首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Experimental investigations in the system rare-metal granite–Na2O–SiO2–H2O with the addition of aqueous solutions containing Rb, Cs, Sn, W, Mo, and Zn at 600°C and 1.5 kbar showed that the typical elements of rare-metal granites (Li, Rb, Cs, Be, Nb, and Ta) are preferentially concentrated in hydrosilicate liquids coexisting with aqueous fluid. The same behavior is characteristic of Zn and Sn, the minerals of which are usually formed under hydrothermal conditions. In contrast, Mo and W are weakly extracted by hydrosilicate liquids and almost equally distributed between them and aqueous fluids. Liquids similar to those described in this paper are formed during the final stages of magmatic crystallization in granite and granitepegmatite systems. The formation of hydrosilicate liquids in late magmatic and postmagmatic processes will be an important factor controlling the redistribution of metal components between residual magmatic melts, minerals, and aqueous fluids and, consequently, the mobility of these components in fluid-saturated magmatic systems enriched in rare metals.  相似文献   

2.
Rare-metal granites of Nuweibi and Abu Dabbab, central Eastern Desert of Egypt, have mineralogical and geochemical specialization. These granites are acidic, slightly peraluminous to metaaluminous, Li–F–Na-rich, and Sn–Nb–Ta-mineralized. Snowball textures, homogenous distribution of rock-forming accessory minerals, disseminated mineralization, and melt inclusions in quartz phenocrysts are typical features indicative of their petrographic specialization. Geochemical characterizations are consistent with low-P-rare metal granite derived from highly evolved I-type magma in the late stage of crystallization. Melt and fluid inclusions were studied in granites, mineralized veins, and greisen. The study revealed that at least two stages of liquid immiscibility played an important role in the evolution of magma–hydrothermal transition as well as mineral deposition. The early stage is melt/fluid case. This stage is represented by the coexistence of type-B melt and aqueous-CO2 inclusions in association with topaz, columbite–tantalite, as well as cassiterite mineral inclusions. This stage seems to have taken place at the late magmatic stage at temperatures between 450 °C and 550 °C. The late magmatic to early hydrothermal stage is represented by vapor-rich H2O and CO2 inclusions, sometimes with small crystallized silicic melt in greisen and the outer margins of the mineralized veins. These inclusions are associated with beryl, topaz, and cassiterite mineralization and probably trapped at 400 °C. The last stage of immiscibility is fluid–fluid and represented by the coexisting H2O-rich and CO2-rich inclusions. Cassiterite, wolframite ± chalcopyrite, and fluorite are the main mineral assemblage in this stage. The trapping temperature was estimated between 200 °C and 350 °C. The latest phase of fluid is low-saline, low-temperature (100–180 °C), and liquid-rich aqueous fluid.  相似文献   

3.
Arguments in favor of magmatic or metasomatic genesis of the Katugin rare-metal ore deposit are discussed. The geological and mineralogical features of the deposit confirm its magmatic origin: (1) the shape of the ore-bearing massif and location of various types of granites (biotite, biotite–amphibole, amphibole, and amphibole–aegirine); (2) the geochemical properties of the massif rocks corresponding to A type granite (high alkali content (up to 12.3% Na2O + K2O), extremely high FeO/MgO ratio (f = 0.96–1.00), very high content of the most incoherent elements (Rb, Li, Y, Zr, Hf, Ta, Nb, Th, U, Zn, Ga, and REE) and F, and low concentrations of Ca, Mg, Al, P, Ba, and Sr); (3) Fe–F-rich rock-forming minerals; (4) no previously proposed metasomatic zoning and regular replacement of rock-forming minerals corresponding to infiltration fronts of metasomatism. The similar ages of the barren (2066 ± 6 Ma) and ore-bearing (2055 ± 7 Ma) granites along with the features of the ore mineralization speak in favor of the origin of the ore at the magmatic stage of the massif’s evolution. The nature of the ore occurrence and the relationships between the ore minerals support their crystallization from F-rich aluminosilicate melt and also under melt liquation into aluminosilicate and fluoride (and/or aluminofluoride) fractions.  相似文献   

4.
锂(Li)是一种战略关键金属,岩浆阶段主要在花岗质岩石中得到富集和结晶。由于具有不相容和富挥发性等性质,锂对花岗岩的成岩成矿具有重要的制约。文章利用电子探针、LA-ICP-MS 等分析手段,对湖南香花岭地区癞子岭和尖峰岭花岗岩进行系统岩相学、主微量和矿物学研究,结果表明:(1)花岗质岩浆结晶分异过程中,Li 含量逐渐升高,大幅度降低了熔体粘度,增大了结晶温度区间,花岗质岩浆得到充分结晶分异,导致花岗岩的垂直分带;(2)花岗岩中Li 与稀有金属含量呈正相关关系,Li 与Ta、Nb、Sn 等稀有金属具有协同成矿作用;(3)花岗岩中云母类矿物具有向富Li 演化的趋势,以铁锂云母为主,随着铁锂云母的结晶,Nb、Ta、Sn 等稀有金属相继析出,导致晚期云母中Ta、Nb 等含量降低。熔体中H2O、F 等对花岗质岩浆的性质和结晶分异有较大影响,但不足以致使花岗岩呈垂直分带。  相似文献   

5.
The Late Paleozoic intraplate magmatism of the Selenga-Vitim structural zone of the Baikal region (Khamar-Daban Range) produced granitoids of different geochemical types: palingenic calc-alkaline granitoids, subalkaline monzogranites, and rare-metal Li-F granitoids and their subvolcanic analogues. Subalkaline and rare-metal granitoids occur in the periphery of the Late Paleozoic magmatic zone. Rare metal granite magmatism is manifested in this region as nearly N-S trending intrusive-dike belts comprising multiphase intrusions (Kharagul, Urugudei, and Bitu-Dzhida massifs) with an exposed area of ∼10 km2 and an age of formation from 311 to 321 Ma and series of accompanying dikes. The early phases of the intrusions are made up of biotite granites usually with fluorite, which are changed during the late stage by typical topazbearing rare-metal amazonite-albite granites. In the subvolcanic facies, thicker subalkaline dikes of monzonite porphyry, granite porphyry, and elvan are changed by ongonites, topaz rhyolites, and topazites, which occasionally serve as cement in eruptive and fluid-explosive breccias. The development of multiphase intrusions from early biotite granites to late amazonite-albite granites with Li-F mica was accompanied by an increase in SiO2 and, especially, Na2O contents, whereas the level of (FeO + Fe2O3), CaO, and K2O declined. Geochemical evolution includes an increase in the same direction in the contents of F, Li, Rb, Cs, Sn, Be, Ta, and Pb and a decrease in Ba, Sr, Zn, Zr, Th, and U. Similar evolution is also characteristic of the subvolcanic rocks, which emphasizes the genetic relation of the whole intrusive-dike complex of the Khamar-Daban province. Significant differences were detected in the distribution of K, Ba, Sr, and Zr between the calc-alkaline granitoids and rare-metal Li-F granites. The continental crust-normalized patterns of the raremetal granites show positive anomalies for Li, Rb, Nb, and Pb. The rare-metal Li-F granites could not be produced by palingenesis only, and their formation required specific conditions causing extensive accumulation of characteristic trace elements. During the evolution of granite melts, Li, Rb, Ta, Nb, Sn, W, and F are extensively accumulated in late intrusive phases, which indicates an important role of the processes of magmatic and fluid-magmatic differentiation during their formation. The composition and isotope geochemical characteristics of the supposed magma source material correspond to the ancient Precambrian continental crust with a mean model age of more than 1200 Ma.  相似文献   

6.
The Malayer–Boroujerd plutonic complex (MBPC) in western Iran, consists of a portion of a magmatic arc built by the northeast verging subduction of the Neo-Tethys plate beneath the Central Iranian Microcontinent (CIMC). Middle Jurassic-aged felsic magmatic activity in MBPC is manifested by I-type and S-type granites. The mafic rocks include gabbroic intrusions and dykes and intermediate rocks are dioritic dykes and minor intrusions, as well as mafic microgranular enclaves (MMEs). MBPC Jurassic-aged rocks exhibit arc-like geochemical signatures, as they are LILE- and LREE-enriched and HFSE- and HREE-depleted and display negative Nb–Ta anomalies. The gabbro dykes and intrusions originated from metasomatically enriched garnet-spinel lherzolite [Degree of melting (fmel) ~ 15%] and exhibit negative Nd and positive to slightly negative εHf(T) (+ 3.0 to ? 1.6). The data reveal that evolution of Middle Jurassic magmatism occurred in two stages: (1) deep mantle-crust interplay zone and (2) the shallow level upper crustal magma chamber. The geochemical and isotopic data, as well as trace element modeling, indicate the parent magma for the MBPC S-type granites are products of upper crustal greywacke (fmel: 0.2), while I-type granites formed by partial melting of amphibolitic lower crust (fmel: 0.25) and mixing with upper crustal greywacke melt in a shallow level magma chamber [Degree of mixing (fmix): 0.3]. Mixing between andesitic melt leaving behind a refractory dense cumulates during partial crystallization of mantle-derived magma and lower crustal partial melt most likely produced MMEs (fmix: 0.2). However, enriched and moderately variable εNd(T) (? 3.21 to ? 4.33) and high (87Sr/86Sr)i (0.7085–0.7092) in dioritic intrusions indicate that these magmas are likely experienced assimilation of upper crustal materials. The interpretations of magmatic activity in the MBPC is consistent with the role considered for mantle-derived magma as heat and mass supplier for initiation and evolution of magmatism in continental arc setting, elsewhere.  相似文献   

7.
位于苏尼特左旗东部的东苏二长花岗岩是索伦缝合带重要组成部分,具有高硅(SiO_2=69.76%~75.58%)、高碱且相对富钾(K2O+Na2O=6.99%~9.16%,K2O/Na2O=0.70~1.69)、相对富铝(铝饱和指数A/CNK=1.04~1.13)、高TFeO/MgO值(3.43~11.26)、贫镁(MgO=0.08%~0.50%)的特征;微量元素地球化学性质表现出相对富集轻稀土,Ba、Sr、Nb、Eu强烈负异常,Rb、Th、Ta等不相容元素富集的特征。主量和微量元素均表现出铝质A型花岗岩的特征。采用锆石LA-ICP-MS U-Pb法获得206Pb/238U值的加权平均年龄为221.5±0.81 Ma(MSDN值为0.57),表明该岩体为晚三叠世岩浆活动的产物。结合区域地质资料及地球化学信息可以判断该东苏花岗岩为后造山伸展阶段长英质地壳物质(变杂砂岩)部分熔融的产物。它的出现,标志着古亚洲洋演化的结束,索伦缝合带在晚三叠世的碰撞已达末期。  相似文献   

8.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

9.
Summary The F-rich Hongshan pluton in the eastern Nanling Range, southern China, is a topaz-bearing albite leucogranite. It is distinctive from other topaz-bearing felsic rocks in South China with respect to age, size, geochemical evolution and topaz mode and morphology. The Hongshan granites are highly peraluminous and characterized by high K2O/Na2O, Si, Rb, Cs, Nb, Ta and F, and low Ca, Ba, Sr, Zr, Hf, P, K/Rb, Zr/Hf and Eu/Eu*. The granites show significant trace-element variations with magma evolution, with increasing Rb, Cs, Nb, Ta, Sn, W and decreasing Sr, Ba, Zr, Hf, Y, REE, Pb, Th, K/Rb, Zr/Hf, Th/U and Eu/Eu*. These changes dominantly reflect fractional crystallization of plagioclase, biotite and accessory minerals such as zircon and monazite. The granites also exhibit a decrease in ɛNd(t = 225 Ma) from −7.9 to −11.7 with magma evolution. Modeling shows that the Nd isotopic variation could result from assimilation of the Taoxi Group wall rocks during fractional crystallization. The Hongshan pluton also shows spatial geochemical variations; the most evolved parts are located in the southeastern part of the pluton, which would be the most likely target area for rare-metal mineralization commonly associated with other topaz-bearing granites. Zircon grains from two rock types in the Hongshan body were analyzed in situ for U–Pb ages and Hf isotopic values. The concordant zircon grains mostly range from 218 to 230 Ma with an average of 224.6 ± 2.3 Ma (Indosinian). Some zircons with different internal structures and Hf isotope compositions, as well as monazite fragments, yield U–Pb ages of ca. 280 to 240 Ma, suggesting older thermal events in the studied area. The ɛHf(t) of these older zircons is strongly negative (−12.3), implying a crustal source with a Paleoproterozoic model age, similar to that for the Proterozoic Zhoutan Group. The main (∼225 Ma) zircon population exhibits less negative ɛHf(t) (−3.0 to −7.6) and Mesoproterozoic model ages, suggesting that the original magma of the Hongshan granite was generated from deeper Mesoproterozoic crust.  相似文献   

10.
刘园园  马昌前  吕昭英  黄卫平 《岩石学报》2012,28(10):3287-3305
长江中下游贵池地区燕山期侵入岩发育,与成矿关系密切.本文对该区侵入岩开展了详细的锆石U-Pb年代学、地球化学及Sr-Nd-Hf同位素研究.结果表明,马头花岗闪长斑岩形成于147±2Ma,而花园巩石英二长岩形成于127±1Ma,比花岗闪长斑岩晚约20Ma.早期的花岗闪长斑岩(147 ~ 145Ma)为高钾钙碱性系列,具有高Al2O3、Sr含量和Sr/Y、La/Yb比值,以及低的Y、Yb含量,与埃达克质岩的地球化学特征一致;而晚期石英二长岩(127Ma)和石英正长岩为钾玄岩系列,具有高的(Na2O+ K2O)、Zr、Nb、Y含量和Y/Nb、Yb/Ta比值,与造山带A2型花岗岩地球化学特征相似;碱长花岗岩(125~124Ma)同样具有A型花岗岩的地球化学特征,但与石英二长岩、石英正长岩相比,碱长花岗岩的Y/Nb、Yb/Ta比值相对较低,具板内环境A1型花岗岩的地球化学特征.因此,贵池地区岩浆岩从早期的埃达克质岩变为晚期的A型花岗岩,反应了晚中生代时期长江中下游地区的构造环境由大陆边缘环境向伸展环境的转变.  相似文献   

11.
响岩代表了陆内火山岩省钠质碱性岩浆最终端的演化产物,揭示其成因机制对认识陆内火山岩省的岩浆演化过程具有重要意义。文章对出露在我国境内西南天山托云中新生代火山岩盆地的响岩开展了系统的矿物学、岩石学和地球化学研究,以揭示托云火山岩岩浆系列特征和岩浆演化过程。托云响岩以发育碱性长石、单斜辉石、铁橄榄石和角闪石斑晶为特征,在基质中可见霞石。在地球化学组成上,托云响岩以高的Na2O含量(7.9%~8.6%)和K2O含量(5.2%~6.3%)为特征,∑REE变化范围为408×10-6~470×10-6,稀土元素配分曲线具有明显的Eu异常,在原始地幔标准化的微量元素蛛网图上,样品显示出Ba、Sr、P、Ti的负异常和Nb、Ta、Zr、Hf的正异常特征。亏损的Nd同位素组成表明其成因与共生的碧玄岩有紧密的成因联系,经MELTS热力学模拟,响岩可由碧玄岩经碱性长石(36%)、单斜辉石(21%)、尖晶石(10%)、铁橄榄石(6%)和角闪石(5%)的分离结晶作用形成,进一步的EC-AFC模拟表明,响岩在形成过程中受到一定程...  相似文献   

12.
福建永定大坪铌钽矿化花岗斑岩体位于永定县城南部的大石凹-蓝地火山喷发盆地,对斑岩型铌钽矿床的产出具有重要的指示意义。本文通过岩相学、显微测温和激光拉曼等实验对大坪岩体ZK10001和ZK10401钻孔不同深度岩石样品中的流体和熔体包裹体进行了研究,试图揭示岩体的熔体-流体演化过程,分析铌钽等成矿元素的富集机制。观测结果表明,大坪岩体主要发育气液两相盐水溶液包裹体和硅酸盐熔体包裹体。流体包裹体均一温度集中在175~225℃,盐度集中在3%~7%NaCleq,密度集中在0.75~0.95g/cm~3,成矿流体主要为中低温、低盐度和低密度的流体,总体属于H_2O-NaCl体系。熔体包裹体主要分布于石英斑晶雪球结构的环带中,含有钠长石、石英和钽铁矿等子矿物。熔体包裹体完全均一温度较高,能够代表早期原始岩浆的组成。研究表明,大坪岩体的原始岩浆富铌钽等成矿元素和碱性组分,大坪岩体的铌钽矿化是岩浆高度分异的产物,铌钽的富集过程经历了斑晶阶段和基质阶段等两阶段结晶分异过程:在早期斑晶结晶阶段,少量铌钽矿物与斑晶一起结晶,并被斑晶包裹;岩浆演化晚期发生流体出溶现象,但未分异出大量流体,F等挥发分促进了铌钽在结晶残余熔体中富集,并在基质间隙中沉淀。大坪矿化岩体的存在指示出斑岩型铌钽矿床存在的可能性。  相似文献   

13.
八宿吉利地区寒武纪变质花岗岩位于曲扎湖-提卡一带,主要由变质二长花岗岩和变质花岗闪长岩组成。这一新发现对于认识和恢复原特提斯构造历史演化具有重要意义。锆石CL图像显示变质花岗岩锆石为岩浆成因。锆石LA-ICP-MS测年得出片理化变质二长花岗岩年龄为503.7±4.7Ma、变质花岗闪长岩年龄为494.7±3.4Ma,表明该岩体形成时代属于寒武纪。通过岩石地球化学分析,变质二长花岗岩SiO2含量介于69.87%~79.89%之间;变质花岗闪长岩SiO2含量介于66.63%~70.15%之间。前者Al2O3含量变化于12.36%~14.82%,Na2O含量为2.54%~7.16%,K2O含量为0.15%~5.95%,K2O/Na2O=0.02~2.34;后者Al2O3含量变化于14.66%~15.41%,Na2O含量为3.60%~5.63%,K2O含量为0.77%~2.78%,K2O/Na2O=0.14~0.77,属于钙碱性-碱性过铝质花岗岩。在侵入岩构造环境Rb-(Y+Nb)判别图解、Rb-(Yb+Ta)判别图解中,样品均落入“火山弧花岗岩”区域中,表明其形成于大陆边缘火山弧环境。结合锆石测年结果及区域地质背景分析,认为吉利地区变质花岗岩形成于冈瓦纳大陆裂离卡穷微陆块阶段,同时表明原特提斯洋形成最早时限可追溯至寒武纪。  相似文献   

14.
Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U–Pb dating and Lu–Hf isotopes, whole-rock element geochemistry and Sr–Nd–O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U–Pb dating shows that three plutons were emplaced in the Late Jurassic (159–148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3–74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures (T Zr = 707–817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1–12.8‰, most > 9.5‰) and clearly negative ε Nd (T) (? 9.5 to ? 11.8) and ε Hf (T) (in situ zircon) (? 13.1 to ? 13.5). The muscovite-bearing granites have high SiO2 contents (74.7–78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04–1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671–764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd–O–Hf isotopic compositions to the biotite granites with ε Nd (T) of ? 8.7 to ? 12.0, δ18O of 8.7–13.0‰ (most > 9.5‰) and ε Hf (T) (in situ zircon) of ? 11.3 to ? 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.  相似文献   

15.
湘南地区燕山期成矿花岗岩的主元素地球化学特征可划分为3种类型,不同成矿花岗岩形成的岩浆演化机理有明显差异:(1)成矿花岗岩的K_2O/Na_2O比值较高,均显示高钾钙碱性-钾玄岩系列特征。(2)MC型与CM型早期次单元花岗岩相对贫硅、碱.富钙、镁、铁,铝质指数(A/KNC)较低,碱度指数(KN/A)都不高,属镁质-铁质准铝质的高钾钙碱性系列花岗岩类,总体显示出I型花岗岩的特征。C型和CM型晚期次单元花岗岩相对富硅碱、贫镁钙,属铁质弱过铝质-过铝质钾玄岩系列-高钾钙碱性系列花岗岩类:岩石的FeO~T/MgO值明显高于一般I型和M型花岗岩.较高的FeO~T值又与高分异的I型花岗岩相区别,总体显示出S型花岗岩的特征。(3)成矿花岗岩的F或Cl含量高.岩浆向过铝质方向或过碱性方向演化,晚期岩浆中的高场强元素浓度增大,导致MC型与CM型的花岗岩的早期次单元多有Cu、Pb、Zn、Sb等多金属化,C型和CM型的晚期次单元花岗岩则常有大型Sn、W、Pb、Zn、Nb、Ta和稀土等矿化。(4)成矿花岗岩的形成与壳幔岩浆混合作用有关.形成MC型和CM型早期次单元花岗岩的岩浆演化主要是岩浆混合作用.而CM型花岗岩晚期次的花岗岩类和C型花岗岩类的岩浆演化可能还存在分离结晶作用。  相似文献   

16.
《China Geology》2021,4(4):658-672
The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial. Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia, and they are the critical media for studying the tectonic evolution of the Bangweulu Block. This study systematically investigated the petrography, zircon U-Pb chronology, and petrogeochemistry of the granitoid extensively exposed in the Lunte area, northeastern Zambia. The results show that the granitoid in the area formed during 2051±13–2009±20 Ma as a result of Paleoproterozoic magmatic events. Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content (72.68% –73.78%) and K2O/Na2O ratio (1.82–2.29). The presence of garnets, the high aluminum saturation index (A/CNK is 1.13–1.21), and the 1.27%–1.95% of corundum molecules jointly indicate that granites in the Lunte area are S-type granites. Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies (δEu = 0.16–0.40) and are relatively rich in light rare earth elements. Furthermore, the granites are rich in large ion lithophile elements such as Rb, Th, U, and K and are depleted in Ba, Sr, and high field strength elements such as Ta and Nb. In addition, they bear low contents of Cr (6.31×10−6–10.8×10−6), Ni (2.87×10−6–4.76×10−6), and Co (2.62×10−6–3.96×10−6). These data lead to the conclusion that the source rocks are meta-sedimentary rocks. Combining the above results and the study of regional tectonic evolution, the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block. The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.©2021 China Geology Editorial Office.  相似文献   

17.
湖南仁里稀有金属矿田是中国近年来新发现的一处重要的花岗伟晶岩型铌、钽、锂等稀有金属矿产地,文章针对矿田含锂伟晶岩地球化学特征、成矿时代及其与花岗岩的关系,选取传梓源锂铌钽矿床内规模最大的206号锂辉石伟晶岩脉开展地球化学和白云母Ar-Ar定年工作,并与区内其他伟晶岩、花岗岩的地球化学特征、成岩时代对比分析.传梓源206号锂辉石伟晶岩属高分异稀有金属伟晶岩,形成时代为(135.4±1.4)Ma,岩石地球化学表现为高硅、高铝、低钙、相对富碱、钙碱性及过铝质特征;稀土元素总量很低,以轻稀土元素为主;微量元素富集Cs、Rb、U、Ta、Nb、Zr、Hf,相对亏损Ba、Ti,Zr/Hf、Nb/Ta比值低且集中.幕阜山地区稀有金属成矿可分为2期:第1期稀有金属成矿时代约145 Ma,与燕山早期岩浆活动有关;第2期稀有金属成矿时代135~125 Ma,为主成矿期,该期稀有金属伟晶岩与燕山晚期的二云母二长花岗岩存在成因联系,两者为同源岩浆连续结晶分异过程中不同阶段的产物.稀有金属富集成矿经历了岩浆-热液两阶段作用,Be、Nb、Ta、Li、Rb、Cs等稀有元素的富集多发生于岩浆结晶分异晚期,热液作用使Ta、Li、Rb、Cs再次富集.  相似文献   

18.
The Mangalwar Complex of the Aravalli craton is marked by the presence of late Paleoproterozoic granites referred to as Anjana Granite and Amet Granite. These granites occur as 1.64 Ga old plutons intruding greenstone sequences and migmatitic gneisses of Mangalwar Complex which comprises parts of BGC of the Aravalli craton. In the present contribution major, trace and REE data of these granites along with associated microgranular mafic enclaves (MMEs) are presented and discussed. Geochemically these granites are quartz monzonite, metaluminous, sub-alkaline and high-K calc-alkaline rocks. The most important characteristics of Anjana and Amet granites are low SiO2, high MgO, Mg#, K2O, Ba, and low Na2O/K2O ratios. In addition, the REEs show moderate to high fractionation, with (La/Yb) ratios up to 22 and 23 of the Anjana and Amet granites respectively, with no or positive europium anomalies. In the primitive mantle-normalized trace element diagrams both granites show depletion in high-field strength elements (HFSE) such as Nb, Ta, P, Ti and enrichment in LILEs. Most of these features are comparable to those of sanukitoid series rocks. Geochemically both granites are distinguished as high-Ti sanukitoids. Geochemical characteristics of MMEs suggest that they are similar to Anjana and Amet granites and in turn to sanukitoids with lower SiO2 content. They display LREE enriched patterns with low values (avg. 13) of (La/Yb)N, negative Eu anomalies and high HREE contents (58 ppm). It is suggested that the parental magma of Anjana and Amet granitic plutons originated through a four stage process (1) Generation of magmatic melts produced by partial melting of terrigeneous sediments of subducting slab in an arc setting; (2) interaction of those melts with the overlying mantle wedge, and total consumption of slab-derived melts during the reaction resulting in production of a metasomatized mantle; (3) tectonothermal event, possibly related to the slab break-off, causing asthenospheric mantle upwelling. This may have induced the melting of the metasomatized mantle and the generation of sanukitoid magmas. The parental magmas of Anjana and Amet granites and their mafic enclaves were generated at lower and higher lithospheric levels respectively (4) Granitic magma ascended due to viscosity and gravity instabilities and interacted with enclave magma at higher mantle level. Both magmas ascended towards upper crust and evolved through fractional crystallisation. Existing data suggest that in the Mangalwar Complex, the formation of sanukitoid magma started even during Mesoarchaean times and continued till late Paleoproterozoic. Formation of sanukitoid magma during this time indicates that in northern Indian shield the multi-stage subduction- accretionary orogenic processes continued for a protracted geological period and played a major role in the origin and evolution of early continental crust.  相似文献   

19.
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.  相似文献   

20.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号