首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Field investigation combined with detailed petrographic observation indicate that abundant oil,gas,and solid bitumen inclusions were entrapped in veins and cements of sedimentary rocks in the Dabashan foreland,which were used to reconstruct the oil and gas migration history in the context of tectonic evolution.Three stages of veins were recognized and related to the collision between the North China block and the Yangtze block during the Indosinian orogeny from Late Triassic to Early Jurassic(Dl),the southwest thrusting of the Qinling orogenic belt towards the Sichuan basin during the Yanshanian orogeny from Late Jurassic to Early Cretaceous(D2),and extensional tectonics during Late Cretaceous to Paleogene(D3),respectively.The occurrences of hydrocarbon inclusions in these veins and their homogenization temperatures suggest that oil was generated in the early stage of tectonic evolution,and gas was generated later,whereas solid bitumen was the result of pyrolysis of previously accumulated hydrocarbons.Three stages of hydrocarbon fluid inclusions were also identified in cements of carbonates and sandstones of gas beds in the Dabashan foreland belt and the Dabashan foreland depression(northeastern Sichuan basin),which recorded oil/gas formation,migration,accumulation and destruction of paleo-reservoirs during the D2.Isotopic analysis of hydrocarbon fluid inclusions contained in vein minerals shows that δ~(13)C_1 of gas in fluid inclusions ranges from-17.0‰ to-30.4‰(PDB) and δD from-107.7‰ to-156.7‰(SMOW),which indicates that the gas captured in the veins was migrated natural gas which may be correlated with gas from the gas-fields in northern Sichuan basin.Organic geochemical comparison between bitumen and potential source rocks indicates that the Lower Cambrian black shale and the Lower Permian black limestone were the most possible source rocks of the bitumen.Combined with tectonic evolution history of the Dabashan foreland,the results of this study suggest that oil was generated from the Paleozoic source rocks in the Dabashan area under normal burial thermal conditions before Indosinian tectonics and accumulated to form paleo-reservoirs during Indosinian collision between the North China block and the Yangtz block.The paleo-reservoirs were destroyed during the Yanshanian tectonic movement when the Dabashan foreland was formed.At the same time,oil in the paleo-reservoirs in the Dabashan foreland depression was pyrolyzed to transform to dry gas and the residues became solid bitumen.  相似文献   

2.
青海玉树赵卡隆铁铜多金属矿床地质特征及成因探讨   总被引:2,自引:0,他引:2  
李欢 《地质与勘探》2011,47(3):380-387
赵卡隆铁铜多金属矿床产于三叠纪末期江达弧后裂谷热水沉积盆地中,具有铁、铜、金、铅锌等多金属矿化.矿体赋存于三叠系巴塘群上部碎屑岩组上岩性段地层中,严格受地层和岩性控制.各矿(体)群根据矿体分布部位不同划分为若干条矿体.火山喷发活动(安山岩)为成矿提供了物质来源和热源,同期火山岩具有富铝钠质低钾质特征,属安山岩类-拉斑玄...  相似文献   

3.
The ore types of the Zhaokalong Fe-Cu deposit are divided into two categories: sulfide-type and oxide-type. The sulfide-type ore include siderite ore, galena-sphalerite ore and chalcopyrite ore, whereas the oxide-type ore include magnetite ore and hematite ore. The ore textures and structures indicate that the Zhaokalong deposit is of the sedimentary-exhalative mineralization type. Geochemical analyses show that the two ore types have a high As, Sb, Mn, Co and Ni content. The REE patterns reveal an enrichment of the LREE compared to the HREE. Isotopic analysis of siderite ore reveal that the δ13CPDB ranges from 2.01 to 3.34 (‰) whereas the δ18O SMOW ranges from 6.96 to 18.95 (‰). The fluid inclusion microthermometry results indicate that homogenization temperatures of fluid inclusions in quartz range from 131 to 181℃, with salinity values of 1.06 to 8.04 wt% NaCl eq. The mineralizing fluid therefore belongs to the low temperature - low salinity system, with a mineralizing solution of a CO2-Ca2+(Na+, K+)-SO42-(F-, Cl-)-H2O system. The geochemical results and fluid inclusion data provide additional evidence that the Zhaokalong deposit is a sedex-type deposit that experienced two stages of mineralization. The sulfide mineralization probably occurred first, during the sedimentary exhalative process, as exhibited by the abundance of marine materials associated with the sulfide ores, indicating a higher temperature and relatively deoxidized oceanic depositional environment. After the main exhalative stage, hydrothermal activity was superimposed to the sulfide mineralization. The later stage oxide mineralization occurred in a low temperature and relatively oxidized environment, in which magmatic fluid circulation was dominant.  相似文献   

4.
滇西三江地区澜沧江南带广泛发育三叠纪火山岩。在北部云县一带,中晚三叠世火山岩出露齐全,自下而上可划分为中三叠统忙怀组(T2m),上三叠统小定西组(T3x)和上三叠统芒汇河组(T3mh)。忙怀组以酸性火山岩为主,为一套流纹岩夹火山碎屑岩组合;小定西组发育为中基性火山熔岩夹火山碎屑岩;芒汇河组具有流纹质火山碎屑岩与玄武岩共存的"双峰式"火山岩特征。地球化学特征表明,南澜沧江带三叠纪火山岩具有弧火山岩与大陆板内火山岩的双重属性,推测其形成环境为过渡型的大陆边缘造山带环境。对南澜沧江带南部景洪附近采集到的石英安山岩样品进行Ar-Ar年龄测试,得到的坪年龄为236.7±2.2Ma,为中三叠世。结合火山岩年代学结果,推测澜沧江洋主碰撞期为早三叠世,中三叠世与晚三叠世早期分别为碰撞后的应力松弛阶段与洋盆继续俯冲期,到晚三叠世末期,俯冲作用结束,澜沧江洋关闭。  相似文献   

5.
《International Geology Review》2012,54(15):1885-1901
The Dachang gold deposit is located in the Late Triassic Songpan-Ganzi Fold Belt, NE Tibetan Plateau. Gold ore is concentrated as veins along secondary faults and fracture zones in the Bayan Har Group metaturbidites. No exposed felsic plutons are present in the vicinity of the deposit. The auriferous veins contain <15% sulphide minerals, mainly arsenopyrite, pyrite, and stibnite. Gold is commonly enclosed within arsenopyrite and pyrite. Typical alteration around the ore bodies includes silicification, sericitization, and weak carbonatization.

Gold-bearing quartz samples have δ18O values of 16.9–21.2‰ (V-SMOW) from which δ18OH2O values of 6.2–9.6‰ can be calculated from the fluid inclusion temperatures (or 10.0 to 12.7‰ if we used the average arsenopyrite geothermometer temperature of 301°C). The δD values of fluid inclusions in quartz range from –90‰ to –72‰. δ34S values of gold-bearing sulphides mainly range from –5.9‰ to –2.8‰ (V-CDT). Pyrite and arsenopyrite in ores have 206Pb/204Pb ratios of 18.2888 to 18.4702, 207Pb/204Pb ratios of 15.5763 to 15.6712, and 208Pb/204Pb ratios of 38.2298 to 38.8212. These isotopic compositions indicate that the ore-forming fluids were of metamorphic origin, and the S and Pb may have been derived from the host metaturbidites of the Bayan Har Group. The Dachang Au deposit has geological and geochemical features similar to orogenic gold deposits. We propose that the ores formed when the Songpan-Ganzi Fold Belt was intensely deformed by Late Triassic folding and thrusting. Large-scale thrusting resulted in regional allochthons of different scales, followed by secondary faults or fracture zones that controlled the ore bodies.  相似文献   

6.
藏北羌塘中部改则县以北天泉山、屏风岭等地区大面积分布一套浅变质岩系,岩性以变质杂砂岩、千枚岩为主,夹变质玄武岩、变质安山岩等火山岩夹层,因缺乏化石依据时代不明。通过LA-ICP-MS锆石U-Pb同位素定年测得安山岩的~(206)Pb/~(238)U年龄为251.4±2.4Ma,同时结合该地区已测得的254Ma的~(206)Pb/~(238)U年龄,证实这套浅变质岩系的时代应属于晚二叠世—早三叠世,并非传统意义的展金组。在剖面测制和区域对比的基础上,将天泉山、屏风岭一带的浅变质岩系重新厘定为上二叠统—下三叠统天泉山组。天泉山组的发现和建立不仅进一步完善了该区的地层系统,而且是龙木错-双湖-澜沧江洋首次发现的晚二叠世—早三叠世洋盆地层记录,为进一步丰富和研究龙木错-双湖-澜沧江洋的演化提供了重要的地层证据。  相似文献   

7.
The Hadamengou-Liubagou Au-Mo deposit is the largest gold deposit in Inner Mongolia of North China. It is hosted by amphibolite to granulite facies metamorphic rocks of the Archean Wulashan Group. To the west and north of the deposit, there occur three alkaline intrusions, including the Devonian-Carboniferous Dahuabei granitoid batholith, the Triassic Shadegai granite and the Xishadegai porphyritic granite with molybdenum mineralization. Over one hundred subparallel, sheet-like ore veins are confined to the nearly EW-trending faults in the deposit. They typically dip 40° to 80° to the south, with strike lengths from hundreds to thousands of meters. Wall rock alterations include potassic, phyllic, and propylitic alteration. Four distinct mineralization stages were identified at the deposit, including K-feldspar-quartz-molybdenite stage (I), quartz-pyrite-epidote/chlorite stage (II), quartz-polymetallic sulfide-gold stage (III), and carbonate-sulfate-quartz stage (IV). Gold precipitated mainly during stage III, while Mo mineralization occurred predominantly in stage I. The δDH2O and δ18OH2O values of the ore-forming fluids range from −125‰ to −62‰ and from 1.4‰ to 7.5‰, respectively, indicating that the fluids were dominated by magmatic water with a minor contribution of meteoric water. The δ13CPDB and δ18OSMOW values of hydrothermal carbonate minerals vary from −10.3‰ to −3.2‰ and from 3.7‰ to 15.3‰, respectively, suggesting a magmatic carbon origin. The δ34SCDT values of sulfides from the ores vary from −21.7‰ to 5.4‰ and are typically negative (mostly −20‰ to 0‰). The wide variation of the δ34SCDT values, the relatively uniform δ13C values of carbonates (typically −5.5‰ to −3.2‰), as well as the common association of barite with sulfides suggest that the minerals were precipitated under relatively high fo2 conditions, probably in a magmatic fluid with δ34SƩS  0‰. The Re-Os isotopic dating on molybdenite from Hadamengou yielded a weighted average age of 381.6 ± 4.3 Ma, indicating that the Mo mineralization occurred in Late Devonian. Collectively, previous 40Ar-39Ar and Re-Os isotopic dates roughly outlined two ranges of mineralizing events of 382–323 Ma and 240–218 Ma that correspond to the Variscan and the Indosinian epochs, respectively. The Variscan event is approximately consistent with the Mo mineralization at Hadamengou-Liubagou and the emplacement of the Dahuabei Batholith, whereas the Indosinian event roughly corresponds to the possible peak Au mineralization of the Hadamengou-Liubagou deposit, as well as the magmatic activity and associated Mo mineralization at Xishadegai and Shadegai. Geologic, petrographic and isotopic evidence presented in this study suggest that both gold and molybdenum mineralization at Hadamengou-Liubagou is of magmatic hydrothermal origin. The molybdenum mineralization is suggested to be associated with the magmatic activity during the southward subduction of the Paleo-Asian Ocean beneath the North China Craton (NCC) in Late Devonian. The gold mineralization is most probably related to the magma-derived hydrothermal fluids during the post-collisional extension in Triassic, after the final suturing between the Siberian and NCC in Late Permian.  相似文献   

8.
In the late Carnian (Late Triassic), a carbonate‐clastic depositional system including a distal alluvial plain, flood basin and sabkha, tidal flat and shallow carbonate lagoon was established in the Dolomites (Northern Italy). The flood basin was a muddy supratidal environment where marine carbonates and continental siliciclastics interfingered. A dolomite phase made of sub‐micrometre euhedral crystals with a mosaic microstructure of nanometre‐scale domains was identified in stromatolitic laminae of the flood basin embedded in clay. This dolomite is interpreted here as primary and has a nearly stoichiometric composition, as opposed to younger early diagenetic (not primary) dolomite phases, which are commonly calcian. This primary dolomite was shielded from later diagenetic transformation by the clay. The stable isotopic composition of dolomite was analyzed along a depositional transect. The δ13C values range between ca ?6‰ and +4‰, with the most 13C‐depleted values in dolomites of the distal alluvial plain and flood basin, and the most 13C‐enriched in dolomites of the tidal flat and lagoon. Uniform δ18O values ranging between 0‰ and +3‰ were found in all sedimentary facies. It is hypothesized that the primary dolomite with mosaic microstructure nucleated on extracellular polymeric substances secreted by sulphate reducing bacteria. A multi‐step process involving sabkha and reflux dolomitization led to partial replacement and overgrowth of the primary dolomite, but replacement and overgrowth were facies‐dependent. Dolomites of the landward, clay‐rich portion of the sedimentary system were only moderately overgrown during late dolomitization steps, and partly retain an isotopic signature consistent with bacterial sulphate reduction with δ13C as low as ?6‰. In contrast, dolomites of the marine, clay‐free part of the system were probably transformed through sabkha and reflux diagenetic processes into calcian varieties, and exhibit δ13C values of ca +3‰. Major shifts of δ13C values strictly follow the lateral migration of facies and thus mark transgressions and regressions.  相似文献   

9.
ABSTRACT A calcite mass more than 1·5 km long and 20 m wide crops outs along the faulted margin of the Albian carbonate platform of Jorrios in northern Spain. The mass contains abundant dissolution cavities up to 7 m long and 1 m high, filled with cross‐stratified quartz sandstone and alternating sandstone–calcite laminae. Similar cavities are also present in a 50‐m‐wide zone of platform limestones adjacent to the calcite mass that are filled with limestone breccias and sandstone. The calcite mass has mean δ18O values of 19·6‰ (SMOW), whereas platform limestones have mean δ18O values of 24·4‰ (SMOW). Synsedimentary faulting of the carbonate margin and circulation of heated fault‐related waters resulted in replacement of a band of limestone by calcite. Soon after this replacement, dissolution by undersaturated fluids affected both the calcite mass and the adjacent limestones. Percolating marine quartz sand filled all dissolution cavities, sometimes alternating with precipitating calcite. The resulting cavities and fills, which recall products of meteoric diagenesis, are attributed to a hydrothermal origin based on their geometry, occurrence along the profile and synsedimentary tectonic relationships. The early faulting and diagenesis are related to local extensional tectonism in a large‐scale strike‐slip setting. Movements occurred during the early dispar/appenninica zone of the Late Albian.  相似文献   

10.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

11.
The Sivrikaya Fe-skarn mineralization is hosted by dolomitic limestone layers of Late Cretaceous volcano-sedimentary unit, comprised of andesite, basalt and their pyroclastites, including, sandstone, shale and dolomitic limestone layers. Intrusion of the Late Cretaceous–Eocene İkizdere Granitoid in the volcano–sedimentary unit resulted in skarn mineralization along the granitoid–dolomitic limestone contact. The ore is associated with exoskarns, and mineralization is characterized by early anhydrous garnet and pyroxene with late hydrous minerals, such as epidote, tremolite, actinolite and chlorite. The ore minerals are mainly magnetite and hematite, with minor amounts of pyrite and chalcopyrite. The composition of garnet and pyroxene in the exoskarn is Adr79.45−99.03Grs0−17.9Prs0.97−2.65 and Di69.1−77.1Hd22.2−29.8Jhn0.6−1.4, respectively, and abundances of magnetite in the ore suggest that the Fe-skarn mineralization formed under relatively oxidized conditions.Homogenization temperatures (Th) of all fluid inclusions and calculated salinity content are in the range of 166 °C–462 °C and 0.35–14.3 wt% NaCl equ., respectively. Well-defined positive correlation between Th and salinity values indicates that meteoric water was involved in the hydrothermal solutions. Eutectic temperatures (Te) between −40.8 °C and −53.6 °C correspond to the presence of CaCl2 in the early stage of fluid inclusions. On the other hand, the Te temperatures of later-stage fluid inclusions, in the range of −38 °C and −21.2 °C, correspond to the presence of MgCl2, FeCl2, KCl and NaCl type salt combinations. None of the fluid inclusions were found to contain separated gas phases in microscopy observations. However, a limited amount of dissolved CH4 was identified in the early stage, high temperature fluid inclusions using Raman spectroscopic studies.Δ18O values in both dolomitic limestone (10.8–12.5‰) and skarn calcite (7.6–9.8‰) were highly depleted compared to the typical δ18O values of marine limestones. Decreases in δ18O values are accepted as an indication of dilution by meteoric water because retrograde brecciation of garnet, magnetite and breccia filling epidote and quartz in volcanic host rocks are an indication of increasing permeability, allowing infiltration of meteoric water. Highly depleted δ13C isotopes (up to −6.5‰) of dolomitic limestone, indicate that organic matter in carbonates had an effect on the decreasing isotopic ratios. The presence of CH4 and CH2 in fluid inclusions can be explained by the thermal degradation of these organic materials.  相似文献   

12.
Nitrogen isotopic compositions of upper Permian to lowermost Triassic rocks were analyzed at Chaotian in northern Sichuan, South China, in order to clarify changes in the oceanic nitrogen cycle around the Permian–Triassic boundary (P–TB) including the entire Changhsingian (Late Late Permian) prior to the extinction. The analyzed ca. 40 m thick interval across the P–TB at Chaotian consists of three stratigraphic units: the upper Wujiaping Formation, the Dalong Formation, and the lowermost Feixianguan Formation, in ascending order. The upper Wujiaping Formation, ca. 10 m thick, is mainly composed of dark gray limestone with diverse shallow-marine fossils such as calcareous algae and brachiopods, deposited on the shallow shelf. In contrast, the overlying Dalong Formation, ca. 25 m thick, is mainly composed of thinly bedded black mudstone and siliceous mudstone containing abundant radiolarians, deposited on the relatively deep slope/basin. Absence of bioturbation, substantially high total organic carbon contents (up to 15%), and abundant occurrence of pyrite framboids in the main part of the Dalong Formation indicate deposition under anoxic condition. The lowermost Feixianguan Formation, ca. 5 m thick, is composed of thinly bedded gray marl and micritic limestone with minor fossils such as ammonoids and conodonts, deposited on the relatively shallow slope. δ15NTN values are in positive values around +1 to +2‰ in the upper Wujiaping Formation implying denitrification and/or anammox in the ocean. δ15NTN values gradually decrease to −1‰ in the lower Dalong Formation and are consistently low (around 0‰) in the middle Dalong to lowermost Feixianguan Formation. No clear δ15NTN shift is recognized across the extinction horizon. The consistently low δ15NTN values suggest the enhanced nitrogen fixation in the ocean during the Changhsingian at Chaotian. Composite profiles based on previous and the present studies demonstrate the substantial δ15N variation on a global scale in the late Permian to earliest Triassic; a systematic δ15N difference by low and high latitudes is particularly clarified. Although the enhanced nitrogen fixation throughout the Changhsingian at Chaotian was likely a regional event in northwestern South China, the composite δ15N profiles imply that the sea area in which fixed nitrogen is depleted has gradually developed worldwide in the Changhsingian, possibly acting as a prolonged stress to shallow-marine biota.  相似文献   

13.
The Late Paleozoic volcanic and sedimentary rocks are widespread in the North Tianshan along the north margin of the Yili block. They consist of basalt, basaltic andesite, andesite, trachyandesite, dacite, rhyolite, tuff, and tuffaceous sandstone. According to zircon sensitive high-resolution ion microprobe (SHRIMP) dating, the age of the Late Paleozoic volcanic rocks in Tulasu basin in western part of North Tianshan is constrained to be Early Devonian to Early Carboniferous (417–356 Ma), rather than Early Carboniferous as accepted previously. Geochemical characteristics of the Early Devonian to Early Carboniferous volcanic rocks are similar to those of arc volcanic rocks, which suggest that these volcanic rocks could be the major constituents of a continental arc formed by the southward subduction of North Tianshan Oceanic lithosphere. Geochemical studies indicate that the magma source of the volcanic rocks might be the mantle wedge mixed with subduction fluid, which is geochemically enriched than primitive mantle but depleted than E-MORB. The calculation shows that the basalt could be formed by ∼10% partial melting of subduction fluid modified mantle wedge. Andesites with high initial 87Sr/86Sr (0.7094–0.7104) and negative εNd(t) (−4.45 to −4.79) values reveal the contribution of continental crust to its source. The calculation of assimilation–fractional crystallization (AFC) shows that the fractional crystallization process of the basaltic magma, which was accompanied with assimilation by different degree of continental crust, produced andesite (7–9%), dacite (∼12%) and rhyolite (>20%).  相似文献   

14.
许王  刘福来  冀磊  王舫  徐文涛  王丹 《岩石学报》2021,37(2):462-480
西南三江的德钦-维西地区出露有大量中二叠-晚三叠世岩浆岩,但是它们的形成与两个古特提斯分支洋(即金沙江洋和昌宁-孟连洋)的关系存在很大争议,制约了我们对该地区古特提斯构造演化的理解。本文对得荣县附近的玄武岩和流纹岩、兰坪县附近的安山岩以及德钦县附近的沉火山角砾岩进行了系统的野外地质调查、岩石学和地球化学研究,目的是查明它们的成因和形成环境,为深入探讨古特提斯构造演化提供有力的制约。LA-ICP-MS锆石U-Pb定年结果表明,得荣玄武岩(约236Ma)、兰坪安山岩(约233Ma)以及德钦沉火山角砾岩(约232Ma)均形成于晚三叠世,而得荣流纹岩则形成于中二叠世(约261Ma)。地球化学研究表明,得荣玄武岩多属于拉斑质玄武岩,具有变化的TiO2和MgO含量,缺乏明显的轻重稀土元素分馏,以不同程度亏损Nb、Ta和Ti为特征,它们可能是大陆弧环境下尖晶石稳定域内"肥沃"岩石圈地幔较高程度部分熔融的产物,并经历了不同程度的结晶分异和地壳混染;兰坪安山岩具有较高的MgO含量和Mg#值,属于高镁安山岩,其微量元素组成类似于陆壳物质,应该形成于沉积物起源熔体与地幔楔岩石之间的相互作用;得荣流纹岩以高SiO2和低TiO2含量为特征,具有较高的锆饱和温度,其地球化学组成类似于典型的高分异A型花岗岩,起源于伸展环境下地幔物质上涌导致的地壳岩石部分熔融。结合相关区域地质资料,我们提出中二叠-中三叠世时期昌宁-孟连古特提斯洋向东(北)俯冲使得扬子地块与昌都-兰坪-思茅地块之间以弧后伸展(即金沙江弧后盆地)的方式打开,而晚三叠世时期昌宁-孟连洋闭合后的陆-陆碰撞(即保山地块和昌都-兰坪-思茅地块)则导致金沙江弧后盆地的闭合。  相似文献   

15.
The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.  相似文献   

16.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

17.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

18.
 扬子地区早震旦世时期沉积岩黄铁矿具有重的硫同位素组成,其δ14S值从早震旦世椿木组地层的24‰左右逐渐变得更正。在早震旦世扬子地区广泛沉积碳酸锰矿和黑色页岩的民乐组时期达到极正值+60‰,然后又降低至+16‰-+20‰。上述硫同位素组成的时-空变化特征支持了扬子地块属晚元古Rodinia超大陆的一个组成部分的假设。从晚震旦世早期陡山沱组底部开始,沉积岩中黄铁矿硫同位素的δ14SS出现负值,并继续降低至-27‰以下。早震旦世晚期-晚震旦世早期沉积岩中硫同位素组成特征反映了沉积盆地古海洋环境的剧烈变化,它与大约7亿年时Rodinia超大陆的解体以及扬子地块与其它大陆分离的地质推测相吻合。  相似文献   

19.
刘建平  王核  李社宏  仝来喜  任广利 《岩石学报》2010,26(10):3095-3105
喀依孜钼矿床是近年来西昆仑地区新发现的具规模的斑岩型矿床。钼矿化赋存在花岗闪长岩体边部,由南、北两个矿化带组成,矿石呈浸染状,矿石矿物由辉钼矿及少量黄铁矿和黄铜矿组成。矿石Mo品位0.04%~1.53%,局部达10%~15%。围岩蚀变有钾化、黄铁绢英岩化和青磐岩化等斑岩型矿床蚀变组合。含矿岩体为花岗闪长岩,岩石地球化学具高SiO2、Al2O3,富K2O、Na2O,低CaO、TiO2等特点,属于高钾钙碱性系列,微量元素富集大离子亲石元素(LILE),亏损高场强元素(HFSE)和重稀土元素,显示Nb和Ta的负异常,与俯冲带岩浆地球化学特征类似,岩石成因可能与俯冲作用有关。含矿岩体锆石LA-ICPMS定年获得250.7±4.7Ma(MSWD=1.6),3件辉钼矿Re-Os模式年龄分别为254.4±1.9Ma、257.0±3.4Ma、258.5±2.0Ma,成岩成矿发生在晚二叠世末-早三叠世初。综合区域演化特征,本文认为喀依孜斑岩型钼矿床成因与古特斯洋向塔里木板块俯冲有关,形成于塔里木大陆边缘弧环境。  相似文献   

20.
The Hongshan Cu-polymetallic deposit is located in the southern Yidun arc in southwestern China, where both subduction-related (Late Triassic) and post-collisional (Late Cretaceous) porphyry–skarn–epithermal mineralization systems have been previously recognized. In this study, two distinct magmatic events, represented by diorite porphyry and quartz monzonite porphyry, have been revealed in the Hongshan deposit, with zircon SHRIMP U–Pb ages of 214 ± 2 Ma and 73.4 ± 0.7 Ma, respectively. The 73 Ma age is comparable to the Re–Os ages of 77 to 80 Ma of ore minerals from the Hongshan deposit, indicating that the mineralization is related to the Late Cretaceous quartz monzonite porphyries rather than Late Triassic diorite porphyries. The Late Triassic diorite porphyries belong to the high-K calc-alkaline series and show arc magmatic geochemical characteristics such as enrichment in Rb, Ba, Th and U and depletion in HFSEs, indicating that they were formed during the westward subduction of the Garzê–Litang Ocean. In contrast, the Late Cretaceous quartz monzonite porphyries show shoshonitic I-type geochemical characteristics, with high SiO2, K2O, LILE, low HREE, Y and Yb contents, and high LREE/HREE and La/Yb ratios. These geochemical characteristics, together with the Sr–Nd–Pb isotopic compositions (average (87Sr/86Sr)i = 0.7085; εNd(t) =  6.0; 206Pb/204Pb = 19.064, 207Pb/204Pb = 15.738, 208Pb/204Pb = 39.733) suggest that the quartz monzonite porphyries originated from the partial melting of the ancient lower crust in response to underplating of mafic magma from subduction metasomatized mantle lithosphere, possibly triggered by regional extension in the post-collisional tectonic stage. The S isotopic compositions (δ34SV-CDT = 3.81‰ to 5.80‰) and Pb isotopic compositions (206Pb/204Pb = 18.014 to 18.809, 207Pb/204Pb = 15.550 to 15.785, and 208Pb/204Pb = 38.057 to 39.468) of ore sulfides indicate that the sulfur and metals were derived from mixed mantle and crustal sources. It is proposed that although the Late Triassic magmatic event is not directly related to mineralization, it contributed to the Late Cretaceous mineralization system through the storage of large amounts of sulfur and metals as well as water in the cumulate zone in the mantle lithosphere through subduction metasomatism. Re-melting of the mantle lithosphere including the hydrous cumulate zone and ancient lower crust during the post-collisional stage produced fertile magmas, which ascended to shallow depths to form quartz monzonite porphyries. Hydrothermal fluids released from the intrusions resulted in porphyry-type Mo–Cu ores in and near the intrusions, skarn-type Cu–Mo ores in the country rocks above the intrusions, and hydrothermal Pb–Zn ores in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号