首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
班公湖蛇绿混杂岩带位于班公湖-怒江结合带西段,是中生代特提斯洋消亡的遗迹。根据西藏1∶25万日土县幅、喀纳幅地质填图成果,将班公湖蛇绿混杂岩带的时空结构划分为南、北两条亚带;综合分析研究认为,本区中特提斯洋的演化经历了三叠纪-早中侏罗世扩张,中晚侏罗世双向俯冲,晚侏罗世-早白垩世残余洋(海)盆和晚白垩世陆(弧)-陆碰撞等构造演化阶段。  相似文献   

2.
应用地层对比、砂岩岩相学和碎屑锆石U-Pb年代学的方法,重建东巧—北拉地区物源转换和班公湖—怒江洋多期次俯冲及微陆块的拼合过程。研究表明:东卡错微陆块南侧的中下侏罗统希湖群下段表现为上三叠统确哈拉群的再旋回沉积,而北侧上段则开始出现来自羌塘地区的物质。这标志着北侧早侏罗世俯冲的东巧分支洋盆消亡,东卡错微陆块在中侏罗世与羌塘地块拼合开始形成初始周缘前陆盆地。接奴群的物源完全来自南羌塘地区,表明周缘前陆盆地在微陆块南侧北拉洋俯冲挤压下持续发育。晚侏罗世—早白垩世(147~141 Ma)拉萨地块和羌塘地块东西向全面碰撞,至早白垩世晚期(约120 Ma)南侧的分支洋盆北拉洋消亡代表碰撞结束。南羌塘地区受班公湖—怒江洋俯冲作用控制在早侏罗世发育由弧前—岩浆弧—弧后盆地组成的“一隆两坳”古地貌,并沉积了曲色组页岩和布曲组石灰岩。微陆块碰撞导致南羌塘盆地的隆起和海平面的下降,形成夏里组含膏质泥岩的潮坪相沉积。随着拉萨地块和羌塘地块的全面碰撞,南羌塘盆地从弧相关盆地卷入前陆盆地褶皱冲断带中,发生差异埋藏和隆升剥蚀。晚侏罗世—早白垩世,南羌塘盆地曲色组烃源岩和布曲组石灰岩在构造挤压作用下发生快速埋藏,进...  相似文献   

3.
在班公湖-怒江结合带西段北侧的拉热拉新岩体东、西两侧,新发现了一些早白垩世岩体、相伴的陆缘火山岩组合和矿(化)点,侵入岩和火山岩的岩石化学特征均显示其成因与中特提斯洋向北俯冲消减密切相关。本文将班- 怒带北侧的火山- 侵入岩带厘定为五峰尖拉热拉新晚侏罗世—早白垩世陆缘火山岩浆弧带,同时讨论了陆缘火山- 岩浆弧带的厘定在分析中特提斯构造演化方面的研究意义。  相似文献   

4.
在班公湖-怒江结合带西段北侧的拉热拉新岩体东、西两侧,新发现了一些早白垩世岩体、相伴的陆缘火山岩组合和矿(化)点,侵入岩和火山岩的岩石化学特征均显示其成因与中特提斯洋向北俯冲消减密切相关.本文将班-怒带北侧的火山-侵入岩带厘定为五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山-岩浆弧带,同时讨论了陆缘火山-岩浆弧带的厘定在分析中特提斯构造演化方面的研究意义.  相似文献   

5.
在班公湖-怒江结合带西段北侧的拉热拉新岩体东、西两侧,新发现了一些早白垩世岩体、相伴的陆缘火山岩组合和矿(化)点,侵入岩和火山岩的岩石化学特征均显示其成因与中特提斯洋向北俯冲消减密切相关。本文将班-怒带北侧的火山-侵入岩带厘定为五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山-岩浆弧带,同时讨论了陆缘火山-岩浆弧带的厘定在分析中特提斯构造演化方面的研究意义。  相似文献   

6.
班公湖-怒江带、羌塘地块特提斯演化 与成矿地质背景   总被引:32,自引:2,他引:30  
早古生代—泥盆纪,研究区沉积环境以陆棚碎屑岩相和碳酸盐台地相为主,代表冈瓦纳大陆北缘和特提斯南侧的被动大陆边缘。石炭纪—二叠纪,本区进入特提斯南、北缘弧盆系统演化阶段,龙木错-双湖带北部、金沙江带南部和冈底斯带分别在石炭纪、二叠纪形成岩浆弧。中生代是特提斯南缘弧盆演化阶段,SSZ型蛇绿岩形成岩浆熔离型铬、镍、铂族金属矿床和热液型金矿。班公湖-怒江带特提斯在中侏罗世至早白垩世向南、北两侧俯冲并形成岩浆弧,该岩浆弧是重要的成矿带,形成斑岩铜矿、矽卡岩型磁铁矿和热液型多金属矿床。北羌塘东段侏罗纪弧后前陆盆地有利于形成沉积型、沉积-热液改造型和热液型铁、铜、锑、金矿床。晚白垩世碰撞作用主要与热液型矿床有关,分布范围较大,也可能存在晚白垩世至新生代碰撞阶段的斑岩铜矿。  相似文献   

7.
班公湖-怒江洋的形成演化是认识班公湖-怒江成矿带成矿地质背景的关键,近几年中国地质调查局在青藏高原部署了大量1∶50000区域地质调查工作,取得了很多重要发现。对班公湖-怒江结合带两侧关键性海陆沉积地层对比研究,认为南羌塘地块与拉萨地块晚古生代-晚三叠世地层沉积特征及岩石组合基本一致,二者在班公湖-怒江中生代洋盆形成以前是一个整体,为冈瓦纳大陆北缘被动陆缘环境。班公湖-怒江洋在早中侏罗世裂解形成,至中侏罗世趋于稳定且范围最大;向北俯冲消减作用始于中晚侏罗世,晚侏罗世-早白垩世演化为残留海,早白垩世中晚期出现短暂的裂解,致使海水重新灌入;晚白垩世班公湖-怒江洋盆进入闭合后的隆升造山阶段,发生了残留盆地迁移,形成了磨拉石建造。班公湖-怒江洋类似古加勒比海(现今墨西哥湾地区)的形成机制,并与大西洋、太平洋的形成过程关系密切。对于班公湖-怒江洋的闭合和冈底斯弧的形成,本文提出了另一种可能解释,即,新特提斯洋向北俯冲下,岩浆弧逐步南迁,在弧后形成了一系列伸展性质的弧后盆地,两者组成微陆块由北向南逐渐增生形成了现今的拉萨地体,持续向北俯冲也导致了班公湖-怒江洋最终闭合。  相似文献   

8.
班公湖—怒江结合带南侧弧-盆系时空结构与演化特征   总被引:14,自引:4,他引:14       下载免费PDF全文
本文在1:25万邦多区幅、措麦区幅填图成果基础上,运用多岛弧造山模式分析了班公湖—怒江结合带南侧弧-盆系时空结构与演化特征。认为中晚侏罗世—早白垩世,伴随班公湖—怒江洋向南俯冲消亡,其南侧形成多岛弧—盆系的空间配置格局;早白垩世晚期—晚白垩世,残余海盆沉积、闭合消亡及其随后的碰撞造山,完成了班公湖—怒江带南侧弧-盆系时空演化史。  相似文献   

9.
笔者依据班公湖地区1:25万喀纳幅、日土县幅、羌多幅地质填图和专题研究工作取得的阶段性成果,将班公湖带的多岛弧盆系时空结构厘定为3条蛇绿混杂岩亚带。该3条亚带为盆地所隔,从北而南依次为班公湖带北亚带、班摩掌侏罗纪弧间盆地、班公湖带中亚带、日土-巴尔穷侏罗纪—早白垩世复合弧后盆地和班公湖带南亚带等。初步认为班公湖-怒江特提斯洋经历了晚三叠—早侏罗世往北俯冲、中晚侏罗世早期向北、往南双向俯冲、早白垩世往南俯冲等3次俯冲消亡阶段;同时,讨论了在班公湖带研究中存在的问题及其在反演班公湖-怒江结合带西段构造演化和在找矿方面的意义,以及进一步研究方向。  相似文献   

10.
地层方面,重新厘定了地层区划界线并建立接奴群多仁组、日松组,发现了中晚志留世地层;厘定与划分了日干配错群,修订了欧利组并确定其时代,建立五峰尖组.岩石方面,建立侵入岩岩石谱系单位并划分构造-岩浆组合带;在南羌塘地区发现了海西期石英闪长岩石炭-侏罗纪地层中发现火山岩夹层及透镜体.构造方面,首次在班公湖-怒江带北侧划分出五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山岩浆弧带Ⅲ级构造单元,将班公湖蛇绿混杂岩带划分为北亚带和南亚带两个构造单元,基本查明了班公湖蛇绿混杂岩带的内部结构、物质组成及其边界断裂特征,探讨了班公湖-怒江结合带西段的弧-盆系时空结构,对班公湖地区中生代特提斯洋的演化规律作了系统总结.新发现一些矿产资源.  相似文献   

11.
本文从构造-岩浆演化、典型矿床特征、构造-岩浆产物空间分布特征等方面,对冈底斯成矿带形成于195~80Ma的与俯冲-碰撞作用相关的斑岩(-矽卡岩)型铜矿的找矿方向进行了探讨。认为研究区与俯冲-碰撞作用相关的斑岩型铜矿大致可分为早-中侏罗世、晚侏罗-早白垩世、晚白垩世3个成矿时期,分别对应于雅鲁藏布江洋向北、班公湖怒江洋向南相向俯冲、班公湖怒江洋碰撞关闭、雅鲁藏布江洋向北持续俯冲、雅鲁藏布江洋向北晚期俯冲等构造-岩浆事件。与早期相向俯冲相关的雄村式矿床,在拉萨东部达孜-工布江达一带具有良好找矿前景;与中期俯冲-碰撞相关的多龙式矿床,在昂龙岗日、东恰错、桑日等火山岩浆弧区成矿条件较佳;与晚期俯冲相关的尕尔穷式矿床,在冈底斯东段和西段具有较大的找矿潜力。  相似文献   

12.
西藏东巧北尕苍见岛弧的厘定及地质意义   总被引:8,自引:0,他引:8       下载免费PDF全文
在班公错—怒江小洋盆内晚侏罗世存在向南的俯冲已被许多学者所证实,近期在班—怒带中部的东巧蛇绿岩带北侧发现一套晚侏罗世火山岩——尕苍见(组)火山岩,该套火山岩以内部变形微弱而明显有别于东巧蛇绿岩带,其地球化学特点反映具有岛弧性质,并具有初期为拉斑玄武质-钙碱性岩浆喷发,尔后以钙碱性火山活动为主,至晚期岛弧演化成熟,发生岛弧橄榄安粗质火山喷发活动,并伴有富Nb岛弧玄武岩产出。证明在班怒小洋盆内晚期也曾存在向北的俯冲作用。这一发现对完整重溯班—怒带构造演化和构建青藏高原大地构造格局具有重要意义。  相似文献   

13.
The subduction polarity and related arc–magmatic evolutional history of the Bangong–Nujiang Ocean, which separated the South Qiangtang terrane to the north from the North Lhasa terrane to the south during the Mesozoic, remain debated. This study tries to reconstruct the subduction and evolution of the Bangong–Nujiang Ocean on the basis of U–Pb and Hf isotopic analyses of detrital zircons in samples from sedimentary rocks of the middle-western section of the Bangong–Nujiang suture zone in Gerze County, central Tibet. The Middle Jurassic Muggargangri Group in the Bangong–Nujiang suture zone was deposited in a deep-sea basin setting on an active continental margin. The Late Jurassic strata, such as the Sewa Formation, are widely distributed in the South Qiangtang terrane and represent deposition on a shelf. The Early Cretaceous Shamuluo Formation in the Bangong–Nujiang suture zone unconformably overlies the Muggargangri Group and was probably deposited in a residual marine basin setting. The detrital zircons of the Muggargangri Group contain seven U–Pb age populations: 2.6–2.4 Ga, 1.95–1.75 Ga, 950–900 Ma, 850–800 Ma, 650–550 Ma, 480–420 Ma, and 350–250 Ma, which is similar to the age populations in sedimentary rocks of the South Qiangtang terrane. In addition, the age spectra of the Shamuluo Formation are similar to those of the Muggargangri Group, indicating that both had a northern terrane provenance, which is conformed by the north-to-south palaeocurrent. This provenance indicates northward subduction of the Bangong–Nujiang oceanic crust. In contrast, two samples from the Sewa Formation yield variable age distributions: the lower sample has age populations similar to those of the South Qiangtang terrane, whereas the upper possesses only one age cluster with a peak at ca. 156 Ma. Moreover, the majority of the late Mesozoic detrital zircons are characterized by weakly positive εHf(t) values that are similar to those of magmatic zircons from arc magmatic rocks in the South Qiangtang terrane. The findings, together with information from the record of magmatism, indicate that the earliest prevalent arc magmatism occurred during the Early Jurassic (ca. 185 Ma) and that the principal arc–magmatic stage occurred during the Middle–Late Jurassic (ca. 170–150 Ma). The magmatic gap and scarcity of detrital zircons at ca. 140–130 Ma likely indicate collision between the Qiangtang and Lhasa terranes. The late Early Cretaceous (ca. 125–100 Ma) magmatism on both sides of the Bangong–Nujiang suture zone was probably related to slab break-off or lithospheric delamination after closure of the Bangong–Nujiang Ocean.  相似文献   

14.
以出露于贺根山缝合带梅劳特乌拉蛇绿岩中的白音瑞满克头鄂博组火山岩为研究对象,通过野外地质调查、岩石学、地球化学和LA-ICP-MS锆石U-Pb年代学研究,探讨火山岩成因、构造环境与贺根山缝合带后造山作用。岩石地球化学研究表明,白音瑞地区满克头鄂博组火山岩主要为流纹岩,岩石具有较高SiO_2、K_2O和Na_2O+K_2O含量,以及较高Ga/Al值,相对贫CaO、MgO、Sr、Ba、Eu、Ti和P的特征。稀土元素含量较低,配分曲线为微弱右倾的海鸥式分布。岩石学和地球化学特征表明,该区满克头鄂博组流纹岩为A型流纹岩,形成于后造山伸展构造环境,为后造山A型花岗岩浆作用的产物。LA-ICP-MS锆石U-Pb同位素定年结果显示,该流纹岩的形成年龄为158.0±0.7Ma,表明满克头鄂博组流纹岩喷发于晚侏罗世,反映了贺根山缝合带晚侏罗世后造山A型花岗岩浆作用事件。结合二连-贺根山缝合带石炭纪蛇绿岩、石炭纪—二叠纪岛弧岩浆岩和中三叠世—早白垩世后造山A型岩浆岩的时空分布与演化关系,认为二连-贺根山缝合带在中三叠世—早白垩世经历了后造山伸展作用演化过程。  相似文献   

15.
在位于班公湖-怒江结合带中段的那曲县觉翁地区首次发现较完整的蛇绿岩剖面,由下到上见有变质橄榄岩、辉橄岩、堆晶岩、块状辉长岩、岩墙群、碳酸盐岩、枕状熔岩、放射虫硅质岩等,被晚白垩世竟柱山组角度不整合覆盖,在堆晶岩中获同位素年龄值128Ma,从而证实蛇绿岩的时代为早白垩世。这一发现填补了班公湖-怒江结合带中段无完整蛇绿岩剖面的空白,并证实除侏罗纪蛇绿岩外还存在白垩纪蛇绿岩,为班公湖-怒江结合带中段最终闭合时间的确定提供了依据。  相似文献   

16.
There is ongoing debate as to the subduction direction of the Bangong–Nujiang Ocean during the Mesozoic (northward, southward or bidirectional subduction). Arc-related intermediate to felsic intrusions could mark the location of the subduction zone and, more importantly, elucidate the dominant geodynamic processes. We report whole rock geochemical and zircon U–Pb and Hf isotopic data for granitoids from the west central Lhasa subterrane (E80° to E86°). All rocks show metaluminous to peraluminous, calc-alkaline signatures, with strong depletion of Nb, Ta and Ti, enrichment of large ion lithophile elements (e.g., Cs, Rb, K), a negative correlation between SiO2 and P2O5, and a positive correlation between Rb and Th. All these features are indicative of I-type arc magmatism. New zircon U–Pb results, together with data from the literature, indicate continuous magmatism from the Late Jurassic to the Early Cretaceous (160 to 130 Ma). Zircon U–Pb ages for samples from the northern part of the west central Lhasa subterrane (E80° to E82°30′) yielded formation ages of 165 to 150 Ma, whereas ages of 142 to 130 Ma were obtained on samples from the south. This suggests flat or low-angle subduction of the Bangong–Nujiang Ocean, consistent with a slight southward decrease in zircon εHf(t) values for Late Jurassic rocks. Considering the crustal shortening, the distance from the Bangong–Nujiang suture zone, and a typical subduction zone melting depth of ~ 100 km, the subduction angle was less than 14° for Late Jurassic magmatism in the central Lhasa interior, consistent with flat or low-angle subduction. Compared with Late Jurassic rocks (main εHf(t) values of − 16 to − 7), Early Cretaceous rocks (145 to 130 Ma) show markedly higher εHf(t) values (mainly − 8 to 0), possibly indicating slab roll-back, likely caused by slab foundering or break-off. Combined with previously published works on arc magmatism in the central Lhasa and west part of the southern Qiangtang subterranes, our results support the bidirectional subduction of the Bangong–Nujiang Ocean along the Bangong–Nujiang Suture Zone, and indicates flat or low-angle southward subduction (165 to 145 Ma) followed by slab roll-back (145 to 130 Ma).  相似文献   

17.
The distribution of peraluminous granites in Tibet is treated on the basis of the tectonic zones in which they occur, their spatial and temporal distribution, the peak of magmatic activity and the volume of magma intruded. Magmatic activity, with the intrusion of peraluminous granites, was initiated during the Early Jurassic and culminated in the middle Miocene, especially between 20 and 10 Ma. Rock types include tourmaline, muscovite and two-mica granites. Magmatic activity in the Gangdise Belt migrated from the east to west and from the south to the north. Episodes of tectonic evolution for the lithosphere of the Qinghai–Xizang (Tibet) Plateau, deduced from peraluminous granite intrusion are: (1) Latest Triassic to Early Jurassic (208–157 Ma), representing the subduction phase of the Bangong Co–Nu Jiang oceanic zone; (2) Late Jurassic to Early Cretaceous (157–97 Ma), representing the subduction and collision phases of the Bangong–Nu Jiang oceanic zone; (3) Late Cretaceous to early Paleocene (97–65 Ma), representing the subduction and initial collision phases of the Yarlung Zangbo oceanic zone ; (4) Paleocene to Eocene (65–40 Ma), representing the major collisional stage of the Yarlung Zangbo Oceanic zone and the formation of crust-derived granites; and (5) Oligocene to Recent, representing an intense intracontinental convergence phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号