首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to assess the susceptibility of landslides around Yomra and Arsin towns near Trabzon, in northeast of Turkey, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analyses of the topographical map. The landslide triggering factors are considered to be slope angle, slope aspect, distance from drainage, distance from roads and the weathered lithological units, which were called as “geotechnical units” in the study. Idrisi and ArcGIS packages manipulated all the collected data. Logistic regression (LR) and weighted linear combination (WLC) statistical methods were used to create a landslide susceptibility map for the study area. The results were assessed within the scope of two different points: (a) effectiveness of the methods used and (b) effectiveness of the environmental casual parameters influencing the landslides. The results showed that the WLC model is more suitable than the LR model. Regarding the casual parameters, geotechnical units and slopes were found to be the most important variables for estimating the landslide susceptibility in the study area.  相似文献   

2.
The purpose of this study is to assess the susceptibility of landslides in parts of Western Ghats, Kerala, India, using a geographical information system (GIS). Landslide inventory of the area was made by detailed field surveys and the analysis of the topographical maps. The landslide triggering factors are considered to be slope angle, slope aspect, slope curvature, slope length, distance from drainage, distance from lineaments, lithology, land use and geomorphology. ArcGIS version 8.3 was used to manipulate and analyse all the collected data. Probabilistic-likelihood ratio was used to create a landslide susceptibility map for the study area. The result was validated using the Area under Curve (AUC) method and temporal data of landslide occurrences. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. As the result, the success rate of the model was (84.46%) and the prediction rate of the model was (82.38%) shows high prediction accuracy. In the reclassified final landslide susceptibility zone map, 5.68% of the total area is classified as critical in nature. The landslide susceptibility map thus produced can be used to reduce hazards associated with landslides and to land cover planning.  相似文献   

3.
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides.  相似文献   

4.
基于GIS与ANN模型的地震滑坡易发性区划   总被引:1,自引:0,他引:1  
基于遥感数据、地理信息系统(GIS)技术和人工神经网络(ANN)模型,开展地震滑坡易发性区划研究.2010年4月14日玉树地震后,基于航片与卫星影像目视解译,并辅以野外调查的方法,在地震区圈定了2036处地震诱发滑坡.选择高程、坡度、坡向、斜坡曲率、坡位、与水系距离、地层岩性、与断裂距离、与公路距离、归一化植被指数(NDVI)、与同震地表破裂距离、地震动峰值加速度(PGA)共12个因子作为地震滑坡易发性评价因子.这些因子均是应用GIS技术与遥感影像处理技术,基于地形数据、地质数据、遥感数据得到.训练样本中的滑动样本有两组,一组是滑坡区整个单滑坡体的质心位置,另一组是滑坡滑源区滑前的坡体高程最高的位置.应用这12个影响因子,分别采用这两组评价样本,基于ANN模型建立地震滑坡易发性索引图,基于GIS工具建立地震滑坡易发性分级图.分别应用训练样本中滑坡分布的点数据去检验各自的结果正确率,正确率分别为81.53%与81.29%,表明ANN模型是一种高效科学的地震滑坡易发性区划模型.  相似文献   

5.
This study evaluates the susceptibility of landslides in the Lai Chau province of Vietnam using Geographic Information System (GIS) and remote sensing data to focus on the relationship between tectonic fractures and landslides. Landslide locations were identified from aerial photographs and field surveys. Topographic, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image-processing techniques. A scheme of the tectonic fracturing of crust in the Lai Chau region was established. Lai Chau was identified as a region with many crustal fractures, where the grade of tectonic fracture is closely related to landslide occurrence. The influencing factors of landslide occurrence were: distance from a tectonic fracture, slope, aspect, curvature, soil, and vegetative land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability–frequency ratio model. The results of the analysis were verified using landslide location data and showed 83.47% prediction accuracy. That emphasized a strong relationship between the susceptibility map and the existing landslide location data. The results of this study can form a basis stable development and land use planning for the region.  相似文献   

6.
The crucial and difficult task in landslide susceptibility analysis is estimating the probability of occurrence of future landslides in a study area under a specific set of geomorphic and topographic conditions. This task is addressed with a data-driven probabilistic model using likelihood ratio or frequency ratio and is applied to assess the occurrence of landslides in the Tevankarai Ar sub-watershed, Kodaikkanal, South India. The landslides in the study area are triggered by heavy rainfall. Landslide-related factors—relief, slope, aspect, plan curvature, profile curvature, land use, soil, and topographic wetness index proximity to roads and proximity to lineaments—are considered for the study. A geospatial database of the related landslide factors is constructed using Arcmap in GIS environment. Landslide inventory of the area is produced by detailed field investigation and analysis of the topographical maps. The results are validated using temporal data of known landslide locations. The area under the curve shows that the accuracy of the model is 85.83%. In the reclassified final landslide susceptibility map, 14.48% of the area is critical in nature, falling under the very high hazard zone, and 67.86% of the total validation dataset landslides fall in this zone. This landslide susceptibility map is a vital tool for town planning, land use, and land cover planning and to reduce risks caused by landslides.  相似文献   

7.
8.
The main objective of this study was to apply a statistical (information value) model using geographic information system (GIS) to the Chencang District of Baoji, China. Landslide locations within the study area were identified using reports and aerial photographs, and a field survey. A total of 120 landslides were mapped, of which 84 (70 %) were randomly selected for building the landslide susceptibility model. The remaining 36 (30 %) were used for model validation. We considered a total of 10 potential factors that predispose an area to a landslide for the landslide susceptibility mapping. These included slope degree, altitude, slope aspect, plan curvature, geomorphology, distance from faults, lithology, land use, mean annual rainfall, and peak ground acceleration. Following an analysis of these factors, a landslide susceptibility map was produced using the information value model with GIS. The resulting landslide susceptibility index was divided into five classes (very high, high, moderate, low, and very low) using the natural breaks method. The corresponding distribution area percentages were 29.22, 25.14, 15.66, 15.60, and 14.38 %, respectively. Finally, landslide locations were used to validate the results of the landslide susceptibility map using areas under the curve (AUC). The AUC plot showed that the susceptibility map had a success rate of 81.79 % and a prediction accuracy of 82.95 %. Based on the results of the AUC evaluation, the landslide susceptibility map produced using the information value model exhibited good performance.  相似文献   

9.
Landslides are natural disasters often activated by interaction of different controlling environmental factors, especially in mountainous terrains. In this research, the landslide susceptibility map was developed for the Sarkhoun catchment using Index of Entropy (IoE) and Dempster–Shafer (DS) models. For this purpose, 344 landslides were mapped in GIS environment. 241 (70%) out of the landslides were selected for the modeling and the remaining (30%) were employed for validation of the models. Afterward, 10 landslide conditioning factor layers were prepared including land use, distance to drainage, slope gradient, altitude, lithology, distance to roads, distance to faults, slope aspect, Topography Wetness Index, and Stream Power Index. The relationship between the landslide conditioning factors and landslide inventory maps was determined using the IoE and DS models. In order to verify the models, the results were compared with validation landslide data not employed in training process of the models. Accordingly, Receiver Operating Characteristic (ROC) curves were applied, and Area Under the Curve (AUC) was calculated for the obtained susceptibility maps using the success (training data) and prediction (validation data) rate curves. The land use was found to be the most important factor in the study area. The AUC are 0.82, and 0.81 for success rates of the IoE, and DS models, respectively, while the prediction rates are 0.76 and 0.75. Therefore, the results of the IoE model are more accurate than the DS model. Furthermore, a satisfactory agreement is observed between the generated susceptibility maps by the models and true location of the landslides.  相似文献   

10.
For assessing landslide susceptibility, the spatial distribution of landslides in the field is essential. The landslide inventory map is prepared on the basis of historical information of individual landslide events from different sources such as previously published reports, satellite imageries, aerial photographs and interview with local inhabitants. Then, the distribution of landslides in the study area is verified with field surveys. However, the selection of contributing factors for modelling landslide susceptibility is an inhibit task. The previous studies show that the factors are chosen as per availability of data. This paper documents the landslide susceptibility mapping in the Garuwa sub-basin, East Nepal using frequency ratio method. Nine different contributing factors are considered: slope aspect, slope angle, slope shape, relative relief, geology, distance from faults, land use, distance from drainage and annual rainfall. To analyse the effect of contributing factors, the landslide susceptibility index maps are generated four times using (a) topographical factors and geological factors, (b) topographical factors, geological factors and land use, (c) topographical factors, geological factors, land use and drainage and (d) all nine causative factors. By comparing with the pre-existing landslides, the fourth case (considering all nine causative factors) yields the best success rate accuracy, i.e. 81.19 %, which is then used to produce the final landslide susceptibility zonation map. Then, the final landslide susceptibility map is validated through chi-square test. The standard chi-square value with 3 degrees of freedom at the 0.001 significance level is 16.3, whereas the calculated chi-square value is 7,125.79. Since the calculated chi-square value is greater than the standard chi-square value, it can be concluded that the landslide susceptibility map is considered as statistically significant. Moreover, the results show that the predicted susceptibility levels are found to be in good agreement with the past landslide occurrences.  相似文献   

11.
The purpose of this study is to produce a landslide susceptibility map for the lower Mae Chaem watershed, northern Thailand using a Geographic Information System (GIS) and remotely sensed images. For this purpose, past landslide locations were identified from satellite images and aerial photographs accompanied by the field surveys to create a landslide inventory map. Ten landslide-inducing factors were used in the susceptibility analysis: elevation, slope angle, slope aspect, lithology, distance from lineament, distance from drainage, precipitation, soil texture, land use/land cover (LULC), and NDVI. The first eight factors were prepared from their associated database while LULC and NDVI maps were generated from Landsat-5 TM images. Landslide susceptibility was analyzed and mapped using the frequency ratio (FR) model that determines the level of correlation between locations of past landslides and the chosen factors and describes it in terms of frequency ratio index. Finally, the output map was validated using the area under the curve (AUC) method where the success rate of 80.06% and the prediction rate of 84.82% were achieved. The obtained map can be used to reduce landslide hazard and assist with proper planning of LULC in the future.  相似文献   

12.
Devrek town with increasing population is located in a hillslope area where some landslides exist. Therefore, landslide susceptibility map of the area is required. The purpose of this study was to generate a landslide susceptibility map using a bivariate statistical index and evaluate and compare the results of the statistical analysis conducted with three different approaches in seed cell concept resulting in different data sets in Geographical Information Systems (GIS) based landslide susceptibility mapping applied to the Devrek region. The data sets are created from the seed cells of (a) crowns and flanks, (b) only crowns, and (c) only flanks of the landslides by using ten different causative parameters of the study area. To increase the data dependency of the analysis, all parameter maps are classified into equal frequency classes based directly on the percentile divisions of each corresponding seed cell data set. The resultant maps of the landslide susceptibility analysis indicate that all data sets produce fairly acceptable results. In each data set analysis, elevation, lithology, slope, aspect, and drainage density parameters are found to be the most contributing factors in landslide occurrences. The results of the three data sets are compared using Seed Cell Area Indexes (SCAI). This comparison shows that the crown data set produces the most accurate and successful landslide susceptibility map of the study area.  相似文献   

13.
The main goal of this paper is to generate a landslide susceptibility map through evidential belief function (EBF) model by using Geographic Information System (GIS) for Qianyang County, Shaanxi Province, China. At first, a detailed landslide inventory map was prepared, and the following ten landslide-conditioning factors were collected: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, distance to rivers, geomorphology, lithology, and rainfall. The landslides were detected from the interpretation of aerial photographs and supported by field surveys. A total of 81 landslides were randomly split into the following two parts: the training dataset 70 % (56 landslides) were used for establishing the model and the remaining 30 % (25 landslides) were used for the model validation. The ArcGIS was used to analyze landslide-conditioning factors and evaluate landslide susceptibility; as a result, a landslide susceptibility map was generated by using EBF and ArcGIS 10.0, thus divided into the following five susceptibility classes: very low, low, moderate, high, and very high. Finally, when we validated the accuracy of the landslide susceptibility map, both the success-rate and prediction-rate curve methods were applied. The results reveal that a final susceptibility map has the success rate of 83.31 % and the prediction rate of 79.41 %.  相似文献   

14.
Ardesen is a settlement area which has been significantly damaged by frequent landslides which are caused by severe rainfalls and result in many casualties. In this study a landslide susceptibility map of Ardesen was prepared using the Analytical Hierarchy Process (AHP) with the help of Geographical Information Systems (GIS) and Digital Photogrametry Techniques (DPT). A landslide inventory, lithology–weathering, slope, aspect, land cover, shear strength, distance to the river, stream density and distance to the road thematics data layers were used to create the map. These layer maps are produced using field, laboratory and office studies, and by the use of GIS and DPT. The landslide inventory map is also required to determine the relationship between these maps and landslides using DPT. In the study field in the Hemsindere Formation there are units that have different weathering classes, and this significantly affects the shear strength of the soil. In this study, shear strength values are calculated in great detail with field and laboratory studies and an additional layer is evaluated with the help of the stability studies used to produce the landslide susceptibility map. Finally, an overlay analysis is carried out by evaluating the layers obtained according to their weight, and the landslide susceptibility map is produced. The study area was classified into five classes of relative landslide susceptibility, namely, very low, low, moderate, high, and very high. Based on this analysis, the area and percentage distribution of landslide susceptibility degrees were calculated and it was found that 28% of the region is under the threat of landslides. Furthermore, the landslide susceptibility map and the landslide inventory map were compared to determine whether the models produced are compatible with the real situation resulting in compatibility rate of 84%. The total numbers of dwellings in the study area were determined one by one using aerial photos and it was found that 30% of the houses, with a total occupancy of approximately 2,300 people, have a high or very high risk of being affected by landslides.  相似文献   

15.
High incidences of slope movement are observed throughout Cuyahoga River watershed in northeast Ohio, USA. The major type of slope failure involves rotational movement in steep stream walls where erosion of the banks creates over-steepened slopes. The occurrence of landslides in the area depends on a complex interaction of natural as well as human induced factors, including: rock and soil strength, slope geometry, permeability, precipitation, presence of old landslides, proximity to streams and flood-prone areas, land use patterns, excavation of lower slopes and/or increasing the load on upper slopes, alteration of surface and subsurface drainage. These factors were used to evaluate the landslide-induced hazard in Cuyahoga River watershed using logistic regression analysis, and a landslide susceptibility map was produced in ArcGIS. The map classified land into four categories of landslide susceptibility: low, moderate, high, and very high. The susceptibility map was validated using known landslide locations within the watershed area. The landslide susceptibility map produced by the logistic regression model can be efficiently used to monitor potential landslide-related problems, and, in turn, can help to reduce hazards associated with landslides.  相似文献   

16.
Landslides are one of the most frequent and common natural hazards in Malaysia. Preparation of landslide susceptibility maps is one of the first and most important steps in the landslide hazard mitigation. However, due to complex nature of landslides, producing a reliable susceptibility map is not easy. For this reason, a number of different approaches have been used, including direct and indirect heuristic approaches, deterministic, probabilistic, statistical, and data mining approaches. Moreover, these landslides can be systematically assessed and mapped through a traditional mapping framework using geoinformation technologies. Since the early 1990s, several mathematical models have been developed and applied to landslide hazard mapping using geographic information system (GIS). Among various approaches, fuzzy logic relation for mapping landslide susceptibility is one of the techniques that allows to describe the role of each predisposing factor (landslide-conditioning parameters) and their optimal combination. This paper presents a new attempt at landslide susceptibility mapping using fuzzy logic relations and their cross application of membership values to three study areas in Malaysia using a GIS. The possibility of capturing the judgment and the modeling of conditioning factors are the main advantages of using fuzzy logic. These models are capable to capture the conditioning factors directly affecting the landslides and also the inter-relationship among them. In the first stage of the study, a landslide inventory was complied for each of the three study areas using both field surveys and airphoto studies. Using total 12 topographic and lithological variables, landslide susceptibility models were developed using the fuzzy logic approach. Then the landslide inventory and the parameter maps were analyzed together using the fuzzy relations and the landslide susceptibility maps produced. Finally, the prediction performance of the susceptibility maps was checked by considering field-verified landslide locations in the studied areas. Further, the susceptibility maps were validated using the receiver-operating characteristics (ROC) success rate curves. The ROC curve technique is based on plotting model sensitivity—true positive fraction values calculated for different threshold values versus model specificity—true negative fraction values on a graph. The ROC curves were calculated for the landslide susceptibility maps obtained from the application and cross application of fuzzy logic relations. Qualitatively, the produced landslide susceptibility maps showed greater than 82% landslide susceptibility in all nine cases. The results indicated that, when compared with the landslide susceptibility maps, the landslides identified in the study areas were found to be located in the very high and high susceptibility zones. This shows that as far as the performance of the fuzzy logic relation approach is concerned, the results appeared to be quite satisfactory, the zones determined on the map being zones of relative susceptibility.  相似文献   

17.
The Yushu County, Qinghai Province, China, April 14, 2010, earthquake triggered thousands of landslides in a zone between 96°20′32.9″E and 97°10′8.9″E, and 32°52′6.7″N and 33°19′47.9″N. This study examines the use of geographic information system (GIS) technology and Bayesian statistics in creating a suitable landslide hazard-zone map of good predictive power. A total of 2,036 landslides were interpreted from high-resolution aerial photographs and multi-source satellite images pre- and post-earthquake, and verified by selected field checking before a final landslide-inventory map of the study area could be established using GIS software. The 2,036 landslides were randomly partitioned into two subsets: a training dataset, which contains 80 % (1,628 landslides), for training the model; and a testing dataset 20 % (408 landslides). Twelve earthquake triggered landslide associated controlling parameters, such as elevation, slope gradient, slope aspect, slope curvature, topographic position, distance from main surface ruptures, peak ground acceleration, distance from roads, normalized difference vegetation index, distance from drainages, lithology, and distance from all faults were obtained from variety of data sources. Landslide hazard indices were calculated using the weight of evidence model. The landslide hazard map was compared with training data and testing data to obtain the success rate and predictive rate of the model, respectively. The validation results showed satisfactory agreement between the hazard map and the existing landslide distribution data. The success rate is 80.607 %, and the predictive rate is 78.855 %. The resulting landslide hazard map showed five classes of landslide hazard, i.e., very high, high, moderate, low and very low. The landslide hazard evaluation map should be useful for environmental recovery planning and reconstruction work.  相似文献   

18.
A spatial database of 791 landslides is analyzed using GIS to map landslide susceptibility in Tsugawa area of Agano River. Data from six landslide-controlling parameters namely lithology, slope gradient, aspect, elevation, and plan and profile curvatures are coded and inserted into the GIS. Later, an index-based approach is adopted both to put the various classes of the six parameters in order of their significance to the process of landsliding and weigh the impact of one parameter against another. Applying primary and secondary-level weights, a continuous scale of numerical indices is obtained with which the study area is divided into five classes of landslide susceptibility. Slope gradient and elevation are found to be important to delineate flatlands that will in no way be subjected to slope failure. The area which is at high scale of susceptibility lies on mid-slope mountains where relatively weak rocks such as sandstone, mudstone and tuff are outcropping as one unit.  相似文献   

19.
This study aimed to investigate the parameter effects in preparing landslide susceptibility maps with a data-driven approach and to adapt this approach to analytical hierarchy process (AHP). For this purpose, at the first stage, landslide inventory of an area located in the Western Black Sea region of Turkey covering approximately 567?km2 was prepared, and a total of 101 landslides were mapped. In order to assess the landslide susceptibility, a total of 13 parameters were considered as the input parameters: slope, aspect, plan curvature, topographical elevation, vegetation cover index, land use, distance to drainage, distance to roads, distance to structural elements, distance to ridges, stream power index, sediment transport capacity index, and wetness index. AHP was selected as the major assessment methodology since the adapted approach and AHP work in data pairs. Adapted to AHP, a similarity relation?Cbased approach, namely landslide relation indicator (LRI) for parameter selection method, was also proposed. AHP and parametric effect analyses were performed by the proposed approach, and seven landslide susceptibility maps were produced. Among these maps, the best performance was gathered from the landslide susceptibility map produced by 9 parameter combinations using area under curve (AUC) approach. For this map, the AUC value was calculated as 0.797, while the others ranged between 0.686 and 0.771. According to this map, 38.3?% of the study area was classified as having very low, 8.5?% as low, 15.0?% as moderate, 20.3?% as high, and 17.9?% as very high landslide susceptibility, respectively. Based on the overall assessments, the proposed approach in this study was concluded as objective and applicable and yielded reasonable results.  相似文献   

20.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号