首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New structural, microstructural and geochronological (U-Pb LA-ICP-MS, Ar/Ar, K-Ar, Rb-Sr) data were obtained for the Dom Feliciano Belt in Uruguay. The main phase of crustal shortening, metamorphism and associated exhumation is recorded between 630 and 600 Ma. This stage is related to the collision of the Río de la Plata and Congo cratons at ca. 630 Ma, which also involved crustal reworking of minor crustal blocks such as the Nico Pérez Terrane and voluminous post-collisional magmatism. Subsequent orogen-parallel sinistral shearing gave rise to further deformation up to ca. 584 Ma and resulted from the onset of the convergence of the Kalahari Craton and the Río de la Plata-Congo cratons. Sinistral shear zones underwent progressive strain localization and retrograde conditions of deformation during crustal exhumation. Dextral ENE-striking shear zones were subsequently active at ca. 550 Ma, coeval with further sinistral shearing along N- to NNE-striking shear zones. The tectonothermal evolution of the Dom Feliciano Belt thus recorded the collision of the Río de la Plata and Congo cratons, which comprised one of the first amalgamated nuclei of Gondwana, and the subsequent incorporation of the Kalahari Craton into Western Gondwana.  相似文献   

2.
《地学前缘(英文版)》2019,10(6):2045-2061
The Southern Irumide Belt(SIB) is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other.The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton,and bears a Neoproterozoic tectonothermal overprint relating to the Neoproterozoic-Cambrian collision between the Congo and Kalahari cratons.It preserves a record of about 500 million years of plate interaction along this part of the Congo margin.Detrital zircon samples from the SIB were analysed for U-Pb and Lu-Hf isotopes,as well as trace element compositions.These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar(Azania) and India.These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region.Detrital zircon samples from the Chewore-Rufunsa and Kacholola(previously referred to as Luangwa-Nyimba) terranes of the SIB yield zircon U-Pb age populations and evolved ε_(Hf)(t) values that are similar to the Muva Supergroup found throughout eastern Zambia,primarily correlating with Ubendian-Usagaran(ca.2.05-1.80 Ga) phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt.These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic.The more eastern Nyimba-Sinda terrane of the SIB(previously referred to as Petauke-Sinda terrane) records detrital zircon ages and ε_(Hf)(t) values that correlate with ca.1.1-1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt.We ascribe this difference in age populations to the polyphase development of the province,where the sedimentary and volcanic rocks of the Nyimba-Sinda terrane accumulated in extensional basins that developed in the Neoproterozoic.Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts,presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt.This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic,which ultimately closed during collision between the Congo and Kalahari cratons.  相似文献   

3.
New zircon U–Pb ages for a felsic volcanic rock (2,588 ± 10 Ma) and an intrusive granite (≥2,555 ± 6 Ma) in the Gadag greenstone belt in the Western Dharwar Craton, southern India, are similar to dates for equivalent rocks in the Eastern Dharwar Craton and indicates docking of the two cratons prior to this time. The zircons in the intrusive granite are strongly overprinted, and coexisting titanites yielded two different age populations: the dominant group gives an age of 2,566 ± 7 Ma, interpreted as the emplacement age, whereas the minor group gives an age of 2,516 ± 10 Ma, reflecting a hydrothermal overprint. In situ U–Pb dating of monazite and xenotime in gold reefs of the Gadag (2,522 ± 6 Ma) and Ajjanahalli (2,520 ± 9 Ma) gold deposits reveal a previously undated episode of gold mineralization at 2.52 Ga, substantially younger than the 2.55 Ga Hutti deposit in the eastern Dharwar Craton. The new dates confirm that both the younger greenstone belts and lode gold mineralization in the Dharwar Craton are about 100–120 My, younger than in other well-dated Archaean cratons. Although gold mineralization across the craton postdates most of the magmatic activity and metamorphism at upper crustal levels, widespread thermal reworking of the lower-middle crust, involving partial melting, metamorphism, and lower crustal granitoid intrusion, occurred concurrently with gold mineralization. It is likely that the large-scale hydrothermal fluid flow that produced widespread gold deposition was also part of this tectono-thermal event during the final stages of cratonization of the Dharwar Craton in southern India.  相似文献   

4.
内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨   总被引:15,自引:3,他引:12  
石玉若  刘翠  邓晋福  简平 《岩石学报》2014,30(11):3155-3171
内蒙古中部广泛出露花岗质岩类,这些花岗质岩类的时空分布及岩石组合类型的变化,反映了华北板块北缘与蒙古陆块碰撞拼合的进程.本文从花岗质岩类的角度对古亚洲洋在内蒙古中部地区的演化进行了探讨.古亚洲洋在该区的演化经历了十分复杂的过程,包括奥陶纪双向俯冲、志留纪拼贴/增生、泥盆纪拉张、二叠纪南部带俯冲和北部带拉张、并以晚古生代末至早中生代初发生的陆-陆碰撞为标志宣告该区洋盆演化的结束.  相似文献   

5.
The northeastern part of Madagascar is characterized by Archaean to early Proterozoic rocks composed principally of Archaean granite and greenstone/amphibolite as well as reworked migmatite with subordinate Proterozoic paragneisses. The southern part is mostly occupied by Proterozoic rocks, composed mostly of Meso to Neo-Proterozoic and less metamorphic metasediments (Itremo Group) in the northwest, para- and ortho-gneisses in most other areas, with minor granitic gneisses with some Archaean components in the southeast. The north-northwest trending Central Granite-Gneiss-Migmatite Belt (CGGMB) is situated at the western margin of the Archaean-early Proterozoic terrain. The CGGMB is composed of granite, gneiss and migmatite with distinct lithologies and structures. They are: i) many types of granites including alkaline to mildly alkaline granites, and calc-alkaline granites; ii) batholitic granites, migmatitic granites and granite dyke swarm, iii) eclogite, and iv) the Ankazobe-Antananarivo-Fianarantsoa Virgation.

The CGGMB was formed by the collision of the palaeo-Dharwar Craton to the east and the East African Orogen to the west at ca. 820-720 Ma and suffered indentation by a part of the western part of the East African Orogen at ca. 530 Ma that produced the Ankazobe-Antananarivo-Fianarantsoa Virgation at the centre of the CGGMB. Thus, the CGGMB is proposed to be the continuation of the eastern suture between the palaeo Dharwar Craton and the East African Orogen, and carries the main feature of the Pan-African collisional event in Madagascar.  相似文献   


6.
The southern East African Orogen is a collisional belt where the identification of major suture zones has proved elusive. In this study, we apply U–Pb isotopic techniques to date detrital zircons from a key part of the East African Orogen, analyse their possible source region and discuss how this information can help in unravelling the orogen.U–Pb sensitive high-mass resolution ion microprobe (SHRIMP) and Pb evaporation analyses of detrital zircons from metasedimentary rocks in eastern Madagascar reveal that: (1) the protoliths of many of these rocks were deposited between 800 and 550 Ma; and (2) these rocks are sourced from regions with rocks that date back to over 3400 Ma, with dominant age populations of 3200–3000, 2650, 2500 and 800–700 Ma.The Dharwar Craton of southern India is a potential source region for these sediments, as here rocks date back to over 3400 Ma and include abundant gneissic rocks with protoliths older than 3000 Ma, sedimentary rocks deposited at 3000–2600 Ma and granitoids that crystallised at 2513–2552 Ma. The 800–700 Ma zircons could potentially be sourced from elsewhere in India or from the Antananarivo Block of central Madagascar in the latter stages of closure of the Mozambique Ocean. The region of East Africa adjacent to Madagascar in Gondwana reconstructions (the Tanzania craton) is rejected as a potential source as there are no known rocks here older than 3000 Ma, and no detrital grains in our samples sourced from Mesoproterozoic and early Neoproterozoic rocks that are common throughout central east Africa. In contrast, coeval sediments 200 km west, in the Itremo sheet of central Madagascar, have detrital zircon age profiles consistent with a central East African source, suggesting that two late Neoproterozoic provenance fronts pass through east Madagascar at approximately the position of the Betsimisaraka suture. These observations support an interpretation that the Betsimisaraka suture separates rocks that were derived from different locations within, or at the margins of, the Mozambique Ocean basin and therefore, that the suture is the site of subduction of a strand of Mozambique Ocean crust.  相似文献   

7.
Revision of crustal architecture and evolution of the Central Asian Orogenic Supercollage (CAOS) between the breakup of Rodinia and assembly of Pangea shows that its internal pattern cannot be explained via a split of metamorphic terranes from and formation of juvenile magmatic arcs near the East European and Siberian cratons, followed by zone-parallel complex duplication and oroclinal bending of just one or two magmatic arcs/subduction zones against the rotating cratons. Also, it cannot be explained by breakup of multiple cratonic terranes and associated magmatic arcs from Gondwana and their drift across the Paleoasian Ocean towards Siberia. Instead, remnants of early Neoproterozoic oceanic lithosphere at the southern, western and northern periphery of the Siberian craton, as well as Neoproterozoic arc magmatism in terranes, now located in the middle of the CAOS, suggest oceanic spreading and subduction between Eastern Europe and Siberia even before the breakup of Rodinia at 740–720 Ma. Some Precambrian terranes in the western CAOS and Alai-Tarim-North China might have acted as a bridge between Eastern Europe and Siberia.The CAOS evolution can be rather explained by multiple regroupings of old and juvenile crust in eastern Rodinia in response to: 1) 1000–740 Ma propagation of the Taimyr-Paleoasian oceanic spreading centres between Siberian and East European cratons towards Alai-Tarim-North China; 2) 665–540 Ma opening and expansion of the Mongol-Okhotsk Ocean, collision of Siberian and East European cratons with formation of the Timanides and tectonic isolation of the Paleoasian Ocean; 3) 520–450 Ma propagation of the Dzhalair-Naiman and then Transurals-Turkestan oceanic spreading centres, possibly from the Paleotethys Ocean, between Eastern Europe and Alai-Tarim, essentially rearranging all CAOS terranes into a more or less present layout; and 4) middle to late Paleozoic expansion of the Paleotethys Ocean and collision of Alai-Tarim-North China cratons with CAOS terranes and Siberian craton to form the North Asian Paleoplate prior to its collision with Eastern Europe along the Urals to form Laurasia. Two to five subduction zones, some stable long-term and some short-living or radically reorganized in time, can be restored in the CAOS during different phases of its evolution.  相似文献   

8.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.  相似文献   

9.
The continent of China developed through the coalescence of three major cratons(North China, Tarim and Yangtze) and continental micro-blocks through the processes of oceanic crust disappearance and acceretionary-collision of continental crusts. The strata of the Chinese continental landmass are subdivided into 12 tectonic-strata regions. Based on the composition of geological features among the three main cratons, continental micro-blocks and other major global cratons, their affinities can be preliminarily deduced during the Tonian period, using evidence from sedimentary successions, paleobiogeography, tectonic and magmatic events. The Yangtze and Tarim cratons show that they have close affinities during the assembly-dispersal milestone of the Rodinia Supercontinent. The sedimentary record and magmatic age populations in the blocks suggest that there was a widespread, intensive magmatic event that resulted from a subduction process during ~1000–820 Ma, related to continental rifting around the Yangtze and Tarim cratons. However, they differ greatly from the North China Craton. The continental micro-blocks in the Panthalassic Ocean could have some missing connection with the North China Craton that persisted until the Middle-Late Devonian. In contrast, the Alxa Block showed a strong affinity with the Tarim Craton. The revised Tonian paleogeography of the Rodinia Supercontinent is a good demonstration of how to show the relationship between the main cratons and the continental micro-blocks.  相似文献   

10.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

11.
The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of dykes in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, boninitic dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. Geochronology and geochemistry are used to constrain the petrogenesis and relationship of the boninitic dykes (SiO2 = 51.5 to 55.7 wt%, MgO = 5.8 to 18.7 wt%, and TiO2 = 0.30 wt% to 0.77 wt%) from the central Bastar Craton (Bhanupratappur) and the NE Dharwar Craton (Karimnagar). A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur yielded a weighted-mean 207Pb/206Pb age of 2365.6 ± 0.9 Ma that is within error of boninitic dykes from the Dharwar Craton near Karimnagar (2368.5 ± 2.6 Ma) and farther south near Bangalore (2365.4 ± 1.0 Ma to 2368.6 ± 1.3 Ma). Rhyolite-MELTS modeling indicates that fractional crystallization is the likely cause of major element variability of the boninitic dykes from Bhanupratappur whereas trace element modeling indicates that the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The Nd isotopes (εNd(t) = −6.4 to +4.5) of the Bhanupratappur dykes are more variable than the Karimnagar dykes (εNd(t) = −0.7 to +0.6) but they overlap. The variability of Sr-Nd isotopes may be related to crustal contamination during emplacement or is indicative of an isotopically heterogeneous mantle source. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Penukonda, Chennekottapalle) indicate they are members of the same giant radiating dyke swarm. Moreover, our results suggest that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration at 2.37 Ga than the present day. It is possible that the 2.37Ga dyke swarm was related to a mantle plume that assisted in the break-up of an unknown or poorly constrained supercontinent.  相似文献   

12.
Felsic magmatism associated with ocean–ocean and ocean–continent subduction processes provide important evidence for distinct episodes of crust-generation and continental lithospheric evolution. Rhyolites constitute an integral component of the tholeiitic to calc-alkaline basalt–andesite–dacite–rhyolite (BADR) association and contribute to crustal growth processes at convergent plate margins. The evolution of the Dharwar Craton of southern peninsular India during Meso- to Neoarchean times was marked by extensive development of greenstone belts. These granite-greenstone terranes have distinct volcano-sedimentary associations consistent with their geodynamic setting. The present study deals with geochemistry of rhyolites from the Chitradurga-Shimoga greenstone belts of western (WDC) and the Gadwal-Kadiri greenstone belts of eastern (EDC) sectors of Dharwar Craton to compare and evaluate their petrogenesis and geodynamic setting and their control on the continental lithospheric evolution of the Dharwar Craton. At a similar range of SiO2, Al2O3, Fe2O3, the rhyolites of WDC are more potassic, whereas the EDC rhyolites are more sodic and less magnesian with slight increase in TiO2. Minor increase in MgO content of WDC rhyolites reflects their ferromagnesian trace elements which are comparatively lower in the rhyolites of EDC. The relative enrichment in LILE (K, Rb) and depletion in HFSE (Nb, Ta, Zr, Hf) marked by negative Nb–Ta, Zr–Hf and Ti anomalies endorse the convergent margin processes for the generation of rhyolites of both the sectors of Dharwar Craton. The high silica potassic rhyolites of Shimoga and Chitradurga greenstone belts of WDC showing prominent negative Eu and Ti anomalies, flat HREE patterns correspond to Type 3 rhyolites and clearly point towards their generation and emplacement in an active continental margin environment. The geochemical characteristics of Gadwal and Kadiri rhyolites from eastern Dharwar Craton marked by aluminous compositions with low and fractionated HREE patterns and minor negative Eu anomalies are in conformity with Type 1 rhyolites and suggest that they were erupted in an intraoceanic island arc system. The overall geochemical systematics of the rhyolites from both the sectors of Dharwar Craton suggest a change in the geodynamic conditions from intraoceanic island arc of eastern Dharwar Craton and an active continental margin of western Dharwar marked by ocean–ocean subduction and migration of oceanic arc towards a continent followed by arc-continent collision that contributed for the evolution of continental lithosphere in the Dharwar Craton.  相似文献   

13.
The formation and evolution of continental crust in the Early Earth are of fundamental importance in understanding the emergence of continents, their assembly into supercontinents and evolution of life and environment. The Dharwar Craton in southern India is among the major Archean cratons of the world, where recent studies have shown that the craton formation involved the assembly of several micro-continents during Meso- to Neoarchean through subduction-accretion-collision processes. Here we report U-Pb-Hf isotope data from detrital zircons in a suite of metasediments (including quartz mica schist, fuchsite quartzite and metapelite) from the southern domain of the Chitradurga suture zone that marks the boundary between the Western and Central Dharwar Craton. Morphology and internal structure of the zircon grains suggest that the dominant population was derived from proximal granitic (felsic) sources. Zircon U-Pb data are grouped into Paleo-Mesoarchean and Neoarchean to Paleoproterozoic with peaks at 3227 Ma and 2575 Ma. The age spectra of detrital zircon grains, in combination with the Lu-Hf isotopic analyses indicate sediment provenance from magmatic sources with model ages in the range of ca. 3.67 to 2.75 Ga. A transition from dominantly juvenile to a mixture of juvenile and recycled crustal components indicate progressive crustal maturity. The results from this study suggest major crustal growth events during ca. 3.2 Ga and 2.6 Ga in Dharwar. Our study provides insights into continental emergence, weathering and detrital input through river drainage systems into the trench during Eoarchean to Mesoarchean.  相似文献   

14.
We propose that the development of the Borborema Province from 620 to 570 Ma resulted from two discrete collisional events. Collision I, along the West Gondwana Orogen on the west side of the Province, took place at c. 620–610 Ma as the result of collision between the Parnaíba Block, as the forefront of the much larger Amazonian‐West Africa Craton, and the old basement of the Borborema Province. The suture zone related to this collision was reactivated by a dextral transform zone (the Transbrasiliano Lineament), allowing the Borborema Province to approach and collide against the São Francisco Craton in the south at c. 590–580 Ma marking collision II along the Sergipano Orogen. The combined stresses related to eastward push from collision I and northward push from the cratonic indentation into a thickened lithosphere gave rise to an extensive network of strike‐slip shear zones across the Province, forcing its northeastward extrusion.  相似文献   

15.
Paleoproterozoic orogens of the North Australian Craton are related to the assembly of the Columbia Supercontinent. The roles of the distinct orogens in the Paleoproterozoic craton amalgamation are poorly understood due to the lack of surface exposure. The age and isotopic systematics of detrital zircon grains hosted in Paleoproterozoic sedimentary sequences are used to unravel the geological history of the craton, in terms of paleogeography and tectonic setting. The oldest (Early Paleoproterozoic) metasedimentary units are characterised by detrital zircon ages peaking at ca. 2500 Ma. The zircon εHf values show large variations in the different orogens and range from −18 to +6. The overlaying youngest turbiditic units show minor accumulation of Archean detritus. Units from apparently different metasedimentary sequences have a major detrital zircon age population at ca. 1865 Ma, and a relatively restricted range of zircon εHf values between −7.3 and +2.6. The isotopic distinctiveness of the oldest units is attributed to local variations in the depositional environment, probably due to horst-graben architecture of the early Paleoproterozoic basin. The youngest turbiditic units blanketed this early horst-graben architecture and in part have a local provenance. Potential detritus sources include South Australian Craton, Dharwar Craton and Aravalli-Lesser Himalayan terrains in India, South China, and Madagascar (Africa). This finding indicates that these regions might have been connected before the Columbia Supercontinent was formed. The ubiquitous ca. 2500 Ma magmatic event records the assembly of these cratonic fragments in a previous supercontinent called Kernorland. In addition, the data do not support a proximity of the North Australian Craton with the North China Block, Western Laurentia (North America), and Kaapvaal Craton (Africa) during Columbia amalgamation.  相似文献   

16.
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss) from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar) suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma) and Paleoproterozoic(ca.2200-1700 Ma) zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma) and early Neoproterozoic(ca.900-750 Ma) detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with~680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision.  相似文献   

17.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

18.
Accretionary orogens are hallmarks of subduction tectonics along convergent plate margins. Here we report a sequence of low-grade metasediments carrying exhumed blocks of ultramafic, mafic and felsic rocks from Sargur in the Western Dharwar Craton in India. These rocks occur along the southern domain of the Chitradurga Suture Zone, which marks the boundary between the Western and Central Dharwar Cratons and thus provide a window to explore Archean convergent margin processes. We present zircon U-Pb and Lu-Hf data from Sargur metasediments including quartz mica schist, fine-grained quartzite, and pelitic schist, as well as from blocks/layers of trondhjemite, garnet amphibolite, and chromite-bearing serpentinite occurring within the metasedimentary accretionary belt. The detrital zircon grains from the metasediments show multiple age groups, with the oldest age as 3482 Ma and an age peak at 2862 Ma. Magmatic zircons in trondhjemite show 207Pb/206Pb weighted mean age of ca. 2972 Ma, whereas those in the chromite-bearing serpentinite display multiple age populations of ca. 2896, 2750, 2648, 2566 and 2463 Ma, tracing zircon crystallization in an evolving mantle wedge adjacent to a subducting oceanic plate. Metamorphism is dated as ca. 2444 Ma from zircon grains in the garnet amphibolite. Zircon εHf(t) in the mafic-ultramafic rocks and trondhjemite are mostly positive, suggesting a juvenile (depleted mantle) source. The detrital zircon Lu-Hf data suggest that the sediment source involved Paleoarchean juvenile and reworked components. Based on our findings, we propose that the Sargur sequence represents an accretionary mélange which forms part of a major Mesoarchean accretionary orogen that witnessed multiple stages of tectonic erosion at least during three periods at ca. 3200–3000 Ma, 3000–2800 Ma and 2800–2500 Ma removing a large part of the accretionary prism along the convergent margin. We correlate the processes with prolonged subduction-accretion cycle culminating in the final collision between the Western and Central Dharwar cratonic blocks.  相似文献   

19.
《Gondwana Research》2003,6(3):501-511
Gravity modeling of an E-W profile across Dharwar Craton, India and Madagascar, integrated with the results of Deep Seismic Sounding (DSS) across the Dharwar Craton suggest a thick crust of 40-42 km under the eastern part of Eastern Dharwar Craton (EDC), the Western Dharwar Craton (WDC) and the central part of the Madagascar. Towards east of these blocks, the crustal thickness is reduced to 36-38 km along the Eastern Ghat Fold Belt (EGFB), shear zone between the EDC and the WDC and the east coast of Madagascar, respectively. These zones of thin crust are also characterized by high density lower crustal rocks associated with thrusts. The seismic section across Dharwar Craton shows domal- shaped reflectors in the lower crust and upper mantle under the WDC which may be related to asthenopheric upwelling during an extension phase. The occurrences of large schist belts with volcano-sedimentary sequences of marine origin of late Archean period (3.0-2.7 Ga) as rift basins in the WDC and Madagascar also suggest an extensional phase in this region during that period. It is followed by a convergence between the WDC and the EDC giving rise to collision-related shear and thrust zones between the WDC and the EDC associated with high density lower crustal rocks. The seismic section shows upwarped reflectors in the upper crust which may be related to this convergence. Eastward dipping reflectors under WDC and EDC and west verging thrusts suggest convergence from the west to the east which resulted in easterly subduction giving rise to subduction-related K-granite plutons of the EDC of 2.6-2.5 Ga. In this regard, the Closepet granite in the EDC which extends almost parallel to the shear zone between the WDC and EDC and shows an I-type calk-alkaline composition may represent relict of an island arc and the linear schist belts with bimodal volcanics of the EDC east of it might have developed as back arc rift basins. Subsequent collision between India and Antarctica along the EGFB during Middle Proterozoic, indicated by eastward dipping reflectors in the crust and the upper mantle and west verging thrust gave rise to contemporary high-grade rocks of the EGFB (1.6-1.0 Ga) and associated mafic and felsic intrusives of this belt. The part of adjoining Cuddapah basin contemporary to the EGFB towards the west consisting of marine shelf type of sediments which are highly disturbed and thickest at its contact with the EGFB may represent a peripheral foreland basin. Gravity modeling provides thickest crust of 42 km in the southern part of the WDC and does not support sharp increase in crustal thickness of 50-60 km with high velocity upper mantle as suggested from receiver function analysis. It may represent some foreign material of high density trapped in this section such as part of oceanic crust during convergence and subduction that is referred to above. It is supported from eastward dipping reflectors in lower crust and upper mantle in adjoining region.  相似文献   

20.
This is a synopsis of available data the on crustal structure and properties of thirteen Archean cratons of Gondwanaland (the cratons of Africa, Australia, Antarctica, South America, and the Indian subcontinent). The data include estimates of surface area, rock age and lithology, Moho depth, thickness of lithosphere and sediments, as well as elevations, all summarized in a table. The cratons differ in size from 0.05 x 106 km2 (Napier craton) to 4 x 106 km2 (Congo craton) and span almost the entire Archean period from 3.8 to 2.5 Ga. Sediments are mostly thin, though reach 7 km in the Congo and West African cratons. Elevations above sea level are from 0 to 2 km; some relatively highland cratons (Kaapvaal, Zimbabwe, and Tanzanian) rise to more than 1 km. On the basis of regional seismic data, the Moho map for cratons has been improved. The Moho diagrams for each craton are constructed. The analysis of the available new data shows that the average Moho depth varies from 33 to 44 km: Pilbara (33 km), Grunehogna (35 km), Sao Francisco (36 km), Yilgarn (37 km), Dharwar (38 km), Tanzanian (39 km), Zimbabwe (39 km), Kaapvaal (40 km), Gawler (40 km), Napier (40 km), West Africa (40 km), Congo (42 km), and Amazon (44 km) cratons. The Moho depth within the cratons is less uniform than it was assumed before: from 28 to 52 km. The new results differ significantly from the earlier inference of a relatively flat Moho geometry beneath Archean cratons. According to the new data, early and middle Archean undeformed crust is characterized by a shallow Moho depth (28-38 km), while late Archean or deformed crust may be as thick as 52 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号