首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
Large rock falls and rockslides represent a risk for human communities in mountainous areas as they can cause fatalities and destruction of settlements and infrastructures. Assessing the associated hazard requires constraining the time frequency of such events. Since large rockslides are not common, estimating their frequency requires recording them over a long period of time. The Holocene period then appears as pertinent, which implies that rockslide features have to be dated with absolute chronology methods. This paper presents a characterisation and dating of the Lauvitel rockslide, one of the largest Holocene rockslides in the French Alps. Combining field observation with electrical tomography profiles performed on the rockslide deposit that constitutes the Lauvitel Lake dam allows estimating its volume at a minimum of 12?×?106?m3. In addition, cosmic ray exposure dating using in situ-produced 10Be concentration measurements has been applied to date seven samples collected both on the main sliding surface and on blocks lying on the dam and further downstream. Ages obtained are consistent with a single large rockslide event, which occurred at 4.7?±?0.4 10Be-ka and formed two distinct deposits. However, from a mechanical point of view, these clearly separated deposits could hardly result from a single movement. A comparison of their reach angles with those reviewed in the literature highlights that the lower deposit must result from rock avalanches larger than 107?m3, while the upper one (the Lauvitel dam) must result from several events smaller than 106?m3. In the context of hazard assessment for land use planning, these events can, however, be considered as a unique event.  相似文献   

2.
This paper uses the catastrophic rockslide at Sanxicun village in Dujianyan city as an example to investigate the formation mechanism of a rapid and long run-out rockslide-debris flow of fractured/cracked slope, under the application of a rare heavy rainfall in July 2013. The slope site could be affected by the Wenchuan Ms 8.0 Earthquake in 2008. The sliding involved the thick fractured and layered rockmass with a gentle dip plane at Sanxicun. It had the following formation process: (1) toppling due to shear failure at a high-level position, (2) shoveling the accumulative layer below, (3) forming of debris flow of the highly weathered bottom rockmass, and (4) flooding downward along valley. The debris flow destroyed 11 houses and killed 166 people. The run-out distance was about 1200 m, and the accumulative volume was 1.9?×?106 m3. The rockslide can be divided into sliding source, shear-shoveling, and flow accumulative regions. The stability of this fractured rock slope and the sliding processes are discussed at four stages of cracking, creeping, separating, and residual accumulating, under the applications of hydrostatic pressure and uplift pressure. This research also investigates the safety factors under different situations. The double rheological model (F-V model) of the DAN-W software is utilized to simulate the kinematic and dynamic processes of the shear-shoveling region and debris flow. After the shear failure occurred at a high-level position of rock, the rockslide moved for approximately 47 s downward along the valley with a maximum velocity of 35 m/s. This is a typical rapid and long run-out rockslide. Finally, this paper concludes that the identification of the potential geological hazards at the Wenchuan mountain area is crucial to prevent catastrophic rockslide triggered by heavy rainfall. The identified geological hazards should be properly considered in the town planning of the reconstruction works.  相似文献   

3.
Deposits of catastrophic rockslides composed of lithologies rich in carbonate minerals may undergo precipitation of cements that can be used to proxy-date the rockslide event and/or subsequent geomorphic changes of the rockslide mass.In the Alps, localized to widespread lithification of post-Glacial rockslide deposits is observed in lithologies ranging from limestones and dolostones to metacarbonates to calcphyllites. Lithification of rockslide deposits to breccias may be localized to meteoric ‘runoff-shadows’ below larger boulders, or may comprise a layer of breccia or may affect a rockslide mass down its base. In addition, precipitation of cements and small stalactites may take place in megapores on boulder undersides. Cements found in rockslide deposits comprise skalenohedral calcite, prismatic calcite, blocky calcite, calcitic micrite and micropeloidal calcitic cement and, rarely, botryoidal aragonite. Initial cement formation probably is driven by meteoric dissolution–re-precipitation of (mini-) micritic abrasive rock powder generated by dynamic disintegration during the rockslide event. Preliminary 234U/230Th ages of rockslide cements support a concept that cementation starts immediately or early after a rockslide event. In rockslide deposits of calcphyllite with accessory pyrite, oxidation of pyrite probably also propels the process of carbonate dissolution–re-precipitation. Limestone-precipitating springs emerging from rockslide masses, and well-cemented talus slopes and fluvial conglomerates percolated by rockslide-derived groundwaters, indicate that rockslide deposits remain diagenetically active long after emplacement.  相似文献   

4.
Long piston cores taken from the subsurface of two mountain lakes of the eastern Swiss Alps recovered sediments, which overlie the Flims rockslide deposits. These sediments provide new information on the chronology of the largest known Alpine rockslide and can be used to reconstruct the post landslide environmental evolution. The oldest 14C date of the lake sediments yields a minimum age of the rockslide at 9660–9430 cal. yr BP. In addition, the dating of a wood fragment contained in the rockslide deposits directly below the lake sediments shows a maximum age of 9480–9120 cal. yr BP. The overlap of the maximum and minimum ages, 9480–9430 cal. yr BP, approximates the age of the Flims rockslide. This early Holocene range coincides with a period of higher frequency of large mass movements observed in the Alps, which could be related to climatic changes.  相似文献   

5.
A railroad crosses the coastal Gascons rockslide, in Quebec, Canada. This study improves the understanding of the rockslide’s failure mechanism and post-failure behaviour responsible for the deformation in the railroad. The slide is an asymmetrical wedge failure of 410,000 m3, in rocks made up of centimetre-scale beds of nodular calcilutite alternating with sandstones and limestone. The post-failure stage of the rockslide is characterised by continuous movement of blocks with speeds ranging from 6 to 110 mm/year. The main water table is just below the sliding surface, but precipitation and snowmelt can raise it above the sliding surface in the upper part of the slide. We propose a model for the rockslide, its failure mechanism, geometry and hydrogeology to provide a baseline for interpreting the near-real-time data collected since 2009.  相似文献   

6.
Two deadly rockslides, triggered by heavy precipitation and open-pit mining, were reported in Emei County, Sichuan Province, China, from 2011 to 2015. About 6.0 million m3 of rock detached from the upper slopes, pushed the pre-sliding deposits, and hit the opposite mountains at average velocity of 18 to 36 km/h. Detailed field investigation, geological mapping, and UAV aerial photographic interpretation are presented to analyze the failure mechanisms of the events. The results suggest that the high-speed consequent bedding rockslides were triggered by the failure of rock mass, which were influenced by the engineering activities and climate change. Key contributive factors were weathered and fragmented basalts that were affected by open-pit mining and frequent blasting, as well as the weak underlying tuffs with swell-shrink potential. Persistent rainfall was the direct trigger in initiating and reactivating the landslide. Water affected the slope stability by increasing the slope material’s unit weight and penetrating into joints and cracks to make the tuffs degrade and causing a reduction in effective stress. The mechanisms for the two landslide events are a high-speed regressive consequent bedding (RCB) rockslide in 2011 and a reactivated high-speed advancing consequent bedding (ACB) rockslide in 2015. This paper can provide an insight into large-scale consequent bedding rockslides associated with the interaction between the rainfall and open-pit mining slopes instabilities.  相似文献   

7.
On June 5, 2009, a catastrophic rockslide-debris flow occurred at the crest of the Jiweishan Mountain in Wulong, Chongqing, China. Approximately five million cubic meters of limestone blocks slid along a weak interlayer of bituminous and carbonaceous shale. The source mass descended from the upper part of the slope rapidly, crossing a 200-m wide and 50-m deep creek in front of it. Blocked by the opposite steep creek wall, the sliding mass changed its direction and traveled a further 2.2 km along the creek in debris-flow mode, finally forming a large accumulation zone with an average depth of 30 m. This is one of the most catastrophic rockslide events in recent years in China. It buried 12 houses and the entrance of an iron mining tunnel where some 27 miners were working inside. Ten people died, 64 missing, and eight wounded. Immediately after this disaster happened, the government organized an expert team to assist the rescue work. As one of the geological experts, the author did a lot of field investigations and collected first-hand information. Multi-methods including the remote sensing, 3D laser scanning, geophysical exploration, and numerical modeling were used for analyzing the characteristics and the triggering mechanism of the Wulong rockslide. The preliminary investigation results reveal that this rockslide with poor geological conditions was mainly induced by the gravitation and the karst effect and also affected by the previous mining activities. The research in this paper is meaningful and useful for further research on such kind of rockslides that are geologically similar to the Wulong rockslide.  相似文献   

8.
烂泥沟滑坡是我国最著名的巨型高速远程滑坡之一。1965年烂泥沟滑坡活动造成近百年来最严重的单体滑坡灾害。此后,1991年和2007年滑坡又经历2次较大规模活动。然而,对于1965年烂泥沟滑坡前兆和2个序次活动的成生关系、此后滑坡活动特征,尚无定论;对滑坡现今状态尚不清楚。本文基于多时相、多源遥感卫星影像及近期无人机测量和现场调查数据,对上述问题进行了分析。研究发现,1965年滑坡前,滑源区北侧山体表开裂明显;1965年11月22日、23日2次滑动为北、南两侧山体分别滑动;其成生关系是:北侧山体沿倾向坡外结构面高位剪出,高速冲向南侧山坡,受其冲击,南侧山体次日沿倾向坡外结构面高位、高速滑出,第一序次滑动规模远大于第二序次;高速运动的部分滑坡碎屑流从流通区北侧山坡飞跃通过、且铲刮冲击强烈,滑坡碎屑流最远运动至烂泥沟与普福河交汇处向东2.8 km;1991年滑坡滑源区紧邻1965年北侧滑坡滑源区的西侧边界,滑坡碎屑流终止于沟道中段;2007年滑坡滑源区位于1991年滑坡滑源区上部,滑坡碎屑流运动距离略小于1991滑坡碎屑流。目前,滑源区西北侧、西南侧山坡上地表开裂明显,西北侧山坡上其中一条裂缝扩展速率约16.7 m/a,西南侧山坡上裂缝扩展迹象不明显。因此,西北侧山坡显示再次滑动之势,须引起关注。  相似文献   

9.
During the May 12, 2008 Wenchuan earthquake, rock masses in the earthquake region were shaken, and subsequently, a number of post-earthquake landslides and debris flows occurred, triggered by heavy rainstorms. This paper presents a study of the rainfall-induced mechanism that triggered the landslides. This study is based on pre- and post-landslide geomorphology and geological features identified from pre-landslide high-resolution satellite imagery and post-landslide aerial photographs of the Wulipo landslide. The remote sensing observations were verified by field investigations. The results indicate that the heavy storm that occurred in July 2013 was the main trigger for the landslide although existing tensions and weak rock interfaces were the main internal causes for reactivation of the landslide. The bedding in the rocks dips in the same direction as the topographic slope. A tensile trough developed at the scarp. Based on data from the Wulipo rockslide, a model is proposed for calculating the safety factor for rockslides that takes into account the hydrostatic pressure along the structural plane of the rockslide. The results show that the proposed method can effectively estimate the stability of a storm-induced rockslide in regions underlain by bedded rocks. Based on this estimate, it is concluded that the Wulipo rockslide is a reactivated old rockslide.  相似文献   

10.
2008年5月12日,汶川M8.0地震在四川省绵竹市清平乡文家沟内诱发一巨型滑坡。通过现场调查得知,滑坡前后缘高差455m,厚度20~30m,滑面为基岩层面,初始方量2.750×107m3。滑体在运动中转化为碎屑流。滑坡-碎屑流总的水平运动距离为4022m,垂直运动距离为1443m,遗留的堆积物体积达5×107m3。滑坡距映秀—北川断裂仅3.6km,位于其下盘,地震烈度达X I度。滑坡导致文家沟中48人遇害,并形成一条完整的地震次生地质灾害链。初步分析表明滑坡启动速度快,滑坡向碎屑流转化过程明显、地点明确。碎屑流运动过程复杂,伴有强烈的"气垫效应"和"前缘气浪冲击效应"。作者认为,文家沟滑坡的高启动速度是长持时强烈地震动作用的结果,与山体的猛烈碰撞是导致滑体解体并转化为碎屑流的原因。  相似文献   

11.
In this paper, we describe the investigations and actions taken to reduce risk and prevent casualties from a catastrophic 210,000 m3 rockslope failure, which occurred near the village of Preonzo in the Swiss Alps on May 15, 2012. We describe the geological predisposition and displacement history before and during the accelerated creep stage as well as the development and operation of an efficient early warning system. The failure of May 15, 2012, occurred from a large and retrogressive instability in gneisses and amphibolites with a total volume of about 350,000 m3, which formed an alpine meadow 1250 m above the valley floor. About 140,000 m3 of unstable rock mass remained in place and might collapse partially or completely in the future. The instability showed clearly visible signs of movements along a tension crack since 1989 and accelerated creep with significant hydromechanical forcing since about 2006. Because the active rockslide at Preonzo threatened a large industrial facility and important transport routes located directly at the toe of the slope, an early warning system was installed in 2010. The thresholds for prealarm, general public alarm, and evacuation were derived from crack meter and total station monitoring data covering a period of about 10 years, supplemented with information from past failure events with similar predisposition. These thresholds were successfully applied to evacuate the industrial facility and to close important roads a few days before the catastrophic slope failure of May 15, 2012. The rock slope failure occurred in two events, exposing a compound rupture plane dipping 42° and generating deposits in the midslope portion with a travel angle of 39°. Three hours after the second rockslide, the fresh deposits became reactivated in a devastating debris avalanche that reached the foot of the slope but did not destroy any infrastructure. The final run-out distance of this combined rock collapse–debris avalanche corresponded to the predictions made in the year 2004.  相似文献   

12.
The hydrogeology of the deep-seated, slowly creeping Klasgarten rockslide in Austria is investigated in this study based on detailed surface and subsurface field data, laboratory analyses, and analytical and numerical simulations. Field data are derived from several deep exploration and monitoring boreholes, an exploration drift located within the rockslide, and geological and geomorphological mapping. Particular attention is given to the pore pressure measurements and their temporal and spatial variability. These pore pressure variations are controlled by a thin layer of clayey fault gouge (representing the basal shear zone of the rockslide), a high-permeability rockslide mass, and moderately fractured paragneissic bedrock. Variably saturated equivalent-continuum hydraulic conductivities and storage properties are derived from packer tests, laboratory tests and optical televiewer images. These data sets are used for two-dimensional numerical groundwater models to study the flow-field and pore-pressure variations caused by the reservoir water-level fluctuations, the transient groundwater infiltration from snowmelt and precipitation along the slope, and the exploration drift. The strongest pressure transients in the rockslide are caused by reservoir level fluctuations and not the natural groundwater recharge, even at substantial distances from the reservoir. The response times are very short and only a minor distance-dependent attenuation is observed. The results of this study are essential to analyse the hydromechanical control of the deformation behaviour of rockslides adjacent to hydropower reservoirs. Further, it helps to understand how the formation of a rockslide can change the original bedrock aquifer.  相似文献   

13.
Because of the existence of a front stable rockmass barrier, the failure pattern of an oblique inclined bedding slope is conventionally recognized as a lateral rockfall/topple, and then a transformation into a rockfall accumulation secondary landslide. However, the Jiweishan rockslide, Wulong, Chongqing, which occurred on June 5, 2009, illustrates a new failure pattern of massive rock slope that rockmass rapidly slides along apparent dip, and then transforms into a long runout rock avalanche (fragment flow). This paper analyzes the mechanism of the new failure pattern which is most likely triggered by gravity, karstification, and the processes associated with mining activities. A simulation of the failure processes is shown, using the modeling software, FLAC3D. The results show that there are five principal conditions for an apparent dip slide associated with an oblique inclined bedding slope are necessary: (1) a block-fracture bedding structure. The rockmass is split into obvious smaller, distinct blocks with several groups of joints, (2) an inclined rockmass barrier. The sliding rockmass (i.e., the rockslide structure before movement) exists along a dip angle and is barricaded by an inclined stable bedrock area, and the subsequent sliding direction is deflected from a true dip angle to an apparent dip angle; (3) apparent dip exiting. The valley and cliff provide a free space for the apparent dip exiting. (4) Driving block sliding, which means the block has a push type of effect on the motion of the rockslide. The “toy bricks” rockmass is characterized by a long-term creeping that induces the shear strength reduction from peak to residual value along the bottom soft layer, and the sliding force is therefore increased. (5) The key block resistance and brittle failure. The pressure on the key block is increased by the driving rockmass and its strength decreases due to karstification, rainfall, and mining. The brittle failure of the karst zone between the key block and the lateral stable bedrock occurs instantaneously and is largely responsible for generating the catastrophic rockslide–rock avalanche. If there was not a pre-existing key block, the failure pattern of such the inclined bedding rockmass could be piecemeal disintegration or small-scale successive rockfall or topple. The recognition of catastrophic failure potential in such inclined bedding slopes requires careful search for not only structures dipping in the direction of movement, but also key block toe-constrained condition.  相似文献   

14.
高速岩质滑坡启动弹冲加速机制是开展高速岩质滑坡全过程动力学研究的基础。系统阐述了高速岩质滑坡启动弹冲加速机制,着重分析了岩质滑坡启程中的滑带释能和锁固体释能加速效应。基于岩石循环加、卸载试验,探讨了岩石弹性应变能释放规律,并将得到的规律用于确定滑带可释放弹性应变能。鉴于目前确定滑坡启动弹冲速度所存在的诸多问题,重新推导了滑坡启动弹冲速度计算公式,并对鸡尾山滑坡启动弹冲规律进行了研究。研究表明,鸡尾山滑坡启动弹冲速度为1.261 1 m/s,滑体初始动能主要源于滑带弹性应变能的释放。最后通过一个滑坡概化模型计算得到了岩质滑坡启动弹冲的极限速度范围为2.64.4 m/s。  相似文献   

15.
This article summarizes an exploratory study carried out to investigate the significance of various geomorphic features on the formation of observed knickpoints along the upper Indus River in northern Pakistan. These features include bedrock lithology, active faults, sediment flux from tributary channels, and landslide dams which have blocked the main channel. The knickpoints and their related geomorphic parameters (channel profile, concavity, drainage area and normalized steepness index, etc.) were extracted from Advanced Spaceborne Thermal Emission and Reflection (ASTER) Global Digital Elevation Models (GDEMs) with 30 m resolution using ArcGIS, River Tools, and Matlab software. A total of 251 major and minor knickpoints were extracted from the longitudinal profile along a ~ 750 km reach upstream of Tarbela Reservoir. The identified knickpoints and their respective normalized steepness index (ksn values) were compared with bedrock lithology, mapped faults, regional landslide/rockslide inventory, and the locations of historic landslide dams. The analyses revealed that the knickpoints do not correlate with the bedrock lithology except where major unit boundaries coexist with mapped faults, especially in reaches criss-crossed by active thrust faults in the Nanga Parbat Haramosh (NPHM) region. Neither did the river’s major confluences exhibit any notable knickpoints, but the correlations between knickpoints, mapped landslides, and historic rockslide avalanche dams accounted for approximately 75% of the observed knickpoints, a surprising finding. These observations suggest that more detailed studies aided by high resolution data should be undertaken to further explore the characteristics of knickpoints triggered by tectonic uplift, local fault offset, bedrock erodibility, and landslide/rockslide dams.  相似文献   

16.
陕西山阳滑坡为典型的陡倾层状斜向岩质斜坡,其破坏模式不同于常见的顺倾层状岩质斜坡溃屈破坏模式,也不同于斜倾层状山体的视向滑移-剪切破坏模式,更不同于陡倾顺层岩质斜坡的倾倒、倾倒-滑移破坏模式,属于视向滑移-溃屈破坏模式。在实地调查的基础上,从斜坡结构特征、结构面组合特征以及剪出口特征分析了滑坡的破坏模式,进而分析了山阳滑坡的视向滑移-溃屈破坏机制;以梁板理论、层状板裂结构岩体弯曲-溃屈破坏的力学模型为基础,结合斜倾层状岩质滑坡的视向滑动机制研究,建立了基于斜坡自重、地下水静水压力、侧向摩阻力以及斜坡岩体厚度变化作用下的陡倾层状斜向岩质斜坡视向滑移-溃屈破坏力学模型,进行力学分析,推导了溃屈段长度条件方程,并以山阳滑坡为例验证了长度条件方程的正确性。  相似文献   

17.
The Afternoon Creek rockslide near Newhalem, Washington   总被引:1,自引:0,他引:1  
A series of mass wasting events occurred above a Washington, USA, highway in the Cascade Mountains in November and December 2003. The largest event was a rockslide involving approximately 750,000 m3 that occurred on November 9, 2003. The source zone for this event was located at the crest of a ridge. Most of the debris fell to the east of the sharp ridge and was deposited in the relatively shallow sloping Afternoon Creek without causing damage to the highway. Lesser amounts of debris fell to the west of the ridge, sliding 600 m down the steeper Falls Creek and impacting the road. There is an evidence of one or more historical rock avalanches at this location. Displacement of reference points, ground vibration, crack extension, and tilting are being monitored due to concerns that future slope failures or remobilization of debris might again damage or block the highway.  相似文献   

18.
This paper presents forward simulation with MassMov2D code and sensitivity analysis of run out resulting from different scenarios of potential failure of a 40 million m3 active rockslide hanging above the village of Trafoi, in South Tyrol (Italy). Five scenarios of potential failure zones were identified, with the larger one being the failure of the entire rock slide. Forward simulations showed that the consequences for the Trafoi village would be potentially destructive. A parametric sensitivity analysis was carried out in order to increase the significance of risk assessment. Results obtained by varying friction and turbulent coefficients showed quite unequivocally that although the variability of the run out might be quite large it does not change risk scenarios significantly except in the smaller case of failure. This confirms the usefulness of forward simulations even if they might be affected by uncertainties related to the impossibility to retrieve optimised parameters.  相似文献   

19.
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×10~4m~3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的"锁固段"失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×10~4m~3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有"高速远程"成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。  相似文献   

20.
Earthquake-triggered landslides are a major geological hazard in Central Asia. In July 1949, the M7.4 Khait earthquake triggered many hundreds of landslides in a mountainous region near the southern limit of the Tien Shan Mountains, central Tajikistan. These landslides involved widespread rock-slope failure as well as large numbers of flowslides in loess that mantles the steep slopes of the region. In the Yasman valley hundreds of loess landslides coalesced to form a massive loess flow (est. vol. 245 Mm3) that travelled up to 20 km on a slope of only 2°. In an adjacent valley, the Khait landslide involved transformation of an earthquake-triggered rockslide into a very rapid flow by the entrainment of saturated loess into its movement. It travelled 7.41 km over a vertical distance of 1421 m with an estimated average velocity of ~30 m/s. We estimate its volume as 75 Mm3, an order of magnitude less that previously published estimates. The Khait landslide was simulated using DAN. The number of casualties due to earthquake-triggered landslides in the epicentral region was considerable. Approximately 4000 people were killed in the Yasman valley loess flow as 20 villages (kishlaks) were overwhelmed. In the Khait landslide alone we estimate ca. 800 people lost their lives when the villages of Khait and Khisorak were overrun by rapidly moving debris. Our data indicates that a total of approximately 7200 people were killed by earthquake-triggered landslides in the epicentral region of the Khait earthquake and that, in terms of loss of life, the 1949 Yasman valley loess flow was one of the most destructive landslides in recent history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号