首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
杨娟  黄燕  陈有明 《华东地质》2019,(4):273-279
利用MSS、ETM+、CBERS-2、BJ-2、02C和TH1多时相卫星遥感数据,分别提取1975年、2000年、2007年和2016年皖江经济带湿地现状及变化的遥感信息,研究皖江经济带湿地遥感现状及变化规律。结果表明:皖江经济带湿地类型主要为河流湿地、湖泊湿地、沼泽湿地和人工湿地,市县级地域湿地分布不均、类型不全;1975—2016年,人工湿地面积增加,增长率为55.32%;沼泽湿地面积减少,减少率为69.97%;湖泊湿地和河流湿地面积较稳定,增长率分别为1.80%和2.06%。湿地变化分两个阶段:第一阶段(1975—2007年),湿地面积总体增加,河流湿地、湖泊湿地和沼泽湿地面积减少,人工湿地面积增加;第二阶段(2007—2016年),湿地面积总体增加,但河流湿地和湖泊湿地面积增加,沼泽湿地面积继续减少,人工湿地面积继续增加,湿地面积增减受人类活动影响较大。  相似文献   

2.
新疆博斯腾流域湿地遥感监测及时空变化过程   总被引:4,自引:0,他引:4  
博斯腾流域是新疆最大的湖泊湿地分布区。湿地作为干旱区的一种特殊景观类型,在流域生态环境和水循环中发挥了重要的作用,其产生和消失、扩大和萎缩对区域生态环境将产生重要的影响。以Landsat系列数据为主要数据源,完成了博斯腾流域的3期遥感制图(1990、2000、2010年),分析了博斯腾流域湿地分布现状,探讨了区域湿地的时空变化过程和动态变化特征。结果表明:新疆博斯腾流域的湿地面积总体上一直在萎缩,1990-2010年总面积减少了16.24%;但是减少趋势相对变缓,且不同类型的湿地变化过程有所不同。其中:1990-2000年河流湿地和湖泊湿地表现为增加趋势,芦苇沼泽湿地表现为减少趋势;2000-2010年河流湿地、芦苇沼泽和湖泊湿地面积都表现为萎缩。在变化动态特征上,流域河流、湖泊湿地最近20a呈现倒"V"型波动,而芦苇沼泽湿地则持续下降。通过湿地变化与区域生态环境因子耦合分析表明,在近期内人类活动是造成区域湿地萎缩的主要因素。  相似文献   

3.
湿地生态系统模型研究进展   总被引:17,自引:3,他引:17  
介绍了湿地生态系统模型概念及类型 ,重点分析了河流湿地、沼泽及河漫滩湿地、湿地退化模型。在河流湿地中 ,重点讨论了水文水动力学模型、泥沙冲淤模型、河流水质模型 ;在沼泽及河漫滩湿地中 ,阐述了水量模型、生物量模型、P模型和 N模型 ;最后在分析湿地退化的数学模型基础上 ,探讨了湿地大型植物的控制模型。  相似文献   

4.
三江平原典型湿地剖面有机碳分布特征与积累现状   总被引:33,自引:0,他引:33  
研究了三江平原3类典型湿地(泥炭沼泽、腐殖质沼泽和沼泽化草甸)沉积物剖面有机碳的组分与分布特征。结果表明,泥炭沼泽、腐殖质沼泽和沼泽化草甸剖面有机碳分布具有明显的储碳层和淀积层。储碳层厚度分别约为110、60和15 cm,有机碳平均含量分别为295、280和60 g/kg(干物质重)。泥炭沼泽和腐殖质沼泽储碳层内,有机碳主要组分为分解程度低的轻组碳(约占总有机碳的70%以上),沼泽化草甸的储碳层内轻组碳约为16%。储碳层以下淀积层的有机碳含量都 < 30 g/kg,轻组碳含量很少。3种类型湿地剖面轻组碳与总有机碳之间有着极显著的正相关关系([WTBX]P[WT]=0.01)。初步建立了湿地有机碳储量的估算方法,得到3种类型湿地剖面1 m内的有机碳储量分别为6.62×104、4.90×104和1.44×104 t/km2,2 m内分别为8.16×104、6.81×104和2.24×104 t/km2。  相似文献   

5.
东北地区湿地及其保护   总被引:7,自引:1,他引:6  
中国东北地区湿地分布面积约1060.69×104hm2,约占东北地区陆地总面积的8.5%.在分析湿地的类型、分布规律及其所面临问题的基础上,阐述了湿地保护的紧迫性和必要性.指出水是湿地生态环境系统中的重要因子,保护湿地生态环境,首要是加强水资源环境的保护.提出了完善法规,保护湿地资源;开展湿地资源调查,加强综合研究;科学管理湿地,严把开发利用审批关;合理配置水资源,保护湿地生态环境;建立湿地保护和合理利用示范区;实行退牧还泽还草,退耕还沼还泽等保护对策与措施.  相似文献   

6.
山东省湿地资源丰富,可分为自然湿地和人工湿地2类,自然湿地包括湖泊、海岸、沼泽、河口湾湿地,人工湿地主要为水稻田、水库、池塘湿地等,湿地面积约为1.71万km^2。该文分析研究了山东省的湿地环境地质问题,并提出了工程措施和非工程措施2种防治措施。  相似文献   

7.
三江平原典型沼泽湿地能量平衡和蒸散发研究   总被引:2,自引:1,他引:1       下载免费PDF全文
基于涡度相关技术对三江平原典型沼泽湿地的水热通量进行了连续观测,研究沼泽湿地能量平衡和蒸散发的季节变化,确定观测期内沼泽湿地总蒸散量,并通过逐步回归方程估算沼泽湿地水面蒸发和植被蒸腾。结果表明,沼泽湿地的能量平衡具有明显的季节变化特征,总体看来,潜热通量是湿地的主要能量支出项,占净辐射的45.5%,感热通量和存储热通量分别占净辐射的27.9%和26.7%。2006年5~10月份沼泽湿地总蒸散量为310.6mm,月均日蒸散量最高值出现在7月。观测期内沼泽湿地水面蒸发量约为221mm,占总蒸散量的71%左右,植被蒸腾量则约占总蒸散量的29%,湿地蒸散发以水面蒸发为主。  相似文献   

8.
东北三江平原湿地动态变化研究   总被引:9,自引:0,他引:9  
借助遥感、GIS手段,以1989年TM、2001年ETM和2007年CBERS遥感影像为主要数据源,通过分析三江平原湿地的分布现状、时空变化规律,并用动态度和景观格局指数量化变化,研究其近20年的变化情况。结果显示:三江平原湿地现主要分布在同江、抚远、富锦、虎林等县市;湖泊和河流湿地呈稳定趋势,沼泽湿地大面积减少,在研究时段内共减少5 356.69 km2,人工湿地大幅度增加,共增加11 597.68 km2。天然湿地破碎化程度加剧,人工湿地呈连片化趋势,受人类活动的影响较大。  相似文献   

9.
王永洁  陈凯 《水文》2008,28(1):84-86
扎龙湿地属于典型的芦苇沼泽湿地,由于扎龙湿地水环境的变化,扎龙湿地土地利用类型的变化为:耕地、居民地、盐碱地总体上略呈增加趋势,草地呈减少趋势,湖泊和水库、明水沼泽、芦苇沼泽等湿地面积变化与来水量的丰枯变化相关,明水沼泽和芦苇沼泽的变化趋势呈反相关.土地利用类型对湿地面积的影响程度最大的是居民地面积,其次是耕地、盐碱地、草地面积的变化.  相似文献   

10.
霍林河流域生态环境需水量研究   总被引:1,自引:0,他引:1  
李青山  周林飞  王教河  李兴春  李金祥 《水文》2006,26(4):27-31,84
根据霍林河流域的具体情况,其生态环境需水量由河流基本功能生态环境需水量和通河湖泊湿地需水量组成。其中河流基本功能生态环境需水量又包括保持水体自净能力用水和河流基本生态环境需水量。综合分析生态环境需水的现有计算方法。结合霍林河流域河流、湖泊、湿地生态系统类型的特点,建立适合于研究区域不同生态系统类型的生态环境需水计算方法。以土地利用遥感动态分析为基础,对霍林河流域各生态系统类型的生态环境需水量进行计算,扣除重复计算部分,基准年和各规划水平年生态环境需水量为85 976万m~3/a,再扣除产流量(18 865万m~3/a)和流域内三个自然保护区的沼泽湿地对应的多年平均降水量(17244万m~3/a),需要霍林河流域和外流域提供的水资源量为49867万m~3/a。  相似文献   

11.
基于2013~2018年Landsat8-OLI 9个时相的遥感数据,采用湿地三类分级系统,以决策树分类法提取不同时间的湿地类型,结果表明:2013-2018年东洞庭湖湖泊草洲、泥滩地和水域面积呈现动态变化,其中草洲面积平均714km2、泥滩地面积平均81km2、水域面积平均502km2;湖区草洲和水体面积占比大,且此消彼长,草洲面积平均占比55.1%,水域面积平均占比38.7%,泥滩地面积最少平均占比仅6.2%;水位变化是湖区草洲出露面积的主控因素,随水位升高,草洲出露面积逐渐减小,且在典型高低水位下草洲空间分布差异明显,高水位下主要分布在南部柴下洲和北部藕池河一带地形较高区域,而低水位条件下湖区大部分草洲面积分布广泛,其面积占湖区总面积的74%。成果进一步验证了东洞庭湖不同水情下的湿地景观格局。  相似文献   

12.
基于高分辨率卫星影像数据,利用遥感、GIS技术获取黑龙江省肇源县内自然资源与生态地质环境各因子分布现状数据,其中:耕地2 541.75 km2、林地161.88 km2、草地349.00 km2、河流128.05 km2、湖泊215.80 km2、沼泽109.17 km2、其他水域84.65 km2、建设用地191.25 km2、未利用地329.94 km2;湿地1 334.54 km2、荒漠化土地775.47 km2。利用地类覆盖率、人均占有量以及景观指数(破碎度指数、平均斑块分形指数、分形维数、多样性指数、均匀度指数)量化分析后,得出两类生态地质环境因子中湿地资源尤其是自然湿地受人类活动干扰程度较大、荒漠化土地受人类活动干扰程度较小的结论。并选取老山村等典型地区进行了多期次遥感动态监测及野外核查,揭示了松嫩低平原典型地区目前存在的湿地退化、土地荒漠化等生态地质环境问题。  相似文献   

13.
段水强  曹广超  刘弢  吴庆  李燕 《冰川冻土》2013,35(5):1237-1247
选取青海羌塘盆地1976-2010年5期遥感影像, 解译了该区域面积大于1 km2以上的67个湖泊面积.结果表明: 1976-1994年, 研究区大部分湖泊呈萎缩状态, 湖泊面积萎缩了446.8 km2, 萎缩幅度为12.5%;1994-2001年, 湖泊面积由3 132.6 km2增加到3 395.2 km2, 至2007年和2010年, 湖泊持续扩张, 面积分别达到3 641.7 km2和3 836.2 km2, 其中2010年的湖泊面积较1994年增加了22.5%, 甚至超过了1976年, 2007-2010年期间湖泊扩张强度最大.同时, 分析了研究区1959-2010年的气候水文变化, 结果显示年平均气温呈显著上升趋势, 年蒸发量在1959-1980年呈下降趋势, 以后趋于稳定, 年降水量、年径流量在1998-1999年间出现了突变上升.湖泊面积对气候、水文的响应关系表明, 近期的湖泊扩张主要由降水、径流偏丰引起, 与气温上升以及蒸发变化的关系并不显著, 气温上升导致冰川退缩所增加的水量对近期湖泊扩张影响较小. 与青海湖、黄河源等地相比, 青海羌塘盆地近期气候、水文、湖泊面积发生转折的时间要提前7 a左右.  相似文献   

14.
艾比湖面积变化及对生态环境影响   总被引:4,自引:2,他引:2  
艾比湖在中更新世为鼎盛期,湖面积曾达3000 km2,贮水量700×108m3,为良好的淡水湖.由于地壳运动和气候的暖干变化,湖面萎缩,到20世纪50年代初湖面积降至1070 km2.自20世纪50年代以来,由于大规模的水土开发,灌区人口、灌溉面积和引水量大幅度增加,入湖水量急剧减少.从20世纪50年代至80年末,灌区人口增加了59.3×104人,灌区面积增加了16.43×104km2之多,净耗水量增加了8.13×108m3左右.湖面积一度降至499 km2(1987年),湖水矿化度达100 g·L-1左右.湖泊的萎缩,导致生态环境的劣变,表现为沙漠化程度加速,浮尘和沙暴天气增加,人畜受害,也导致野生动物的数量减少.20世纪80年代后,由于气候暖湿转型效应,降水和河川径流量有所增加.尤其是大力推广先进节水灌溉技术和退耕还林以及培育生态林等措施,使得入湖水量大幅度增加,特别是2001-2005年的5 a间,年均入湖水量达7.7×108m3,比1989年增加了76%,湖水面积维持在800~950 km2左右.目前生态环境已有所恢复和改观,荒漠植被得到一定程度的修复,沙尘天气明显减少,已有野生动物出没其间.  相似文献   

15.
若尔盖沼泽湿地的萎缩机制   总被引:1,自引:0,他引:1       下载免费PDF全文
1960年以来,若尔盖沼泽湿地的快速萎缩严重影响黄河上游水量补给和当地湿地生态系统,但其机制尚不清晰。基于2010—2013年野外调查、气象水文资料和遥感影像,分析若尔盖沼泽退化的主要原因与机制。尽管气温的缓慢升高,但降水量并未减少,考虑到沼泽的季节性特征,气候变暖对沼泽萎缩影响相当有限,但不是主要原因。经遥感判读和统计,共识别现有920 km的人工渠道,其疏干的沼泽面积约648.3 km2,占总萎缩面积的27%。人工开渠作为强烈的人类活动干扰,是若尔盖沼泽快速萎缩的重要原因。自然水系的溯源侵蚀长期疏干沼泽、降低地下水水位和放射状地向沼泽内部切穿是沼泽萎缩的重要机制。人工开渠连通自然水系强化沼泽内河床下切和排水作用。  相似文献   

16.
It is important to investigate the soil organic carbon reserves of the northern Tibetan Plateau for understanding the global carbon cycle. The surface soil carbon storage is 1.27×108 t, and the surface topsoil organic carbon density is 4.96×103 t/km2 in the study area. Compared with the results of the second National Soil Census, the distribution of organic carbon reserves of chestnut soil, sierozem, alpine steppe soil, swamp soil, sandy soil and ustic cambisols increased gradually, which are mainly distributed in savanes of the northern Qinghai Lake and woodland in middle-high mountain areas of the eastern Qinghai Lake; savanes and woodland are classified as the carbon sink area because this area’s carbon sequestration is greater than the release quantity. By contrast, the distribution of organic carbon reserves of mountain meadow soil, alpine meadow soil, grey cinnamon soil, chernozem and anthropogenic-alluvial soil decreased gradually, which are mainly distributed in the farming areas of eastern Qinghai Province. This area’s carbon sequestration is less than the release quantity because of cultivation effect, and is classified as the carbon source area. The 97.5% of organic carbon storage cumulative frequency is closed to the threshold value of the organic carbon saturation. The carbon sequestration potential of the study area is 241.57×106 t. Take the widely distributed chestnut soil as a case, it will take 18.66 years to reach saturation for the soil organic carbon reserves of chestnut soil.  相似文献   

17.
湿地是生态系统的重要组成部分,在维系区域生态安全中扮演着重要角色.利用1975、2000和2018年的Landsat遥感影像数据,获取3期湿地解译数据,采用动态度分析、差异性分析、转移矩阵等方法对近50年来松嫩平原地区湿地的时空变化特征进行分析,为研究和保护松嫩平原地区湿地生态系统提供一定的理论依据.研究表明:湿地面积由1975年的20 189.81 km2上升至2018年的29 456.79 km2,整体上呈增加的趋势,具体表现为1975—2000年天然湿地的大幅度下降和2000—2018年人工湿地的大规模增加.分析认为:蓄水工程、河道防洪堤和湿地围垦是天然湿地减少的主要因素;降水量变化、气温上升、蒸发量增加是天然湿地变化的次要因素;受经济效益为中心理念驱动,水田改扩建增加是人工湿地增加的主要因素.  相似文献   

18.
针对青藏高原植被稀疏、土壤颗粒较粗糙的特征,基于Noah陆面过程模型(LSM),模拟了植被和土壤对整个高原多年冻土分布和关键属性特征(包括活动层厚度和年平均地温)的影响,并通过野外调查数据对模拟结果进行了评估。结果表明:在考虑稀疏植被和粗糙土壤后,改进的Noah LSM对青藏高原多年冻土分布和属性的模拟性能都有所改善;多年冻土面积由原始Noah模型模拟的1.216×106 km2减少到1.113×106 km2,模拟的空间差异主要出现在多年冻土与季节冻土的过渡区及高原南部的岛状多年冻土区;模拟的高原平均活动层厚度由原始Noah模型模拟的2.55 m增加到2.92 m,年平均地温也由-2.17℃增加到-1.65℃。总之,青藏高原稀疏植被和粗糙土壤对多年冻土有重要影响。  相似文献   

19.
高原湖泊是反映气候变化敏感的指示器。利用1976-2017年的多源资料对柴达木盆地湖泊面积动态进行了监测。结果表明:近50多年来,柴达木盆地气候呈现气温升高,降水普遍增加的增暖增湿趋势,21世纪以来这一趋势更为明显,但存在地区差异,年平均气温升温速率自东向西趋于增加,降水增加速率自东向西趋于减小;柴达木盆地外围东部的托素湖面积1956-2017年总体呈弱的减小趋势,减速为0.41 km2·a-1。但2005-2017年期间湖面以1.34 km2·a-1的增速呈明显扩张趋势,中部的小柴旦湖面积与过去13年同期平均相比,扩大了19.87 km2,而西部的尕斯库勒湖呈先增加后减小的趋势。柴达木盆地气候变化、植被面积、入湖径流等因子是导致湖泊面积变化的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号