首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Historical gold mining operations in Nova Scotia, Canada, resulted in numerous deposits of publicly accessible, arsenic (As)-rich mine waste that has weathered in situ for 75–150 years, resulting in a wide range of As-bearing secondary minerals. The geochemical heterogeneity of this mine waste creates a challenge for identifying a single remediation approach that will limit As mobility. A 30-cm-thick, low-organic content soil cover was evaluated in a laboratory leaching experiment where, to simulate natural conditions, the equivalent of 2 years of synthetic rainwater was leached through each column and two dry seasons were incorporated into the leaching protocol. Each column was a stratigraphic representation of the four major tailings types found at the historical Montague and Goldenville gold mine districts: hardpan tailings, oxic tailings, wetland tailings, and high Ca tailings. Hardpan tailings released acidic, As-rich waters (max 12 mg/L) under the soil cover but this acidity was buffered by surrounding oxic tailings. Leachate from the oxic tailings was circumneutral, with average As concentrations between 4.4 and 9.7 mg/L throughout the experiment. The presence of carbonates in the high Ca tailings resulted in near-neutral to weakly alkaline leachate pH values and average As concentrations between 2.1 and 6.1 mg/L. Oxidation of sulfides in the wetland tailings led to acidic leachate over time and a decrease in As concentrations to values that were generally less than 1 mg/L. This study shows that the use of a low-organic content soil cover does not create reducing conditions that would destabilize oxidized, As-bearing secondary phases in these tailings. However, oxygen penetration through the cover during dry seasons would continue to release As to tailings pore waters via sulfide oxidation reactions.  相似文献   

2.
 Leaching of two contrasting types of sulphidic tailings in humidity cells has been performed. The release of heavy metals and the oxidation rate have been studied. Tailings from the Laver mine contain a few percent sulphides and lack carbonates, whereas tailings from the Stekenjokk mine are both sulphide- and carbonate-rich. The results showed that in the leachates from the Laver samples, the metal concentrations increased and pH decreased with time, indicating an increased oxidation rate. In the Stekenjokk samples, pH remained high during the experiment, thereby keeping the metal concentrations low in the leachates. The oxidation rate also decreased with time, probably due to Fe-hydroxide coatings on sulphide surfaces. The results show that addition of carbonates and the maintenance of a high pH not only reduce the solubility of heavy metals, but also decrease the oxidation rate of sulphides. Received: 20 January 1998 · Accepted: 2 April 1998  相似文献   

3.
At the Kristineberg mine, northern Sweden, sulphidic mine tailings were remediated in an 8-year pilot-scale experiment using sewage sludge to evaluate its applicability as a sealing layer in a composite dry cover. Sediment, leachate water, and pore gas geochemistry were collected in the aim of determining if the sludge was an effective barrier material to mitigate acid rock drainage (ARD) formation. The sludge was an effective barrier to oxygen influx as it formed both a physical obstruction and functioned as an organic reactive barrier to prevent oxygen to the underlying tailings. Sulphide oxidation and consequential ARD formation did not occur. Sludge-borne trace elements accumulated in a reductive, alkaline environment in the underlying tailings, resulting in an effluent drainage geochemistry of Cd, Cu, Pb and Zn below 10 μg/L, high alkalinity (810 mg/L) and low sulphate (38 mg/L). In contrast, the uncovered reference tailings received a 0.35-m deep oxidation front and typical ARD, with dissolved concentrations of Cd, Zn and sulphate, 20.8 μg/L, 16,100 μg/L and 1,390 mg/L, respectively. Organic matter degradation in the sludge may be a limiting factor to the function of the sealing layer over time as 85 % loss of the organic fraction occurred over the 8-year experimental period due to aerobic and anaerobic degradation. Though the cover may function in the short to medium term (100 years), it is unlikely to meet the demands of a long-term remedial solution.  相似文献   

4.
Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon ZnCu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension of the water cover, pyrite is enriched in cobalt (up to 2.6 wt%) indicating reprocessing of tailings as an alternative management option. Through adoption of an integrated mineralogical and geochemical characterization approach for tailings assessment robust management strategies after mine closure can be developed.  相似文献   

5.
Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.  相似文献   

6.
The use of covers with capillary barrier effects (CCBEs) for reducing acid mine drainage (AMD) from sulphidic mine tailings is simulated using the MIN3P finite volume model for coupled groundwater flow, O2 diffusion and multi-component reactive transport. The model is applied to simulate five pilot-scale in situ test cells containing reactive tailings from the Manitou mine site, Val d’Or, Que., Canada. Four of the cells were constructed with CCBEs over the tailings, while the fifth tailings cell was left uncovered. Observed and simulated discharge from the base of each cell showed that the capillary barrier covers significantly reduced sulphide oxidation and AMD. Compared to acidic discharge from the uncovered cell, discharge from the four CCBE-covered cells had neutral pH levels and 1–7 orders of magnitude lower concentrations of SO4, Fe, Zn, Cu and Al. The simulations showed that the moisture retaining layer of the CCBEs reduced AMD by inhibiting O2 diffusion into the underlying reactive wastes. Provided the moisture-retention layer of the CCBE remains close to saturation, its thickness had a relatively minor effect. Under such near-saturated conditions, O2 availability is limited by its diffusion rate through the bulk porous medium and not by the diffusion rate through the oxidized grain shells. The model is providing important new insights for comparing design alternatives for reducing or controlling AMD.  相似文献   

7.
Covers with capillary barrier effects (CCBE) are considered to be one of the most effective ways to control acid mine drainage (AMD) production from mine wastes. The use of low-sulphide tailings in CCBE has been proposed recently for cases where other types of material may be unavailable near the mining site. This paper presents leaching column test results showing that CCBEs with a moisture-retaining layer made of slightly reactive tailings, with three different sulphide contents, can effectively limit the production of AMD from the acid-generating tailings placed underneath. With these layered covers, the leachate pH was maintained near neutrality throughout the testing period. When compared to uncovered tailings, the efficiency of the cover systems for reducing the amount of contaminants in the percolated water was determined to be greater than 99% for zinc, copper and iron. This study shows that the use of low-sulphide tailings can improve the ability of a CCBE to limit gas diffusion by consuming a fraction of the migrating oxygen.  相似文献   

8.
This study was to investigate the source, mobility and attenuation of As at the New Britannia Mine, Snow Lake, Manitoba. One major source of As contamination was determined to be an arsenopyrite residue stockpile (ARS) containing refractory Au in a waste rock impoundment. It appears that As is still moving through glacial clay at the base of the ARS into a confined aquifer even though the pile was capped in the year 2000. Arsenic is also being mobilized from a deposit of tailings, which formed following spills by previous owners, Nor Acme. Arsenic from the tailings is being mobilized by oxidation of arsenopyrite and reduction of arsenate to the more mobile arsenite by arsenate-reducing bacteria. This contamination is affecting a shallow unconfined aquifer and surface water flowing from the tailings through wetlands towards Snow Lake. Arsenic is being attenuated by adsorption to hydrated ferric oxides (HFO) in the tailings, wetland soils and aquatic plants. Although As in surface water, soils and plants along the flow path from the mine to Snow Lake are above Canadian drinking water guidelines, efficient natural attenuation by HFO in soils and plants of the wetlands have limited the concentration in Snow Lake to below drinking water standards.  相似文献   

9.
A series of laboratory column tests on reactive mine tailings was numerically simulated to study the effect of high water saturation on preventing sulfide mineral oxidation and acid mine drainage (AMD). The approach, also known as an elevated water table (EWT), is a promising alternative to full water covers for the management and closure of sulfidic tailings impoundments and for the long term control of acid mine drainage. The instrumented columns contained reactive tailings from the Louvicourt mine, Quebec, and were overlain by a protective sand cover. Over a 13–19 month period, the columns were exposed to atmospheric O2 and flushed approximately every month with demineralized water. A free draining control column with no sand cover was also used. During each cycle, water table elevations were controlled by fixing the pressure at the column base and drainage water was collected and analyzed for pH and Eh, major ions, and dissolved metals (Fe, Zn, Cu, Pb, and Mg). The columns were simulated using the multi-component reactive transport model MIN3P which solves the coupled nonlinear equations for transient water flow, O2 diffusion, advective–dispersive transport and kinetic geochemical reactions. Physical properties and mineralogical compositions for the material layers were obtained from independent laboratory data. The simulated and observed data showed that as the water table elevation increased, the effluent pH became more neutral and SO4 and dissolved metal concentrations decreased by factors on the order of 102–103. It is concluded that water table depths less than or equal to one-half of the air entry value (AEV) can keep mine tailings sufficiently saturated over the long term, thus reducing sulfide oxidation and AMD production.  相似文献   

10.
Five sulfide mine tailings coming from the Joutel mine tailing ponds (Quebec, Canada) were tested by the humidity cell test (30 to 52 cycles duration) and the column test (11 to 12 cycles duration). The objectives of this study were twofold. First, there was the determination of the tailings acid generation potential for site reclamation. Second, there was the kinetic test comparison for understanding the tailings geochemical behavior under different test conditions. The samples used had a wide diversity in terms of acid-generation potential, particle size distribution, and parameters influencing reaction rates. Leachates produced remained at a near neutral pH for the duration of the tests. Evolution of the main elements involved in the dissolution processes demonstrated neutralization by carbonates as a response to the acid generated by sulfide oxidation. Depletion rates given by sulfates are higher for the humidity cell tests when compared to those obtained for the column tests. This is consistent with most studies to date, the humidity cell test being considered as more severe. However, by taking the ratio between cumulative elements coming from neutralization and the ones coming from oxidation, similar curves (named herein oxidation –neutralization curves) for all tests were obtained. These results show that overall geochemical behavior of the tailings is similar at near neutral pH for both types of tests. With this interpretation method, the acid-generation potential of the Joutel tailings were tested and compared to the static test results to constrain their uncertainty zone with regard to the studied tailings. The tailings geochemical behavior (carbonate dissolution response to sulfide oxidation) at near neutral pH condition appears slightly dependent of test conditions under certain hypothesis.  相似文献   

11.
If a mine waste pile is left open, an active chemical reaction of oxidation is often found due to the commonly high content of pyritic materials. The oxidation of pyrites is an exothermic process and the released heat will promote the flow of fresh oxygen from the surrounding atmosphere into the waste dump. As a result, oxidation reaction will accelerate and temperature within the dump can increase to as high as 60°C above the ambient temperature. The oxidation process also releases sulphuric acid and hydrogen ions into ground water to cause water contamination. Low‐permeability covers such as clay liners have been recently proposed to abate the oxidation process in mine wastes. The effectiveness of using low‐permeability materials to cover mine wastes in order to suppress the pyrite oxidation is examined. By conducting the theoretical analysis of the onset of convective air flow within waste rocks, the conditions under which soil gas flow is significant are identified. By comparing the results with previous field measurements and theoretical analysis for the uncovered conditions, it is shown that low‐permeability covers can effectively suppress soil gas flow and slow down the pyrite oxidation process in mine wastes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
Mineral processing operation at the Sarcheshmeh porphyry copper mine has produced huge quantities of tailings materials containing sulphide minerals in particular pyrite. These tailings materials were geochemically and mineralogically characterised to assess pyrite and chalcopyrite oxidation, acid mine drainage generation, and trace element mobility to lead development of a proper remediation plan. Five vertical trenches up to 4.2 m deep were excavated from the tailings surface, and 70 solid samples were taken in 0.3 m intervals. The samples were first mineralogically analysed. Pyrite was the main sulphide mineral found in the tailings. The gangue minerals include quartz ± muscovite–illite ± chlorite ± albite ± orthoclase ± halite. The samples were geochemically analysed for total concentrations of 62 elements, paste pH, SO4 2?, CO3 2?, and HCO3 ?. The maximum concentrations of SO4 2? (1,300, 1,170, 1,852, 1,960 and 837 mg/L) were observed at a depth of 0.9 m in profiles A, B, C, D and E, respectively. The tailings have a high acid-producing potential and low acid-neutralising potential (pyrite 4–6 wt %, calcite 1 wt %). Fe2(SO4)3, CuSO4, MgSO4 and MnSO4 were the dominant secondary sulphate minerals in the tailings. The lowest pH values (2.9, 3 and 3) were measured at a depth of 0.3 m in the profiles A, B and C, 3.9 at a depth of 0.6 m in the profile D and 3 at a depth of 0.9 m in the profile E. The upper portions of the profiles C (1.8 m) and D (2.1 m) were moderately oxidised, while oxidation in the profiles A, B and E did not extend more than 1.2, 1.2 and 1.5 m beneath the tailings surface. Zn, Pb, Rb, U, Hf, Nd, Zr and Ga show almost a constant trend with depth. Cd, Sr, Th, La and Ce increased with increasing depth of the tailings materials while, Co, V, Ti, Cr, Cu, As, Mn, Ag, Mo and Ni exhibit initially a decreasing trend from tailings surface to the depths that vary between 0.9 and 1.2. They then remained constant with the depth. The results show pyrite and chalcopyrite oxidation at surface layers of the tailings and subsequent leaching of the oxidation products and trace elements by infiltrated atmospheric precipitation.  相似文献   

13.
This study appraised the use of phosphate fertilisers in immobilising metals in mine tailings to prevent their uptake into Curly Mitchell grass (Astrebla lappacea), when grown on capped, phosphate-amended tailings. Leaching experiments showed that Pb mobility was reduced by both bone meal and superphosphate amendment. Bone meal amendment also reduced Cd mobility. By contrast, Cd, Mn and Zn mobility increased in superphosphate-amended tailings due to increased acid production and, Cu was mobilised in bone meal-amended tailings possibly through the formation of soluble metal-complexing organic compounds. Arsenic and Sb were mobilised in both treatments due to phosphate ligand exchange. Greenhouse trials used Curly Mitchell grass grown on 1-m-high columns stacked with waste materials and different amendments overlain by clean topsoil. Curly Mitchell grass showed substantial uptake of Cd, Mn, Pb and Zn from unamended tailings and waste rock, where these were penetrated by the plant’s root system. Addition of phosphate fertilisers to the surface of tailings did not result in reduced metal uptake by Curly Mitchell grass. In tailings capped with limestone, the limestone layer formed an effective physical barrier preventing root penetration into the tailings and led to substantially reduced metal uptake in grass. The study demonstrates that thorough mixing of waste materials and fertilisers as well as irrigation may be required for successful phosphate immobilisation of metals in base metal tailings. Alternatively, the placement of a thin layer of crushed limestone on top of the tailings pile prior to capping may lead to the formation of a chemical and physical barrier and prevent the transfer of environmentally significant elements into the above-ground biomass of Mitchell grasses.  相似文献   

14.
Soil, mine tailing, and waste dump profiles above three mesothermal gold deposits in the Bohemian Massif with different anthropogenic histories have been studied. Their mineralogical, major element, and arsenic (As) contents and the contents of secondary arsenic minerals were analyzed. The As-bearing minerals were concentrated and determined using X-ray diffraction (XRD) analysis, the Debye-Scherrer powder method, scanning electron microscopy (SEM), and energy-dispersive microanalysis (EDAX). The amorphous hydrous ferric oxides (HFO), As-bearing goethite, K-Ba- or Ca-Fe- and Fe- arsenates pharmacosiderite, arseniosiderite, and scorodite, and sulfate-arsenate pitticite were determined as products of arsenopyrite or arsenian pyrite oxidation. The As behaviour in the profiles studied differs in dependence on the surface morphology, chemical and mineralogical composition of the soil, mine wastes or tailings, oxidation conditions, pH, presence of (or distance from) primary As mineralization in the bedrock, and duration of the weathering effect. Although the primary As mineralization and the bedrock chemical composition are roughly similar, there are distinct differences in the As behaviour amongst the Mokrsko, Roudný and Kaperské Hory deposits.  相似文献   

15.
Mine tailings at the former Delnite gold mine in northern Ontario were characterized to assess the impact of a biosolids cover on the stability of As species and evaluate options for long-term management of the tailings. Arsenic concentrations in the tailings range from 0.15 to 0.36 wt% distributed among goethite, pyrite and arsenopyrite. Pyrite and arsenopyrite occur as small and liberated particles that are enveloped by goethite in the uncovered tailings and the deeper portions of the biosolids-covered tailings. Sulfide particles in the shallower portions of the biosolids-covered tailings are free of goethite rims. Arsenic occurs predominantly as As5+ with minor amount of As1− in the uncovered tailings. Coinciding with the disappearence of goethite rims on sulfide particles, the biosolids-covered tailings have As3+ species gradually increasing in proportion towards the cover. Leaching tests indicated that the As concentrations in the leachate gradually increase from less than 0.085 to 13 mg/L and Fe from 28 to 179 mg/L towards the biosolids cover. These are in sheer contrast to the leachate concentrations of less than 0.085 mg/L As and 24–64 mg/L Fe obtained from the uncovered tailings confirming the role of biosolids-influenced reduction and mobilization of As in the form of As3+ species. The evidence suggests that reductive dissolution of goethite influenced by the biosolids-cover caused the mobilization of As as As3+ species.  相似文献   

16.
尾矿中硫化物风化氧化模拟实验研究   总被引:4,自引:0,他引:4  
为防治矿山尾矿造成环境污染,对方铅矿,闪锌矿,磁黄铁矿、黄铜矿,黄铁矿进行了风化氧化实验研究,结果显示,硫化物的氧化速率顺序为:方铅矿>闪锌矿>磁黄铁矿>黄铜矿>黄铁矿,侵蚀液pH值越低,硫化物氧化速率越大,有机物存在对硫化物氧化起缓冲和抑制作用。  相似文献   

17.
《Applied Geochemistry》2006,21(1):184-202
Sulfide mineral oxidation in mine tailings deposits poses a long term threat to surrounding ground water and surface waters. Soil or water cover remediation aims at reducing the rate of sulfide mineral oxidation by decreasing the O2 ingress rate. In this study, the authors addressed the rate of sulfide oxidation and pH buffering in ∼33 months long, well-controlled laboratory studies of water saturated columns of sulfidic mine tailings from the Kristineberg site in Sweden at reduced O2 availability. The element discharge rates slowly declined towards a quasi-steady state over hundreds of days. Non-reactive tracer tests showed an anomalously large dispersion, indicating strong flow heterogeneity, possibly including preferential flow and/or stagnant water zones. Congruent dissolution of pyrite and sphalerite by injected oxidants (dissolved O2 and Fe(III)) adequately explained the discharge rate of Fe, S and Zn at quasi-steady state. Arsenic, Pb and Cu were partly retained in the tailings. Base cation discharge rates, and thus pH buffering, were apparently controlled by the rate of acidity production, with actual pH levels, available mineral surface area, and water residence times being of less importance.  相似文献   

18.
An ideal engineered soil cover can mitigate acid rock drainage (ARD) by limiting water and gaseous O2 ingress into an underlying waste rock pile. However, the barrier layer in the soil cover almost invariably tends to develop cracks or fractures after placement. These cracks may change water flow and O2 transport in the soil cover and decrease performance in the long run. The present study employed a 10-cm-wide sand-filled channel installed in a soil barrier layer (silty clay) to model the aggregate of cracks or fractures that may be present in the cover. The soil cover had a slope of 20%. Oxygen transport through the soil cover and oxidation of the underlying waste rock were investigated and compared to a controlled column test with bare waste rock (without soil cover). Moreover, gaseous O2 transport in the soil cover with channel and its sensitivity to channel location as well as the influence of the saturated hydraulic conductivity of the channel material were modeled using the commercial software VADOSE/W. The results indicted that the waste rock underlying the soil cover with channel had a lower oxidation rate than the waste rock without cover because of reduced O2 ingress and water flushing in the soil cover with channel, which meant a partial soil cover might still be effective to some extent in reducing ARD generation. Gaseous O2 ingress into the covered waste rock was more sensitive to the channel location than to the saturated hydraulic conductivity of the material filling the channel. Aqueous equilibrium speciation modeling and scanning electron microscopy with energy dispersive X-ray analysis indicated that secondary minerals formed as a result of the oxidation of the waste rock included gypsum and goethite in the covered waste rock and schwertmannite and other Fe oxides in the uncovered waste rock. The findings of the study provided insight into the effect of channel flow on O2 transport and oxidation of the covered waste rock, which may help to improve soil cover design and construction to minimise the generation of preferential flow in the barrier layer.  相似文献   

19.
The fate of the arsenic (As) under neutral hydrogeochemical conditions in the mining ecosystem has attracted increasing concern, as the ecological restoration of As provides a possibility for safe use of mine water. However, successful cases are still inadequately reported worldwide. Therefore, to investigate the As-behavior in the mine tailings ecosystem, a study of the Wanniangou tailings pond (regional largest V-Ti-Fe mine tailings pond, Sichuan province, China) and the downstream (Rehe River) was conducted. It involves hydro-geochemistry, mineralogy, biogeochemistry, and the Geographically Weighted Regression model (GWR). The results reveal that: (1) the pH range of the mine water is 6.32 to 7.21. The chemical weathering of tailings resulted in an abnormal As concentration in water (e.g., transport pipe wastewater 76.5 μg L−1, the outlet of tailings pond 28.4 μg L−1), and it declines to the national water quality guideline (<10 μg L−1) after 2.59 km from the pond outlet. (2) Although sulfide oxidation boosts As migration in the tailings, As ecological refixation is promoted by tailings particle percolation, river sediment absorption, and aquatic plant uptake. The As refixation behaviors vary spatially, corresponding with the diversity of precipitation and absorption. Besides, Manganese (oxides or/and hydroxides) is conducive to As coprecipitation in the neutral hydrogeochemical environment. (3) The site selection of the V-Ti-Fe mine tailings pond with a downstream longer than 3 km creates a toxic metals self-restoration buffer zone, which could relieve the contamination probability and make the mining wastewater re-utilization feasible.  相似文献   

20.
The potential to use the alkaline residue products fly ash, green liquor dregs, and lime mud originating from paper mills as dry cover materials to seal tailings has been investigated. Metals concentration in lime mud and fly ash had the lowest and highest contents, respectively. The tailings (<1 % sulfur content, primarily pyrite) were disposed about 50 years ago and originated from the former Rönnskär mine site in Sweden. The results of chemical composition analysis show that the raw unoxidized tailings are active toward oxidation, while the components of the adjacent oxidized tailings are not. To quantify the release of metals from the tailings and to evaluate the effect of a sealing layer on oxidation and weathering of the tailings, batch leaching tests were conducted in which leachate from alkaline residue materials was fed to the tailings. The results show that a higher concentration of most trace elements is leached from the unoxidized tailings than from the oxidized tailings. Except As and Cr, the rest of analyzed metals (Cd, Cu, Ni, Pb) became immobilized in response to the increased pH as a consequence of the amendment. The three tested alkaline amendments show a similar potential for preventing the release of metals (with the exception of As and Cr) from the tailings. Under either aerobic or anaerobic conditions, microbial activity was found to be of minor importance. XRD analysis of the field samples revealed that it was feasible to use alkaline residue products in covering tailings, and that it was advantageous to use ash as a cover material more than dregs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号