首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
班公湖-怒江结合带西段中特提斯多岛弧构造演化   总被引:13,自引:0,他引:13       下载免费PDF全文
本文根据1∶25万地质填图成果,将班公湖-怒江结合带西段弧-盆系时空结构自北向南划分为五峰尖-拉热拉新晚侏罗世—早白垩世陆缘火山-岩浆弧带、班公湖蛇绿混杂岩北、南亚带和昂龙岗日-班戈白垩纪—始新世岩浆弧带等,初步认为中特提斯洋经历了三叠纪—早侏罗世扩张,中—晚侏罗世往北、南双向俯冲,晚三叠世—早白垩世残余洋(海)盆和早—晚白垩世陆-弧(陆)碰撞等演化阶段。  相似文献   

2.
笔者依据班公湖地区1:25万喀纳幅、日土县幅、羌多幅地质填图和专题研究工作取得的阶段性成果,将班公湖带的多岛弧盆系时空结构厘定为3条蛇绿混杂岩亚带。该3条亚带为盆地所隔,从北而南依次为班公湖带北亚带、班摩掌侏罗纪弧间盆地、班公湖带中亚带、日土-巴尔穷侏罗纪—早白垩世复合弧后盆地和班公湖带南亚带等。初步认为班公湖-怒江特提斯洋经历了晚三叠—早侏罗世往北俯冲、中晚侏罗世早期向北、往南双向俯冲、早白垩世往南俯冲等3次俯冲消亡阶段;同时,讨论了在班公湖带研究中存在的问题及其在反演班公湖-怒江结合带西段构造演化和在找矿方面的意义,以及进一步研究方向。  相似文献   

3.
青藏高原中部狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带(简称SYMZ)位于班公湖-怒江缝合带与雅鲁藏布江缝合带之间,其构造属性存在很大争议,制约了对青藏高原多岛弧盆系构造演化的理解.根据新的地质调查资料、研究成果并结合分析数据,系统总结了该蛇绿混杂岩带的地质特征,讨论了其构造演化过程.一系列新资料及新认识表明SYMZ是分割北拉萨地块和中拉萨地块的一条独立的蛇绿混杂岩带,是特提斯构造域多岛弧盆系的组成部分.在狮泉河、拉果错、阿索、永珠、凯蒙等地发育比较典型的蛇绿岩组合,高精度年代学数据指示洋盆主体发育于178~160 Ma,比班公湖-怒江洋盆主体发育时限(188~162 Ma)要晚10 Ma左右,阿索一带蛇绿岩残片记录洋盆一直持续到113 Ma.SYMZ侏罗纪基性岩具有MORB型(洋中脊玄武岩)和IAT型(岛弧拉斑玄武岩)火山岩的地球化学性质,属于洋内弧型和洋中脊型蛇绿混杂岩;早白垩世基性岩具MORB和火山弧玄武岩的双重特性,指示其很可能形成于SSZ的构造环境,不同于同时期班公湖-怒江特提斯受地幔柱热点影响的洋盆性质.同时,在拉果错、永珠、凯蒙等地区识别出侏罗纪前弧玻安岩及玻玄岩系列,一致指示SYMZ洋壳发生过洋内俯冲.在此基础上,结合区域地质资料,构建了SYMZ特提斯洋的时空格架及构造演化历史,认为经历了晚三叠世-早侏罗世洋盆裂解-扩张、中-晚侏罗世洋内俯冲、早白垩世俯冲消减和早白垩世末期洋盆消亡四个阶段,为特提斯洋的构造演化及大地构造过程再造提供了重要的地质学证据.   相似文献   

4.
地层方面,重新厘定了地层区划界线并建立接奴群多仁组、日松组,发现了中晚志留世地层;厘定与划分了日干配错群,修订了欧利组并确定其时代,建立五峰尖组.岩石方面,建立侵入岩岩石谱系单位并划分构造-岩浆组合带;在南羌塘地区发现了海西期石英闪长岩石炭-侏罗纪地层中发现火山岩夹层及透镜体.构造方面,首次在班公湖-怒江带北侧划分出五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山岩浆弧带Ⅲ级构造单元,将班公湖蛇绿混杂岩带划分为北亚带和南亚带两个构造单元,基本查明了班公湖蛇绿混杂岩带的内部结构、物质组成及其边界断裂特征,探讨了班公湖-怒江结合带西段的弧-盆系时空结构,对班公湖地区中生代特提斯洋的演化规律作了系统总结.新发现一些矿产资源.  相似文献   

5.
地层方面,重新厘定了地层区划界线并建立接奴群多仁组、日松组,发现了中晚志留世地层;厘定与划分了日干配错群,修订了欧利组并确定其时代,建立五峰尖组.岩石方面,建立侵入岩岩石谱系单位并划分构造-岩浆组合带;在南羌塘地区发现了海西期石英闪长岩石炭-侏罗纪地层中发现火山岩夹层及透镜体.构造方面,首次在班公湖-怒江带北侧划分出五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山岩浆弧带Ⅲ级构造单元,将班公湖蛇绿混杂岩带划分为北亚带和南亚带两个构造单元,基本查明了班公湖蛇绿混杂岩带的内部结构、物质组成及其边界断裂特征,探讨了班公湖-怒江结合带西段的弧-盆系时空结构,对班公湖地区中生代特提斯洋的演化规律作了系统总结.新发现一些矿产资源.  相似文献   

6.
地层方面,重新厘定了地层区划界线并建立接奴群多仁组、日松组,发现了中晚志留世地层;厘定与划分了日干配错群,修订了欧利组并确定其时代,建立五峰尖组。岩石方面,建立侵入岩岩石谱系单位并划分构造-岩浆组合带;在南羌塘地区发现了海西期石英闪长岩石炭-侏罗纪地层中发现火山岩夹层及透镜体。构造方面,首次在班公湖-怒江带北侧划分出五峰尖-拉热拉新晚侏罗世-早白垩世陆缘火山岩浆弧带Ⅲ级构造单元,将班公湖蛇绿混杂岩带划分为北亚带和南亚带两个构造单元,基本查明了班公湖蛇绿混杂岩带的内部结构、物质组成及其边界断裂特征,探讨了班公湖-怒江结合带西段的弧-盆系时空结构,对班公湖地区中生代特提斯洋的演化规律作了系统总结。新发现一些矿产资源。  相似文献   

7.
在西藏1∶25万喀纳幅、日土县幅地质调查图成果的基础上,重建了班公湖-怒江结合带西段3个地层区的侏罗纪-早白垩世沉积地层序列,对地层纵向、横向序列变化和沉积环境进行对比分析,指出在侏罗纪-早白垩世时,班公湖-怒江中特提斯洋盆沉积与其南、北两侧大陆边缘沉积有明显差异;中特提斯海洋盆地演化经历了早-中侏罗世深海-半深海沉积、晚侏罗世-早白垩世残余海(洋)盆地沉积和晚白垩世残余海盆消亡等3个阶段。  相似文献   

8.
雅鲁藏布蛇绿混杂岩代表了新特提斯洋盆闭合的地表残余。本文在测试数据基础上,综合分析了目前雅鲁藏布江蛇绿混杂岩研究中取得的比较可信的晚侏罗世-早白垩世玄武岩的地球化学数据,并对其进行了较为详细的区域对比分析以讨论涉及新特提斯演化的地球动力学过程。结果表明:(1)雅鲁藏布蛇绿混杂岩带吉定洞拉村玄武岩、错拉山口北部玄武岩为大洋中脊玄武岩(MORB)型,错拉山口南部玄武岩为洋岛玄武岩(OIB)型,萨嘎桑单林玄武岩既包括OIB型,又包括MORB型;(2)在东西延伸约1500km的雅鲁藏布蛇绿混杂岩带中,至少可能存在OIB、MORB(包括N-MORB、E-MORB)和岛弧玄武岩IAB三种类型的晚侏罗世-早白垩世玄武岩。不活动的高场强元素比值(如Nb/Y,Zr/Y等)指示雅鲁藏布蛇绿混杂岩带中部仁布、杯玛让、吉定洞拉村和错拉山口北部地区以及中西部萨嘎地区的MORB型玄武岩中的亏损组分很可能来源于深部亏损的地幔柱源区。微量元素地球化学模拟表明,雅鲁藏布蛇绿混杂岩带OIB型玄武岩可能主要来源于石榴石二辉橄榄岩源区中等程度(10%~20%)的部分熔融,而MORB型玄武岩主要来源于尖晶石二辉橄榄岩源区中等程度(7%~25%)的部分熔融,IAB型玄武岩所代表的源区熔融深度以中部较浅而东西两端较深为特点,其中中部得几、杯玛让、吉定等地的IAB很可能与尖晶石二辉橄榄岩源区的部分熔融有关,而东部和西部达几翁IAB的熔融源区可能残留有石榴石。结合该带报道的He同位素数据和矿物学观察,以及在喜马拉雅带新获得的古地磁数据,可以认为热点与洋脊的相互作用是对晚侏罗世-早白垩世新特提斯演化的一种很可能的地球动力学解释。需要强调,虽然该模式可以较好地解释目前在藏南观察到的晚侏罗世-早白垩世岩浆作用特点和性质,但因资料有限,还需要做许多非常细致的工作来证实或否定。  相似文献   

9.
以大地构造相研究为主导,以《中国沉积大地构造图(1∶2 500 000)》编图为研究平台,对洋板块地层类型进行了初步划分,简述了中国新元古代以来洋板块地层分布及其构造演化规律。本文阐述了北方的古亚洲洋的洋陆转换从西往东具穿时现象,西部主要在早、晚石炭世之间,东部主要在中、晚二叠世之间;宽坪-佛子岭混杂岩带是华北与扬子之间大洋消亡的产物;中央造山带从北部的祁连-阿尔金到南部的昆仑-秦岭,洋陆转换从北向南依次完成:西昆仑北-阿尔金-祁连-祁曼塔格为晚奥陶世末,西昆仑南-东昆仑-秦岭为早三叠世末;青藏高原中部的龙木错-双湖、班公湖-怒江、昌宁-孟连蛇绿混杂岩带一起构成了原-古特提斯大洋连续演化、分阶段增生至最终消亡的对接带,洋壳持续时代自寒武纪-早白垩世;江绍-郴州-钦防混杂岩带是扬子陆块与华夏增生造山系之间华南洋最终消亡的对接带,主碰撞期是晚奥陶世-早志留世。  相似文献   

10.
地层方面,重新厘定了地层区划界线并建立接奴群多仁组、日松组,发现了中晚志留世地层;厘定与划分了日干配错群,修订了欧利组并确定其时代,建立五峰尖组。岩石方面,建立侵入岩岩石谱系单位并划分构造 岩浆组合带;在南羌塘地区发现了海西期石英闪长岩石炭—侏罗纪地层中发现火山岩夹层及透镜体。构造方面,首次在班公湖怒江带北侧划分出五峰尖 拉热拉新晚侏罗世—早白垩世陆缘火山岩浆弧带Ⅲ级构造单元,将班公湖蛇绿混杂岩带划分为北亚带和南亚带两个构造单元,基本查明了班公湖蛇绿混杂岩带的内部结构、物质组成及其边界断裂特征,探讨了班公湖 怒江结合带西段的弧盆系时空结构,对班公湖地区中生代特提斯洋的演化规律作了系统总结。新发现一些矿产资源。  相似文献   

11.
通安-小关河元古代碰撞缝合线的发现及其地质意义   总被引:2,自引:0,他引:2       下载免费PDF全文
在四川南部地区发现了从通安延伸到小关河的蛇绿混杂带,它可能代表了元古代的一条碰撞缝合带。这条东西延伸的缝合带的证据是:1.残留洋壳经消减、冲断形成的蛇绿混杂带;2.该带两侧的地层有明显的差异;3.强烈变形的冲断褶皱带;4.变质程度在两侧有明显的不同;5.有类似于阿巴拉契亚山带的夹心糕式模式,依次为南部的被动边缘的俯冲表壳岩系、中间的蛇绿混杂带和北部的上冲基底。上述证据说明通安-小关河蛇绿混杂带代表了两个陆壳地质体的碰撞缝合带,碰撞事件的年龄大约为距今1000Ma。  相似文献   

12.
本文从构造-岩浆演化、典型矿床特征、构造-岩浆产物空间分布特征等方面,对冈底斯成矿带形成于195~80Ma的与俯冲-碰撞作用相关的斑岩(-矽卡岩)型铜矿的找矿方向进行了探讨。认为研究区与俯冲-碰撞作用相关的斑岩型铜矿大致可分为早-中侏罗世、晚侏罗-早白垩世、晚白垩世3个成矿时期,分别对应于雅鲁藏布江洋向北、班公湖怒江洋向南相向俯冲、班公湖怒江洋碰撞关闭、雅鲁藏布江洋向北持续俯冲、雅鲁藏布江洋向北晚期俯冲等构造-岩浆事件。与早期相向俯冲相关的雄村式矿床,在拉萨东部达孜-工布江达一带具有良好找矿前景;与中期俯冲-碰撞相关的多龙式矿床,在昂龙岗日、东恰错、桑日等火山岩浆弧区成矿条件较佳;与晚期俯冲相关的尕尔穷式矿床,在冈底斯东段和西段具有较大的找矿潜力。  相似文献   

13.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

14.
The southern Qiangtang magmatic belt was formed by the north-dipping subduction of the Bangong–Nujiang Tethyan Ocean during Mesozoic. To better understand the petrogenesis, time–space distribution along the length of this belt, 21 samples of several granitoid bodies, from west to east, in the Bangong Co, Gaize, Dongqiao and Amdo areas were selected for in-situ zircon U–Pb dating, Hf isotopic and whole-rock chemical analyses. The results suggest a prolonged period of magmatic activity (185–84 Ma) with two major stages during the Jurassic (185–150 Ma) and the Early Cretaceous (126–100 Ma). Both the Jurassic and Cretaceous granitoids are high-K calc-alkaline I-type rocks, except the Cretaceous two-mica granite from Amdo in the east, which belongs to S-type. The granitoids are generated from different source materials as indicated by zircon Hf isotopic compositions. The Bangong Co and Dongqiao granitoids show high zircon εHf(t) values of − 1.3–13.6 with younger TDMC ages of 293–1263 Ma, suggesting a relatively juvenile source; whereas the Gaize and Amdo granitoids have low εHf(t) values of − 16.1–2.9 with older TDMC ages of 999–2024 Ma, indicating an old crustal contribution. These source rocks melt at different P–T conditions as suggested by Sr/Y ratio and TZr. The Sr/Y ratio of both stage granitoids increases with decreasing age. However, the TZr of the Jurassic granitoids decreases, whereas the TZr of the Cretaceous granitoids increases with decreasing age. The contrasting geochemical signatures of these granitoids may be controlled by the varying contribution of slab-derived fluids involved in the generation of the Jurassic and Cretaceous granitic magmas; i.e. increasing amount of fluids in the Jurassic, whereas decreasing amount of fluids in the Cretaceous. Therefore, it is proposed that the Jurassic and Cretaceous magmatism may be related to subduction and closure of the Bangong–Nujiang Tethyan Ocean, respectively. The age pattern of the Jurassic and Cretaceous granitoids suggests an oblique subduction of the Bangong–Nujiang Tethyan Ocean and a diachronous collision between the Lhasa and Qiangtang blocks.  相似文献   

15.
南秦岭勉略构造混杂岩带非史密斯地层系统和地层格架   总被引:2,自引:0,他引:2  
南秦岭西段勉略构造混杂岩带是由不同的构造岩片组成的非史密斯地层区。本文建立了勉略构造带太古宙—石炭纪的地层系统。勉略构造带及其邻区地层格架分析表明晚震旦世—寒武纪勉略构造带及中秦岭为扬子板块北缘的一部分。奥陶纪—志留纪大致沿勉略构造带形成南秦岭裂陷槽。泥盆纪—石炭纪该裂陷槽进一步开裂形成勉略洋。该洋盆从石炭纪开始俯冲萎缩并最终于三叠纪后期碰撞、闭合并造山。  相似文献   

16.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   

17.
襄樊——广济断裂西段的三里岗——三阳地区出露有构造混杂岩,以含蛇绿岩残块为特征,经历了复杂的构造变形和演化过程。不同区段的构造解析与对比表明,中生代以来该构造混杂岩带主要遭受了4期变形构造的叠加改造:1)高温塑性变形(D1),表现为蛇绿岩残块内部具网状强应变带和透镜状弱应变域相互交织的构造变形样式,强应变带形成以镁铁质糜棱岩为特征的高温韧性剪切带,显示深层次构造变形特征;2)逆冲推覆变形(D2),构造混杂岩带发育叠瓦状逆冲推覆构造和双冲构造,南界韧性剪切带是构造混杂岩带整体运移的主推覆面,发育长英质糜棱岩,形成于中等构造层次,岩石中发育镁铁质糜棱岩糜棱面理的褶皱构造,显示陆内逆冲推覆对先期高温塑性变形构造的叠加改造;3)韧脆性右行平移剪切(D3),形成构造混杂岩带内部浅层次构造变形,构造混杂岩带南侧的花山群钙质片岩揉皱变形,形成枢纽近直立的不对称褶皱,指示右行平移剪切变形;4)伸展正断层(D4),主要发育于构造混杂岩带北侧,呈NW——SE向展布,控制晚白垩世断陷盆地的形成与沉积充填。  相似文献   

18.
Ophiolitic melange and flyschoidal sediments of the Tithonian-Lower Cretaceous age are widespread in the Eastern Albanides. They lie transgressively or normally on top of the ophiolitic sequence through radiolarian cherts of the Kimmeridgian-Tithonian age, or on top of the carbonate sequence of the periphery of the ophiolites through Middle Liassic-Dogger-Malm pelagic limestones with manganese nodules and radiolarian cherts. They are overlain by conglomerates or neritic limestones of the Lower Cretaceous age. Ophiolitic melange consists of ophiolitic conglobreccias, often of homogenous composition: serpentinite melange with a ‘sedimentary’serpentinite matrix, or basaltic ‘sedimentary’tuffagglomerate. Less commonly they have a heterogeneous composition with small amounts of fine-grained matrix and marls with calpionellids. In other examples, the ophiolitic melange contains heterogeneous exotic blocks including all the members of the ophiolite suite: serpentinite, ophicalcite, gabbro, plagiogranite, diabase, basalts, dacites, amphibolite, sulphide and chromite ores as well as blocks of radiolarites, limestones etc. in the argillic matrix. They are overlain by conglomerate-sandstone-marly flyschoidal deposits with abundant ophiolitic detritus and calpionellids. These deposits are linked with Tithonian-Lower Cretaceous tectogenesis, which led to the fragmentary uplift of ophiolites and partly of their sedimentary periphery, and to the formation of the faulted topography. The presence of the ophiolitic melange and flyschoidal sediments both over the ophiolites and the associated sedimentary rocks of their periphery indicate that the latter were not the basement of an ophiolite nappe during the Late Jurassic time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号