschist-facies mylonitization, chloritic brecciation, to brittle faulting that progressed from shallower crustal levels in the west to deeper crustal levels in the east from ca. 53 –30 Ma based on U–Pb, Ar–Ar, and fission-track data. Apatite and zircon fission-track data record the lower-temperature part of the exhumation history and help define when the shear zone became inactive, as well as the transition from rapid, core complex-style extension to slower basin-and-range-style extension. They indicate that the western part of the complex was exhumed to within 1–2 km of the surface by 48–45 Ma, while the eastern part of the complex was still at amphibolite-facies conditions and that the eastern part of the complex was not exhumed below 60 °C until after 30 Ma. Younger apatite fission-track ages (≤26 Ma) on the eastern range front of the Bitterroot Mountains suggest that the present topographic expression of the mylonite front was due to Miocene high-angle faulting and widening of the Bitterroot Valley.  相似文献   

11.
The presence of zircons of crustal origin in the dunites of Kytlym, a subduction-related concentrically zoned dunite–clinopyroxenite–gabbro massif of the Urals Platinum-Bearing Belt, may provide the first direct evidence of the recycling of continental crust into the mantle. Zircons were part of subducted sediments that melted to produce silicic magmas with entrained restitic zircons. These melts induced partial melting in the overlying mantle, which later crystallized as the Kytlym massif. Zircons rapidly captured into early formed dunites were prevented from dissolving completely and underwent different degrees of recrystallization. A few crystals still record their original ages, which range from ∼410 Myr to ∼2800 Myr, thus revealing a different origin. The majority, however, recrystallized in the presence of a limited amount of melt and record the diapir formation, 350–370 Ma, which was coeval with the Uralian high-pressure metamorphism. Lastly, several grains record an age of ∼330 Myr, which is identical, within error, to the Rb–Sr age of the tilaitic gabbros, (337 ± 22 Myr), and may, therefore, represent the crystallization age of the last melts formed during the evolution of Kytlym.  相似文献   

12.
The Proterozoic anorthosite–mangerite–charnockite complex dominating the Lindås Nappe in the Scandinavian Caledonides was locally eclogitized in the southwestern part of the nappe during the Caledonian orogeny, whereas only amphibolite facies assemblages are recorded in the rest of the nappe. Sveconorwegian granulites of anorthositic to jotunitic composition in the northernmost eclogite-free exposures of the nappe exhibit large garnet phenoblasts (ca. 900°C) that are fractured and partly replaced by a Caledonian symplectitic amphibolite facies assemblage (ca. 515°C). Metamorphic zircon attributed to this garnet breakdown is dated by ID-TIMS U–Pb at 430 ± 3 Ma, suggesting that the amphibolite facies overprint was coeval with the formation of eclogite 30 km further south, probably implying that the section across the nappe represents a Caledonian pressure gradient. The rocks also preserve a complex Sveconorwegian history including an age of 969 ± 6 Ma, which we interpret as dating magmatic emplacement of jotunitic–anorthositic portions of the complex, 936 ± 12 Ma reflecting the granulite facies metamorphism, and 908 ± 16 Ma, representing a late generation of zircon best explained as having formed by metasomatic processes. Caledonian shearing severely deformed zircon grains in an amphibolite facies shear zone, resetting their U–Pb systems, and forming new ones, hereby also demonstrating a case of resetting and recrystallization of low-U zircon. Our data, gained from diverse lithologies, illustrate several processes involved in making and resetting zircon as well as indicate the contemporaneous evolution and similar origin of the Lindås Nappe and the Jotun Nappe Complex.  相似文献   

13.
《International Geology Review》2012,54(14):1806-1824
In this article, we present in situ U–Pb and Lu–Hf isotope data for Upper Triassic detritus in the Sichuan region of northwestern South China, which was a foreland basin during the Late Triassic. The aim is to determine the provenance of sediments in the foreland basin and to constrain the evolution of the surrounding mountain belts. U–Pb age data for the Late Triassic detrital zircons generally show populations at 2.4–2.6 Ga, 1.7–1.9 Ga, 710–860 Ma, 410–460 Ma, and 210–300 Ma. By fitting the zircon data into the tectonic, sedimentologic, and palaeographic framework, we propose that the north Yangtze Block and South Qinling–Dabie Orogen were the important source areas of sediments in the northern part of the foreland basin, whereas the Longmen Shan thrust-fold belt was the main source region for detritus in other parts of the foreland basin. The South Qinling–Dabie Orogen could also have served as a physical barrier to block most detritus shed from the southern North China Block into the foreland basin during the sedimentation of the Xujiahe Formation. Our results also reveal that part of the flysch from the eastern margin of the Songpan–Ganzi region had been displaced into the Longmen Shan thrust-fold belt before the deposition of the foreland basin sediments. In addition, the Lu-Hf data indicate that Phanerozoic igneous rocks in central China show insignificant formation of the juvenile crust.  相似文献   

14.
The lack of preserved Phanerozoic units within the Proterozoic Mount Isa Inlier of northern Australia renders it difficult to determine its Phanerozoic tectonic history. However, thermo-chronological methods provide a means for assessing this problem. Apatite fission-track data from the central and southern parts of the Inlier reveal periods of post-early Carboniferous accelerated cooling. Apatite fission-track ages vary from 235 to 390 Ma and corresponding mean track lengths range from 11.76 to 13.55 microns. These results record a protracted cooling history below about 110 ± 10° C. The earlier period of cooling revealed by the data occurred during middle Carboniferous time. The event resulted in >2 km of exhumation across the Inlier and probably was in response to intra-continental deformation associated with the Alice Springs Orogeny and tectonics in the adjacent Tasman Orogen.

A high proportion of partly annealed fission tracks in the samples suggests that rocks now exposed across the Inlier resided at the top of the apatite partial annealing zone (approximately 60° C to 70° C) following the mid-Carboniferous cooling. Modeling of the fission-track age and length parameters suggests that approximately 30° C to 50° C of cooling occurred over the past 100 Ma. Assuming a geothermal gradient of 25° C/km, this corresponds to 1.2-2.0 km of exhumation. The post-Middle Cretaceous cooling possibly is related to extensional tectonics at the southern and eastern margins of the Australian plate during the Mesozoic and Tertiary periods and to the more recent collision at the northern margin of the plate.

The spatial variation of apatite fission-track data within the Inlier indicates that the three major structural belts-the Western fold belt, Kalkadoon-Leichhardt belt, and the Eastern fold belt-exhibit similar thermal histories on a regional scale. It also indicates that the main N-S fault zones bounding the belts have not been reactivated in a vertical sense along their entire length since ~350 Ma. However, adjacent smaller-scale fault-bounded blocks within the belts demonstrate variable cooling histories, suggesting that reactivation of favorably oriented minor faults within the Inlier, including segments of the major faults, probably occurred during this time interval. Variations in apatite fission-track data along the 1994 Australian Geological Survey Organization/Australian Geodynamics Co-operation Research Center (AGSO/AGCRC) Mount Isa seismic traverse indicate that up to 1 km of vertical displacement has occurred between two major intrabelt fault zones since middle Carboniferous time.  相似文献   

15.
The Upper Rhine Graben (URG) is the most perceptible part of the European Cenozoic Rift System. Uplifted Variscan basement of the Black Forest and the Vosges forms the flanks of the southern part of the graben. Apatite and zircon fission-track (FT) analyses indicate a complex low-temperature thermal history of the basement that was deciphered by inverse modelling of FT parameters. The models were tested against the observed data and independent geological constraints. The zircon FT ages of 28 outcrop samples taken along an E–W trending transect across the Black Forest and the Vosges range from 136 to 312 Ma, the apatite FT ages from 20 to 83 Ma. The frequency distributions of confined track lengths are broad and often bimodal in shape indicating a complex thermal history. Cooling below 120°C in the Early Cretaceous to Palaeogene was followed by a discrete heating episode during the late Eocene and subsequent cooling to surface temperature. The modelled time–temperature (tT) paths point to a total denudation of the flanks of URG in the range of 1.0–1.7 km for a paleogeothermal gradient of 60°C/km, and 1.3–2.2 km for a paleogeothermal gradient of 45°C/km since the late Eocene.  相似文献   

16.
East Greenland forms one of the least understood of the orogenic belts formed during the amalgamation of Rodinia during late Mesoproterozoic times. Recent U–Pb zircon SHRIMP dating on the widespread Krummedal supracrustal succession and associated granites from central East Greenland has shown that metamorphism and intrusion affected the region at around 0.95–0.92 Ga, approximately 150 m.y. later than the main phase of Grenvillian orogenesis (s.s.). These early Neoproterozoic ages may indicate a link with metamorphism and igneous activity in the Sveconorwegian Belt of Scandinavia rather than true ‘Grenvillian’ events on the eastern margin of Laurentia. Previous plate tectonic reconstructions which link Laurentia and Baltica by a collisional margin extending through central East Greenland at 1.1 Ga were based on early conventional U–Pb zircon dating in central East Greenland, and can no longer be considered viable. Instead, new detrital zircon SHRIMP U–Pb dating studies show that the Krummedal supracrustal succession was deposited between ca. 1.0 Ga and no later than 0.95 Ga, during a time of major sediment deposition widely preserved elsewhere in the North Atlantic region. Erosion associated with post-1.1 Ga collapse of the Grenville–Sunsas orogeny is the most likely source for the majority of the detritus, since the corresponding Baltic margin was dominated by A-type magmatism for much of the period 1.4–1.1 Ga material, which is the age of the bulk of detrital zircons in the Krummedal supracrustal succession. We suggest that the Krummedal supracrustal succession was deposited east or south-east of its present location, and was thrust onto Archaean–Palaeoproterozoic orthogneisses, which in turn were displaced across the parautochthonous foreland during the Caledonian orogeny. The early Neoproterozoic orogenic events recorded in central East Greenland therefore involved the metamorphism of a metasedimentary package of Laurentian–Amazonian affinity during the Sveconorwegian orogeny in the final stages of the collision of Baltica and Laurentia.  相似文献   

17.
王祥东  徐德明  王磊  周岱  胡军  柯贤忠 《地球科学》2020,45(5):1653-1675
云开地块显生宙的构造演化一直是华南板块的研究热点之一.通过对云开地块变质基底中片麻岩进行独居石、磷灰石和锆石LA-ICP-MS U-Pb定年,获得了434±6 Ma(MSWD=3.0)和437±12 Ma(MSWD=6.0)的岩浆锆石年龄,结合镜下观察,认为其代表的是片麻岩原岩(花岗质岩石)的形成时代,与区域上加里东期构造-岩浆-变质-深熔事件的时限基本一致,为武夷-云开加里东造山作用的产物;磷灰石经过普通铅校正后分别给出了241±13 Ma(MSWD=2.2)和242±6 Ma(MSWD=1.4)的变质年龄,独居石则分别获得了236.2±0.8 Ma(MSWD=0.66)和229.4±1.2 Ma(MSWD=2.4)的变质年龄,这些年龄结果与云开地块构造岩云母Ar-Ar年龄相一致,暗示云井地块经历了印支期(230~240 Ma)构造热事件的叠加改造.对片麻岩中黑云母电子探针数据分析显示其具有相对高的Al、Ti和Mg含量,XMg值为0.37~0.45,属于铁质黑云母,其Ti饱和温度计给出温度范围为650~700℃(±50℃),与独居石估算温度580~640℃(±25℃)在误差范围内基本一致,暗示印支期构造热事件对云开地块的叠加改造温度达到了700℃.综上所述,认为云开地块现今的构造格局是在加里东期造山作用基础上叠加了印支期构造塑造而成,叠加温度可能达到了700℃;此外,在利用矿物对温压计恢复加里东期变质作用P-T轨迹时应着重考虑印支期构造热事件对矿物成分的再造作用.   相似文献   

18.
An intramontane collapse basin developed within the hanging wall above the large-scale extensional Fjord Regional Detachment of NE Greenland in middle to late Devonian times. The continental clastic sediments within the basin are derived locally from Laurentian source rocks, which makes them well suited for a study of the crustal evolution of the source terrain. This is the first integrated in-situ Pb and Hf isotope study to be presented, and zircon data on a selected sandstone from the basin are combined with Sm-Nd whole-rock data on sand/siltstones. Nd whole-rock ages of two samples of sandstones and a siltstone are 2.0-2.1 Ga. Peak frequencies of zircon 207Pb/206Pb ages at 1,764-1,912 Ma, and 176Hf/177Hf values at 0.28142-0.28163 (tDM=2.47 to 2.06) for the sandstone suggest the generation of a considerable volume of juvenile continental crust in the ultimate zircon provenance at 1.9-2.0 Ga. The Hf isotopic compositions of Archaean zircons in the sandstone are distinct from those of the source materials of Proterozoic protocrust at 1.9-2.0 Ga, but zircons with elevated Hf-tDM ages of up to 2.47 Ga can be related to a component of Archaean crust or reworked Archaean material in the ultimate zircon source area. Zircon 207Pb/206Pb ages are also recorded at 1,480-1,572, 1,318 and 1,014 Ma (Grenvillian). The Hf isotope compositions of these zircons are consistent with reworking of the Proterozoic protocrust at these times, with little or no juvenile input. The Proterozoic zircons form two distinct groups defined by 176Yb/177Hf>0.05055 and 176Yb/177Hf<0.03301, and the latter group overlaps with Yb-Hf isotope data on the Archaean zircons. The two groups may represent zircons derived from evolved granites and intermediate to mildly felsic rocks, respectively. The repeated reworking of the continental crust also comprised erosion and deposition of sediments in the Proterozoic (the Krummedal sequence and the Eleonore Bay Supergroup, EBS) and intrusion of Caledonian anatectic granites in the EBS, which both represent provenance components to the Devonian sediments. No discrete Caledonian Pb-Pb zircon ages are recorded, but Caledonian magmatism may be represented by strongly discordant zircons which form arrays with a lower intercept age at ca. 400 Ma and an upper intercept at 1,600-2,000 Ma. One undated zircon records a 176Hf/177Hf ratio of 0.282218, higher than that of the Proterozoic protocrust in Caledonian/late-Caledonian times (380-450 Ma) which may represent a Caledonian mantle contribution.  相似文献   

19.
The Western foreland basin in Taiwan originated through the oblique collision between the Luzon volcanic arc and the Asian passive margin. Crustal flexure adjacent to the growing orogenic load created a subsiding foreland basin. The sedimentary record reveals progressively changing sedimentary environments influenced by the orogen approaching from the East. Based on sedimentary facies distribution at five key stratigraphic horizons, paleogeographic maps were constructed. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin.The basin physiography changed very little from the middle Miocene (∼12.5 Ma) to the late Pliocene (∼3 Ma). The transition from a passive margin to foreland basin setting in the late Pliocene (∼3 Ma), during deposition of the mud-dominated Chinshui Shale, is dominantly marked by a deepening and widening of the main depositional basin. These finer grained Taiwan derived sediments clearly indicate increased subsidence, though water depths remain relatively shallow, and sedimentation associated with the approach of the growing orogen to the East.In the late Pleistocene as the shallow marine wedge ahead of the growing orogen propagated southward, the proximal parts of the basin evolved into a wedge-top setting introducing deformation and sedimentation in the distal basin. Despite high Pleistocene to modern erosion/sedimentation rates, shallow marine facies persist, as the basin remains open to the South and longitudinal transport is sufficient to prevent it from becoming overfilled or even fully terrestrial.Our paleoenvironmental and paleogeographical reconstructions constrain southward propagation rates in the range of 5–20 km/Myr from 2 Ma to 0.5 Ma, and 106–120 km/Myr between late Pleistocene and present (0.5–0 Ma). The initial rates are not synchronous with the migration of the sediment depocenters highlighting the complexity of sediment distribution and accumulation in evolving foreland basins.  相似文献   

20.
Abstract The Protogine Zone comprises a system of anastomosing deformation zones which approximately parallel the eastern boundary of the Sveconorwegian (1200–900 Ma) province in south-west Sweden. Ages of granulite facies metamorphism in the Sveconorwegian province require exhumation from c . 30 to 35 km crustal depths after 920–880 Ma. 40Ar/39 Ar cooling ages are presented for muscovite from high-alumina rocks formed by hydrothermal leaching associated with the Protogine Zone. Growth of fabric-defining minerals was associated with a ductile deformational event; muscovite from these rocks cooled below argon retention temperatures ( c . 375 ± 25° C) at c . 965–955 Ma. Muscovite from granofels in zones of intense alteration indicates that temperatures > 375 ± 25° C were maintained until c . 940 Ma. Textural relations of Al2SiO5 polymorphs and chloritoid suggest that dated fabrics formed during exhumation. The process of exhumation, brittle overprint on ductile structures and hydrothermal activity along faults within the Protogine Zone tentatively are interpreted as the peripheral effects of initial Neoproterozoic exhumation of the granulite region of south-western Sweden.
Muscovite in phyllonites associated with the 'Sveconorwegian thrust system'cooled below argon retention temperatures at c . 927 Ma. Exhumation associated with this cooling could have been related to extension and onset of brittle-ductile deformation superimposed on Sveconorwegian contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号