首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Xigaze ophiolite in the central part of the Yarlung–Zangbo suture zone, southern Tibet, has a well-preserved sequence of sheeted dykes, basalts, cumulates and mantle peridotites at Jiding and Luqu. Both the basalts and diabases at Jiding have similar compositions with SiO2 ranging from 45.9 to 53.5 wt%, MgO from 3.1 to 6.8 wt% and TiO2 from 0.87 to 1.21 wt%. Their Mg#s [100Mg/(Mg + Fe)] range from 40 to 60, indicating crystallization from relatively evolved magmas. They have LREE-depleted, chondrite-normalized REE diagrams, suggesting a depleted mantle source. These basaltic rocks have slightly negative Nb- and Ti-anomalies, suggesting that the Xigaze ophiolite represents a fragment of mature MORB lithosphere modified in a suprasubduction zone environment. The mantle peridotites at Luqu are high depleted with low CaO (0.3–1.2 wt%) and Al2O3 (0.04–0.42 wt%). They display V-shaped, chondrite-normalized REE patterns with (La/Gd)N ratios ranging from 3.17 to 64.6 and (Gd/Yb)N from 0.02 to 0.20, features reflecting secondary metasomatism by melts derived from the underlying subducted slab. Thus, the geochemistry of both the basaltic rocks and mantle peridotites suggests that the Xigaze ophiolite formed in a suprasubduction zone.Both the diabases and basalts have Pd/Ir ratios ranging from 7 to 77, similar to MORB. However, they have very low PGE abundances, closely approximating the predicted concentration in a silicate melt that has fully equilibrated with a fractionated immiscible sulfide melt, indicating that the rocks originated from magmas that were S-saturated before eruption. Moderate degrees of partial melting and early precipitation of PGE alloys explain their high Pd/Ir ratios and negative Pt-anomalies. The mantle peridotites contain variable amounts of Pd (5.99–13.5 ppb) and Pt (7.92–20.5 ppb), and have a relatively narrow range of Ir (3.47–5.01 ppb). In the mantle-normalized Ni, PGE, Au and Cu diagram, they are relatively rich in Pd and depleted in Cu. There is a positive correlation between CaO and Pd. The Pd enrichment is possibly due to secondary enrichment by metasomatism. Al2O3 and Hf do not correlate with Ir, but show positive variations with Pt, Pd and Au, indicating that some noble metals can be enriched by metasomatic fluids or melts carrying a little Al and Hf. We propose a model in which the low PGE contents and high Pd/Ir ratios of the basaltic rocks reflect precipitation of sulfides and moderate degrees of partial melting. The high Pd mantle peridotites of Xigaze ophiolites were formed by secondary metasomatism by a boninitic melt above a subduction zone.  相似文献   

2.
The Luobusa ophiolite, Southern Tibet, lies in the Indus–YarlungZangbo suture zone that separates Eurasia to the north fromthe Indian continent to the south. The ophiolite contains awell-preserved mantle sequence consisting of harzburgite, clinopyroxene(cpx)-bearing harzburgite and dunite. The harzburgite containsabundant pods of chromitite, most of which have dunite envelopes,and the cpx-bearing harzburgites host numerous dunite dykes.Dunite also exists as a massive unit similar to those of themantle–crust transition zones in other ophiolites. Allof the dunites in the ophiolite have a similar mineralogy, comprisingmainly olivine with minor orthopyroxene and chromite and tracesof clinopyroxene. They also display similar chemical compositions,including U-shaped chondrite-normalized REE patterns. Mantle-normalizedPGE patterns show variable negative Pt anomalies. Detailed analysisof a chromite-bearing dunite dyke, which grades into the hostcpx-bearing harzburgite, indicates that LREE and Ir decrease,whereas HREE, Pd and Pt increase away from the dunite. Thesefeatures are consistent with formation of the dunite dykes byinteraction of MORB peridotites with boninitic melts from whichthe chromitites were formed. Because the transition-zone dunitesare mineralogically and chemically identical to those formedby such melt–rock reaction, we infer that they are ofsimilar origin. The Luobusa ultramafic rocks originally formedas MORB-source upper mantle, which was subsequently trappedas part of a mantle wedge above a subduction zone. Hydrous meltsgenerated under the influence of the subducted slab at depthmigrated upward and reacted with the cpx-bearing harzburgitesto form the dunite dykes. The modified melts ponded in smallpockets higher in the section, where they produced podiformchromitites with dunite envelopes. At the top of the mantlesection, pervasive reaction between melts and harzburgite producedthe transition-zone dunites. KEY WORDS: melt–rock interaction; REE; PGE; hydrous melt; mantle; ophiolite; Tibet  相似文献   

3.
Ophiolitic sequences obducted onto continental margins allow field based observations coupled with petrochemical interrogations of upper mantle lithologies thereby aiding evaluation of compositional heterogeneity of oceanic mantle, depletion-enrichment events and geodynamic conditions governing oceanic lithosphere formation. The Naga Hills Ophiolite (NHO) suite preserves a segment of the Neotethyan oceanic lithosphere encompassing a package of mantle and crustal lithologies. This paper for the first time reports the occurrence of melt flow channels traversing the mantle section near Molen of the NHO and presents a comprehensive study involving chromite-spinel chemistry, bulk rock major, trace and PGE geochemistry to understand the petrogenesis and evolution in a geodynamic transition from mid oceanic ridge (MOR) to suprasubduction zone (SSZ). The spinel chemistry of peridotitic melt channels depicts both MOR-type and SSZ signatures underlining a transitional tectonic frame. Chromite chemistry and high Al2O3/TiO2 ranging from 15.98–35.70 in concurrence with low CaO/Al2O3 ranging from 0.03–0.53; and chondrite normalised LREE > MREE < HREE patterns confirm the influx of boninitic melts into the refractory mantle. The boninitic signature shared by melt channels and host rock invokes a geochemical and geodynamic transition from anhydrous melting of depleted mantle to hydrated fluid flux melting resulting in boninitic melts, that subsequently impregnate and refertilise the fore arc mantle wedge in a SSZ regime at the nascent stage of subduction. The high Ba/Nb, Ba/Th, and Ba/La for the studied peridotites highlight the influx of subduction derived fluids in the supra subduction mantle. Further higher Zr/Hf and Nd/Hf with respect to primitive mantle values in concurrence with lower Nb/Ta suggest progressive refertilisation due to fluid- and melt-driven metasomatism of the refractory fore arc mantle wedge. The chondrite normalised PGE patterns suggest positive Ir and Ru anomalies stipulating the source to be refractory while enriched Pt and Pd underpins the mobilisation of these elements by subduction derived fluids and melts. The elevated abundances of PPGEs than IPGEs as cited by PPGE/IPGE > 1; and Pd/Pt avg. 0.85 for melt channels and 0.84 for host peridotites indicate fluid-fluxed metasomatism of fore arc mantle wedge with a S-undersaturated trend coupled with boninitic affinity. The mineral, trace, REE and PGE chemistry collectively emphasizes that the mantle peridotites of the NHO formed in a transitional geodynamic tectonic setting caused by fore arc extension during subduction initiation followed by rejuvenation by subduction derived fluids and boninitic melts, which typically are of the SSZ tectonic regime. The harzburgitic melt channels and host rock are refractory in nature, reflecting multiple episodes of melt extraction of about 5–15% and ~10–20% respectively from a spinel peridotite mantle source. The occurrences of these melt channels indicate segregation and percolation of melt through porous and channelized network in upper mantle peridotites.  相似文献   

4.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

5.
The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan(SEPES ophiolites).Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites.The chromitites are classified into type I and type Ⅱ based on their Cr~#.Type I(Cr~# = 59-85) occurs in both northern and southern branches,whereas type Ⅱ(Cr~# = 76-90) occurs only in the northern branch.PGE contents range from ∑PGE 88-1189 ppb,Pt/Ir0.04-0.42 to ∑PGE 250-1700 ppb,Pt/Ir 0.03-0.25 for type I chromitites of the northern and southern branches respectively.The type Ⅱ chromitites of the northern branch have ∑PGE contents higher than that of type Ⅰ(468-8617 ppb,Pt/Ir 0.1-0.33).Parental melt compositions,in equilibrium with podiform chromitites,are in the range of boninitic melts and vary in Al_2O_3,TiO_2 and FeO/MgO contents from those of type I and type Ⅱ chromitites.Calculated melt compositions for type Ⅰ chromitites are(Al_2O_3)_(melt) = 10.6—13.5 wt.%,(TiO_2)_(melt) = 0.01-0.44 wt.%,(Fe/Mg)_(melt) = 0.42-1.81;those for type Ⅱ chromitites are:(Al_2O_3)_(melt) = 7.8-10.5 wt.%,(TiO_2)_(melt) = 0.01-0.25 wt.%,(Fe/Mg)_(melt) = 0.5-2.4.Chromitites are further divided into Os-Ir-Ru(Ⅰ) and Pt-Pd(Ⅱ) based on their PGE patterns.The type Ⅰ chromitites show only the Os-Ir-Ru pattern whereas type Ⅱ shows both Os-Ir-Ru and Pt-Pd patterns.PGE mineralization in type Ⅰ chromitites is represented by the Os-Ir-Ru system,whereas in type Ⅱ it is represented by the Os-Ir-Ru-Rh-Pt system.These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction.However,the chromitites and PGE mineralization of the southern branch could have formed in a spreading zone environment.Mantle peridotites have been exposed in the area with remnants of mantle-derived reduced fluids,as indicated by the occurrence of widespread highly carbonaceous graphitized ultrabasic rocks and serpentinites with up to 9.75 wt.%.Fluid inclusions in highly carbonaceous graphitized ultrabasic rocks contain CO,CO_2,CH4,N_2 and the δ~(13)C isotopic composition(-7.4 to-14.5‰) broadly corresponds to mantle carbon.  相似文献   

6.
The Bulqiza ultramafic massif, which is part of the eastern Mirdita ophiolite of northern Albania, is world renowned for its high-Cr chromitite deposits. High-Cr chromitites hosted in the mantle section are the crystallized products of boninitic melts in a supra-subduction zone (SSZ). However, economically important high-Al chromitites are also present in massive dunite of the mantle-crust transition zone (MTZ). Chromian-spinel in the high-Al chromitites and dunites of the MTZ have much lower Cr# values (100Cr/(Cr+Al)) (47.7–55.1 and 46.5–51.7, respectively) than those in the high-Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The chemical differences in these two types of chromitites are reflected in the behaviors of their platinum-group elements (PGE). The high-Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high-Al chromitites have relatively higher PPGE/IPGE ratios between 1.20 and 7.80. The calculated melts in equilibrium with the high-Cr chromitites are boninitic-like, and those associated with the high-Al chromitites are MORB-like but with hydrous, oxidized and TiO2-poor features. We propose that the coexistence of both types of chromitites in the Bulqiza ultramafic massif may indicates a change in magma composition from MORB-like to boninitic-like in a proto-forearc setting during subduction initiation.  相似文献   

7.
The distribution of platinum-group elements (PGEs), together with spinel composition, of podiform chromitites and serpentinized peridotites were examined to elucidate the nature of the upper mantle of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. The mantle section is dominated by harzburgite with less abundant dunite. Chromitite pods are also found as small lenses not exceeding a few meters in size. Almost all primary silicates have been altered, and chromian spinel is the only primary mineral that survived alteration. Chromian spinel of chromitites is less affected by hydrothermal alteration than that of mantle peridotites. All chromitite samples of the Bou Azzer ophiolite display a steep negative slope of PGE spidergrams, being enriched in Os, Ir and Ru, and extremely depleted in Pt and Pd. Harzburgites and dunites usually have intermediate to low PGE contents showing more or less unfractionated PGE patterns with conspicuous positive anomalies of Ru and Rh. Two types of magnetite veins in serpentinized peridotite, type I (fibrous) and type II (octahedral), have relatively low PGE contents, displaying a generally positive slope from Os to Pd in the former type, and positive slope from Os to Rh then negative from Rh to Pd in the latter type. These magnetite patterns demonstrate their early and late hydrothermal origin, respectively. Chromian spinel composition of chromitites, dunites and harzburgites reflects their highly depleted nature with little variations; the Cr# is, on average, 0.71, 0.68 and 0.71, respectively. The TiO2 content is extremely low in chromian spinels, <0.10, of all rock types. The strong PGE fractionation of podiform chromitites and the high-Cr, low-Ti character of spinel of all rock types imply that the chromitites of the Bou Azzer ophiolite were formed either from a high-degree partial melting of primitive mantle, or from melting of already depleted mantle peridotites. This kind of melting is most easily accomplished in the supra-subduction zone environment, indicating a genetic link with supra-subduction zone magma, such as high-Mg andesite or arc tholeiite. This is a general feature in the Neoproterozoic upper mantle.  相似文献   

8.
The Bulqiza ultmafic massif, which belongs to the eastern Mirdita ophiolite of northern Albania, is world renowned for its high‐Cr chromite resource. The high‐Cr chromitites commonly host in the mantle section, while high‐Al chromitites also present in massive dunite of the mantle‐crust transition zone (MTZ) in this massif. Chromian‐spinel in the MTZ high‐Al chromitites and MTZ dunites have much lower Cr# values [Cr/(Cr+Al)×100] (47.7–55.1 and 46.5–51.7, respectively) than those of chromian‐spinel in the high‐Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The high‐Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high‐Al chromitites have higher PPGE/IPGE ratios between 1.20 and 7.80. The partial melting degrees of parental magmas for the high‐Cr chromitites are beyond the critical interval (> 25%) and thus prevented sulfide saturation and diluted Pt and Pd in melts, producing high‐Cr chromitites barren of Pt and Pd. However, the degrees for the high‐Al chromitites just enter the critical interval (20–25%) for the effective extraction of PGE from mantle sulfides, which may account for the enrichments of PPGE in high‐Al chromitites. The parental melts of the high‐Cr chromitites have Al2O3 and TiO2 contents of ~10.6–11.4 wt.% and 0.14–0.31 wt.%, whereas the calculated Al2O3 and TiO2 for the high‐Al chromitites are ~14.9–15.9 wt.% and 0.07–0.61 wt.%, respectively. The calculated melts in equilibrium with the high‐Cr chromitites are boninitic‐like, and those with high‐Al chromitites are MORB‐like but with hydrous, oxidized and TiO2‐poor affinities. To make a compromise between the inconsistence above, we proposed that coexistence of both types of chromitites in the Bulqiza ultramafic massif may reflect that their magma compositions transited from MORB‐like to boninitic‐like in a proto‐forearc setting during subduction initiation. Key words: Chromian‐spinel, Platinum‐group elements, high‐Cr and high‐Al chromitite, Mirdita ophiolite, Albania.  相似文献   

9.
The compositions of minerals and whole rocks of the Luobusa ophiolite in South Tibet, a fragment of Neo‐Tethyan forearc lithosphere, is used to investigate the magmatic evolution of nascent mantle wedges in newly‐initiated subduction zones. Clinopyroxenes in the Luobusa peridotites all have diopsidic compositions, and their Al2O3 contents vary from ~ 2% in the dunites and refractory harzburgites to 2‐4% in the cpx‐bearing harzburgites. The REE of clinopyroxenes in the harzburgites have left‐sloping patterns with contents comparable to those in abyssal peridotites that have experienced 5‐15% partial melting. Chromites in the Luobusa chromitites have the highest Cr#s (~ 80) and TiO2 contents (0.1‐0.2%), and those in the cpx‐bearing harzburgites have the lowest Cr#s (20‐60) and TiO2 contents (0‐0.1%), whereas those in refractory harzburgites and dunites have intermediate compositions. Cpx‐bearing and refractory harzburgites show spoon‐and U‐shaped REE patterns, respectively, and their HREE distribution patterns suggest at least 15%‐ 20% partial melting. The REE patterns of dunites and high‐Cr chromitites vary from spoon‐ to U‐shaped and require 15‐30% partial melting in their mantle sources to produce their parental melts. Our dataset reveals that the nascent Luobusa mantle wedge was first infiltrated by slab‐derived fluids and later refertilized by transitional lava‐like melts, resulting in cpx‐bearing harzburgites. Partial melting in the deeper cpx‐bearing mantle generated high‐Ca boninitic to arc picritic melts, which interacted with the peridotites in the uppermost mantle to generate high‐Cr chromitites, dunites and some refractory harzburgites. Lithological variation from cpx‐bearing to refractory harzburgites in forearc ophiolites is the result of multi‐stage melt events rather than increasing degrees of partial melting. Intermittent slab rollback during subduction initiation induces asthenospheric upwelling and high heat flux in nascent mantle wedges. Elevated geothermal gradients play a more important role than slab dehydration in triggering Mg‐rich magmatism in newly‐initiated subduction zones.  相似文献   

10.
ABSTRACT

The Bir Umq ophiolite is one of the most important ophiolitic successions in the Arabian Shield, and represents an excellent case for the study of the tectonomagmatic evolution of the earliest Precambrian events in the juvenile part of the Arabian-Nubian Shield (ANS). It is a dismembered ophiolite, which includes a serpentinized peridotite with small amounts of gabbro and mélange, and is overlain by the Sumayir formation. The mantle section of the Bir Umq ophiolite has been pervasively sheared and folded during its emplacement and is extensively serpentinized, carbonated and silicified, resulting in the common development of magnesite and listwaenite along the shear zones. Listwaenite occurs in the form of upstanding ridges due to its resistance to erosion. Antigorite is the main serpentine mineral, which, however, has low amounts of lizardite and chrysotile, indicating that the present serpentinites formed by prograde metamorphism. The ophiolitic rocks of Bir Umq have undergone regional metamorphism up to the greenschist to amphibolite facies. The presence of mesh and bastite textures indicates harzburgite and dunite protoliths. The serpentinized peridotite preserves rare relicts of primary minerals such as olivine, pyroxene and Cr-spinel. The serpentinized ultramafics of Bir Umq have high Mg# [molar Mg/(Mg+Fe2+); 0.90–0.93), low CaO, and Al2O3 contents similar to that of the environment of the suprasubduction zone. Additionally, they are characterized by the depletion of some compatible trace elements (e.g., Nb, Sr, Ta, Zr, Hf and REE), but show a wide variation in the Rb and Ba. Moreover, they are enriched in some elements that have affinities for Mg-rich minerals such as Ni, Cr, V, and Co. Fresh relics of olivine have high Fo (av. 0.91) and NiO (av. 0.42) contents, similar to those in the mantle olivine. The fresh Cr-spinel has high Cr# (0.68) and low TiO2 content (av. 0.11), similar to those in modern fore-arc peridotites. The composition of both orth- and clinopyroxenes confirms the fore-arc affinity of the studied ultramafics. The present study indicates that the protoliths of the serpentinized ultramafics of Bir Umq have high partial melt degrees, which is consistent with the characteristics of ultramafic rocks formed in a subarc environment (fore-arc) within a suprasubduction zone system.  相似文献   

11.
The podiform chromite deposit of the Soghan mafic–ultramafic complex is one of the largest chromite deposits in south-east Iran (Esfandagheh area). The Soghan complex is composed mainly of dunite, harzburgite, lherzolite, pyroxenite, chromitite, wehrlite and gabbro. Olivine, orthopyroxene, and to a lesser extent clinopyroxene with highly refractory nature, are the primary silicates found in the harzburgites and dunites. The forsterite content of olivine is slightly higher in dunites (Fo94) than those in harzburgites (Fo92) and lherzolites (Fo89). Chromian spinel mainly occurs as massive chromitite pods and as thin massive chromitite bands together with minor disseminations in dunites and harzburgites. Chromian spinels in massive chromitites show very high Cr-numbers (80–83.6), Mg-numbers (62–69) and very low TiO2 content (averaging 0.17 wt.%) for which may reflect the crystallization of chromite from a boninitic magma. The Fe3 +-number is very low, down to < 0.04 wt.%, in the chromian spinel of chromitites and associated peridotites of the Soghan complex.PGE contents are variable and range from 80 to 153 pbb. Chromitites have strongly fractionated chondrite-normalized PGE patterns, which are characterized by enrichments in Os, Ir and Rh relative to Pt and Pd. Moreover, the Pd/Ir value which is an indicator of PGE fractionation ranges from < 0.08 to 0.24 in chromitite of the Soghan complex. These patterns and the low PGE abundances are typical of ophiolitic chromitites and indicating a high degree of partial melting (about 20–24%) of the mantle source. Moreover, the PdN/IrN ratios in dunites are unfractionated, averaging 1.2, whereas the harzburgites and lherzolites show slightly positive slopes PGE spidergrams, together with a small positive Ru and Pd anomaly, and their PdN/IrN ratio averages 1.98 and 2.15 respectively.The mineral chemistry data and PGE geochemistry, along with the calculated parental melts in equilibrium with chromian spinel of the Soghan chromitites indicate that the Soghan complex was generated from an arc-related magma with boninitic affinity above a supra-subduction zone setting.  相似文献   

12.
Mesozoic ophiolites crop out discontinuously in the Indo‐Myanmar Ranges in NE India and Myanmar, and represent the remnants of the Neotethyan oceanic lithosphere. These ophiolites in the Indo‐Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone in southern Tibet farther northwes, as indicated by their coeval crystallization ages and geochemical compositions. The Kalaymyo ophiolite is located in the central part of the Indo‐Myanmar Ranges (Myanmar). The Kalaymyo ophiolite are composed of olivine (Fo = 89.8–90.5), orthopyroxene (En86‐91Wo1‐4Fs8‐10; Mg#=89.6–91.9), clinopyroxene (En46‐49Wo47‐50Fs3‐5; Mg# = 90.9–93.6) and spinel (Mg# = 67.1–78.9; Cr# = 13.5–31.5), and have relatively homogeneous whole‐rock compositions with Mg# of 90.1–90.8 and SiO2 (41.5–43.65 wt.%), Al2O3 (1.66–2.66 wt.%) and CaO (1.45–2.67 wt.%) contents. They display Light Rare Earth Element (LREE)‐depleted chondrite‐normalized REE patterns and show a slight enrichment from Pr to La. The Kalaymyo peridotites are characterized by Pd‐enriched chondrite‐normalized PGE patterns with superchondritic (Pd/Ir)CN ratios (1.15–2.36). Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90. These features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees (5–15%) of partial melting at a mid‐ocean‐ridge environment. The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB‐like melts, percolating through these already depleted, residual peridotites. The Kalaymyo and other ophiolites in the Indo‐Myanmar Ranges hence represent mid‐ocean ridge–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.  相似文献   

13.
The Bir Tuluha ophiolite is one of the most famous chromitite-bearing occurrences in the Arabian Shield of Saudi Arabia, where chromitite bodies are widely distributed as lensoidal pods of variable sizes surrounded by dunite envelopes, and are both enclosed within the harzburgite host. The bulk-rock geochemistry of harzburgites and dunites is predominately characterized by extreme depletion in compatible trace elements that are not fluid mobile (e.g., Sr, Nb, Ta, Hf, Zr and heavy REE), but variable enrichment in the fluid-mobile elements (Rb and Ba). Harzburgites and dunites are also enriched in elements that have strong affinity for Mg and Cr such as Ni, Co and V. Chromian spinels in all the studied chromitite pods are of high-Cr variety; Cr-ratio (Cr/(Cr + Al) atomic ratio) show restricted range between 0.73 and 0.81. Chromian spinels of the dunite envelopes also show high Cr-ratio, but slightly lower than those in the chromitite pods (0.73–0.78). Chromian spinels in the harzburgite host show fairly lower Cr-ratio (0.49–0.57) than those in dunites and chromitites. Platinum-group elements (PGE) in chromitite pods generally exhibit steep negative slopes of typical ophiolitic chromitite PGE patterns; showing enrichment in IPGE (Os, Ir and Ru), over PPGE (Rh, Pt and Pd). The Bir Tuluha ophiolite is a unimodal type in terms of the presence of Ru-rich laurite, as the sole primary platinum-group minerals (PGM) in chromitite pods. These petrological features indicates that the Bir Tuluha ophiolite was initially generated from a mid-ocean ridge environment that produced the moderately refractory harzburgite, thereafter covered by a widespread homogeneous boninitic melt above supra-subduction zone setting, that produced the high-Cr chromitites and associated dunite envelopes. The Bir Tuluha ophiolite belt is mostly similar to the mantle section of the Proterozoic and Phanerozoic ophiolites, but it is a “unimodal” type in terms of high-Cr chromitites and PGE-PGM distribution.  相似文献   

14.
The Jurassic Bangong Lake ophiolite, NW Tibet, is a key element within the western part of the Bangong–Nujiang suture zone, which marks the boundary between the Lhasa and Qiangtang blocks. It is a tectonic mélange consisting of numerous blocks of peridotite, mafic lavas and dikes. The mantle peridotites include both clinopyroxene-bearing and clinopyroxene-free harzburgites. The Cpx-bearing harzburgite contains Al-rich spinel with low Cr#s (20–25), resembling peridotites formed in mid-ocean ridge settings. On the other hand, the Cpx-free harzburgite is highly depleted with Cr-rich spinel (Cr# = 69–73), typical of peridotites formed in subduction zone environments. Mafic rocks include lavas of N-MORB and E-MORB affinity and boninites. The N-MORB rocks consist of pillow lavas and mafic dikes, whereas the E-MORB rocks are brecciated basalts. The boninites have high SiO2 (53.2–57.9 wt%), MgO (6.5–12.5 wt%), Cr (166–752 ppm) and Ni (63–213 ppm) and low TiO2 (0.22–0.37 wt%) and Y (5.34–8.10 ppm), and are characterized by having U-shaped, chondrite-normalized REE patterns. The N-MORB and E-MORB lavas probably formed by different degrees of partial melting of primitive mantle, whereas the boninites reflect partial melting of depleted peridotite in a suprasubduction zone environment. The geochemistry of the ophiolite suggests that it is a fragment of oceanic lithosphere formed originally at a mid-ocean ridge (MOR) and then trapped above an intraoceanic subduction zone (SSZ), where the mantle peridotites were modified by boninitic melts. The Bangong–Nujiang suture zone is believed to mark the boundary between two blocks within Gondwanaland rather than to separate Gondwanaland from Eurasia.  相似文献   

15.
ABSTRACT

The Neo-Tethys-related Chaldoran ophiolite peridotites in NW Iran are remnants of mantle lithosphere, exhumed tectonically during the Late Cretaceous. Harzburgite is the predominant peridotite type, associated with oceanic lower crust cumulate gabbros occasionally. The ophiolite rocks are unconformably overlain by Late Cretaceous-Paleocene sediments. New whole-rock geochemistry of the variably serpentinized harzburgites shows a depleted nature, exemplified by low Al2O3, CaO, TiO2, V and Y and high Ni, Cr and Mg and also low rare earth element (REE) contents. The harzburgites present LREE enrichment. Positive correlations between some LREEs and high field strength elements (HFSE) suggest enrichment of LREEs by melt re-fertilization processes. Cr-spinels have Cr number of [Cr# = Cr/(Cr + Al) = 0.53–0.67], showing medium to high degree of partial melting (F = ~17-20%). Both whole-rock and mineral chemistry data show a supra-subduction zone setting and progressive depletion along with increase in spinel Cr# (MOR to fore arc). The cumulate gabbros have high MgO and SiO2, low TiO2 and Ti/V < 10 and also low chondrite normalized Dy (<8.5). The gabbro samples show enriched LREEs and LILEs and depleted HREEs and HFSEs with respect to MORBs.

Subduction initiation (SI) model in a fore-arc/proto-fore-arc environment is suggested for the upper mantle evolution of the Chaldoran ophiolite. The rocks have experienced depletion in a second melting process at the later stages of SI and compositions were probably modified by extraction of island arc tholeiitic (IAT) and possibly boninitic (BON) melts. The chemostratigraphic progression for ‘subduction initiation rule (SIR)’ is likely traceable in Chaldoran mafic-ultramafic sequence, which corresponds to the most Neo-Tethyan ophiolites and is similar to MOR to supra-subduction zone (SSZ) evolution of most Iranian ‘Inner’ and ‘Outer Zagros’ ophiolitic peridotites.  相似文献   

16.
《International Geology Review》2012,54(16):2028-2043
The Kangqiong ophiolite is exposed in the central–western part of the Bangong–Nujiang suture zone (BNSZ) of central Tibet. This study reports new data for boninitic dikes with the aim of reconstructing the geodynamic and petrogenetic evolution of the Kangqiong ophiolite. Ten samples of boninitic dikes that cross-cut the mafic cumulates have very low TiO2 (0.34–0.42%) contents and high MgO (6.65–8.25%) contents. LA-ICP-MS U–Pb analyses of zircon from the boninitic dikes yield an age of 115 Ma. They are characterized by positive εHf(t) values varying from +13.1 to +15.0. Taking into account the geochemical characteristics of the mantle section, the Kangqiong ophiolite should be generated in a fore-arc spreading setting resulting from intra-oceanic subduction. Based on our data and previous studies, we propose that the BNSZ represents the major suture and records the Early Cretaceous intra-oceanic subduction of the Bangong–Nujiang Neo-Tethys Ocean, and the Shiquan River–Yongzhu–Jiali ophiolitic mélange belt represents a back-arc basin. These two belts, together with the northern Lhasa subterrane should, represent an Early Cretaceous intra-oceanic subduction system and back-arc basin in central Tibet that is similar to present-day active intra-oceanic subduction systems in the western Pacific Ocean. The final closure of the Bangong–Nujiang Neo-Tethys Ocean might have taken place later than the Early Cretaceous.  相似文献   

17.
The Zedong ophiolites in the eastern Yarlung–Zangbo suture zone of Tibet represent a mantle slice of more than 45 km~2. This massif consists mainly of mantle peridotites, with lesser gabbros, diabases and volcanic rocks. The mantle peridotites are mostly harzburgite, lherzolite; a few dike-like bodies of dunite are also present. Mineral structures show that the peridotites experienced plastic deformation and partial melting. Olivine(Fo89.7–91.2), orthopyroxene(En_(88–92)), clinopyroxene(En_(45–49) Wo_(47–51) Fs_(2–4)) and spinel [Mg~#=100×Mg/(Mg+Fe)]=49.1–70.7; Cr~#=(100×Cr/(Cr+Al)=18.8–76.5] are the major minerals. The degree of partial melting of mantle peridotites is 10%–40%, indicating that the Zedong mantle peridotites may experience a multi–stage process. The peridotites are characterized by depleted major element compositions and low REE content(0.08–0.62 ppm). Their "spoon–shaped" primitive–mantle normalized REE patterns with(La/Sm)_N being 0.50–6.00 indicate that the Zedong ultramafic rocks belong to depleted residual mantle rocks. The PGE content of Zedong peridotites(18.19–50.74 ppb) is similar with primary mantle with Pd/Ir being 0.54–0.60 and Pt/Pd being 1.09–1.66. The Zedong peridotites have variable, unradiogenic Os isotopic compositions with ~(187)Os/~(188)Os=0.1228 to 0.1282. A corollary to this interpretation is that the convecting upper mantle is heterogeneous in Os isotopes. All data of the Zedong peridotites suggest that they formed originally at a mid-ocean ridge(MOR) and were later modified in supra–subduction zone(SSZ) environment.  相似文献   

18.
The Zedang and Luobusa ophiolites are located in the eastern section of the Yalung Zangbo ophiolite belt,and they share similar geological tectonic setting and age.Thus,an understanding of their origins is very important for discussion of the evolution of the Eastern Tethys Ocean.There is no complete ophiolite assemblage in the Zedang ophiolite.The Zedang ophiolite is mainly composed of mantle peridotite and a suite of volcanic rocks as well as siliceous rocks,with some blocks of olivinepyroxenite.The mantle peridotite mainly consists of Cpx-harzburgite,harzburgite,some lherzolite,and some dunite.A suite of volcanic rocks is mainly composed of caic-aikaline pyroclastic rocks and secondly of tholeiitic pillow lavas,basaltic andesites,and some boninitic rocks with a lower TiO2 content (TiO2 < 0.6%).The pyroclastic rocks have a LREE-enriched REE pattern and a LILE-enriched (compared to HFSE) spider diagram,demonstrating an island-arc origin.The tholeiitic volcanic rock has a LREE-depleted REE pattern and a LILE-depleted (compared to HFSE) spider diagram,indicative of an origin from MORB.The boninitic rock was generated from fore-arc extension.The Luobusa ophiolite consists of mantle peridotite and mafic-ultramaflc cumulate units,without dike swarms and volcanic rocks.The mantle peridotite mainly consists of dunite,harzburgite with low-Opx (Opx < 25%),and harzburgite (Opx > 25%),which can be divided into two facies belts.The upper is a dunite-harzburgite (Opx < 25%) belt,containing many dunite lenses and a large-scale chromite deposit with high Cr203; the lower is a harzburgite (Opx >25%) belt with small amounts of dunite and lherzolite.The Luobusa mantle peridotite exhibits a distinctive vertical zonation of partial melting with high melting in the upper unit and low melting in the lower.Many mantle peridotites are highly depleted,with a characteristic U-shaped REE pattern peculiar to fore-arc peridotite.The Luobusa cumulates are composed of wehrlite and olivine-pyroxenite,of the P-P-G ophiolite series.This study indicates that the Luobusa ophiolite was formed in a fore-arc basin environment on the basis of the occurrence of highly depleted mantle peridotite,a high-Cr2O3 chromite deposit,and cumulates of the P-P-G ophiolite series.We conclude that the evolution of the Eastern Tethys Ocean involved three stages:the initial ocean stage (formation of MORB volcanic rock and dikes),the forearc extension stage (formation of high-Cr203 chromite deposits and P-P-G cumulates),and the islandarc stage (formation of caic-alkaline pyroclastic rocks).  相似文献   

19.
The mantle section of Al'Ays ophiolite consists of heterogeneously depleted harzburgites, dunites and large-sized chromitite pods. Two chromitite-bearing sites (Site1 and Site2), about 10 km apart horizontally from one another, were examined for their upper mantle rocks. Cr-spinels from the two sites have different chemistry; Cr-rich in Site1 and Al-rich in Site2. The average Cr-ratio = (Cr/(Cr + Al) atomic ratio) of Cr-spinels in harzburgites, dunites and chromitites is remarkably high 0.78, 0.77 and 0.87, respectively, in Site1, compared with those of Site2 which have intermediate ratio averages 0.5, 0.56 and 0.6, respectively. The platinum-group elements (PGE) in chromitites also show contrasting patterns from Site1 to Site2; having elevated IPGE (Os, Ir, Ru) and strongly depleted in PPGE (Rh, Pt, Pd) with steep negative slopes in the former, and gentle negative slopes in the latter. The oxygen fugacity (Δlog fO2) values deduced from harzburgites and dunites of Site1 show a wide variation under reducing conditions, mostly below the FMQ buffer. The Site2 harzburgites and dunites, on the other hand are mostly above the FMQ buffer. Two magmatic stages are suggested for the lithospheric evolution of Al'Ays ophiolite in response to a switch of tectonic setting. The first stage produced a peridotites–chromitites suite with Al-rich Cr-spinels, possibly beneath a mid-ocean ridge setting, or most likely in back-arc rift of a supra-subduction zone setting. The second stage involved higher degrees of partial melting, produced a peridotites–chromitites suite with Cr-rich Cr-spinels, possibly in a fore-arc setting. The coexistence of compositionally different mantle suites with different melting histories in a restricted area of an ophiolite complex may be attributable to a mechanically juxtaposed by mantle convection during recycling. The mantle harzburgites and dunites are apt to be compositionally modified during recycling process; being highly depleted (Site1 case) than their original composition (Site2 case).  相似文献   

20.
The Naga Hills Ophiolite(NHO) belt in the Indo-Myanmar range(IMR) represents a segment of Tethyan oceanic crust and upper mantle that was involved in an eastward convergence and collision of the Indian Plate with the Burmese Plate during the Late Cretaceous-Eocene.Here, we present a detailed petrological and geochemical account for the mantle and crustal sections of NHO, northeastern India to address(i) the mantle processes and tectonic regimes involved in their genesis and(ii) their coherence in terms of the thermo-tectonic evolution of Tethyan oceanic crust and upper mantle.The NHO suite comprises well preserved crustal and mantle sections discretely exposed at Moki, Ziphu, Molen, Washelo and Lacham areas.The ultramafic-mafic lithologies of NHO are mineralogically composed of variable proportions of olivine, orthopyroxene, clinopyroxene and plagioclase.The primary igneous textures for the mantle peridotites have been overprinted by extensive serpentinisation whereas the crustal section rocks reflect crystal cumulation in a magma chamber.Chondrite normalised REE profiles for the cumulate peridotite-olivine gabbro-gabbro assemblage constituting the crustal section of NHO show flat to depleted LREE patterns consistent with their generation from depleted MORB-type precursor melt in an extensional tectonic setting, while the mantle peridotites depict U-shaped REE patterns marked by relative enrichment of LREE and HREE over MREE.These features collectively imply a dual role of depleted MORB-type and enriched arc-type mantle components for their genesis with imprints of melt-rock and fluid-rock interactions.Tectonically, studied lithologies from NHO correspond to a boninitic to slab-proximal Island Arc Tholeiite affinity thereby conforming to an intraoceanic supra subduction zone(SSZ) fore-arc regime coherent with the subduction initiation process.The geochemical attributes for the crustal and mantle sections of NHO as mirrored by Zr/Hf, Zr/Sm, Nb/Ta, Zr/Nb, Nb/U, Ba/Nb, Ba/Th, Ba/La and Nd/Hf ratios propound a two-stage petrogenetic process:(i) a depleted fore arc basalt(FAB) type tholeiitic melt parental to the crustal lithologies was extracted from the upwelling asthenospheric mantle at SSZ fore-arc extensional regime thereby rendering a refractory residual upper mantle;(ii) the crust and upper mantle of the SSZ fore arc were progressively refertilised by boninitic melts generated in response to subduction initiation and slab-dehydration.The vestiges of Tethyan oceanic lithosphere preserved in NHO represent an accreted intra-oceanic fore arc crust and upper mantle section which records a transitional geodynamic evolution in a SSZ regime marked by subduction initiation, fore arc extension and arc-continent accretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号