首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The Pb isotopic compositions of coexisting plagioclase and sulfide from the Bushveld Complex were determined by laser ablation multi-collector ICPMS (LA MC-ICPMS). The samples are of the upper Critical Zone in the northeast corner of the Complex and were collected from drill core and underground mine exposures. All the rocks are fresh and exhibit no evidence for alteration, weathering, or disruption of the Pb isotope systematics subsequent to the initial cooling of the intrusion. Furthermore, individual plagioclase and sulfide crystals do not contain enough U to warrant correction for radiogenic in-growth. For these reasons, the measured Pb isotope ratios approximate the initial ones. For plagioclase, 207Pb/206Pb ranges from 0.98 to 1.02 and 208Pb/206Pb from 2.26 to 2.35. Low 207Pb/206Pb and 208Pb/206Pb ratios characterize grain boundaries and partially annealed microcracks, some of which contain minute fragments of sulfide and other phases, and this accounts for most, if not all, the heterogeneity exhibited by individual samples. Real compositional differences exist, however, in plagioclase from different lithologic layers. For example, plagioclase 207Pb/206Pb values vary from 1.004 in norite beneath the Merensky pyroxenite to 1.009 in the mineralized pyroxenite, and 0.997 in overlying norite. In most samples in which sulfide and plagioclase coexist, the sulfide 207Pb/206Pb ratio is lower and 208Pb/206Pb ratio higher than the corresponding ones in plagioclase. For example, in a mineralized Merensky reef sample, average sulfide 207Pb/206Pb and 208Pb/206Pb ratios are 0.993 and 2.313, respectively, while those in plagioclase are 1.000 and 2.292. In one sample, the sulfide is extremely heterogeneous, with 207Pb/206Pb and 208Pb/206Pb ratios as low as 0.84 and 2.12. In this particular sample, the compositions must represent an isolated occurrence of addition of a young Pb component.The array of sulfide and plagioclase compositions requires multiple sources of Pb at the time of crystallization or soon thereafter. The disequilibrium between plagioclase and sulfide implies that some of the Pb originated from the isotopically distinct country rocks and was introduced at temperatures at which the composition of sulfide but not plagioclase could be modified. Thus, Bushveld sulfide, and to some extent plagioclase, do not reliably record the initial Pb isotopic composition(s) of the parent magma(s).  相似文献   

2.
Analyses of the Pb isotopic compositions of plagioclase from 23 samples covering the stratigraphic thickness of the Stillwater Complex indicate a narrow range of apparent initial isotopic compositions (206Pb/ 204Pb=13.95; 207Pb/204Pb=14.95–15.01; 208Pb/204Pb=33.6). The uniformity of our data is in contrast to, but not necessarily contradictory to, other recent investigations which give indications that the complex formed by repeated injection of magmas with at least two distinct compositions that were presumably derived from different source regions. Samples from the Basal series of the complex have consistently higher 207Pb/204Pb ratios, suggesting either minor contamination from adjacent country rocks or a slight distinction between parental magmas. Apparent initial Pb isotopic compositions of the complex are very radiogenic compared to Late Archean model-mantle values, but are nearly identical to initial Pb isotopic compositions found for the the adjacent, slightly older (2.73–2.79 Ga), Late Archean crustal suite in the Beartooth Mountains. Contamination of magmas parental to the Stillwater Complex by the Late Archean crustal suite is rejected for two reasons: (1) Th and U concentrations in Stillwater rocks and plagioclase are very low (about 0.08 and 0.02 ppm respectively), yet Th/U ratios are uniform at about 4, in contrast to the highly variable (2–26) but often high Th/U ratios found for the Late Archean crustal complex; (2) it seems improbable that any contamination process would have adjusted the isotopic compositions of the diverse magmas entering the Stillwater chamber to near-identical values. The preferred hypothesis to explain the Pb isotopic data for the Stillwater Complex and the associated Late Archean crustal suite involves a major Late Archean crust-forming event that resulted in a compositionally complex crust/mantle system with relatively homogeneous and unusual Pb isotopic compositions. The parental magmas of the Stillwater Complex were generated at different levels within this crust/mantle system, before isotopic contrasts could develop by radioactive decay within compositionally discrete reservoirs. This situation limits the utility of all isotopic tracer systems in discriminating among the various mantle and crustal reservoirs that may have affected the final isotopic character of the Stillwater magmas. The late Archean crustal complex and the Stillwater Complex melts were ultimately derived from the same distinct mantle without obvious direct interaction with the Middle to Early Archean crust present in the region.  相似文献   

3.
Uranium-lead ratios (commonly represented as 238U/204Pb = μ) calculated for the sources of martian basalts preserve a record of petrogenetic processes that were active during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of μ values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range (206Pb/204Pb = 11.16-11.61). In contrast, the Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in 206Pb/204Pb-207Pb/204Pb-208Pb/204Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial Pb. This terrestrial Pb contamination generated a 206Pb-207Pb array in the QUE fractions that appears to represent an ancient age, which contrasts with a much younger crystallization age of 327 ± 10 Ma derived from Rb-Sr and Sm-Nd isochrons (Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H. and Shih C. -Y. (1997) Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta61, 4915-4931). Despite the contamination, and accepting 327 ± 10 Ma as the crystallization age, we use the U-Pb data to determine the initial 206Pb/204Pb of QUE 94201 to be 11.086 ± 0.008 and to calculate the μ value of its mantle source to be 1.82 ± 0.01. The μ value calculated for the QUE 94201 source is the lowest determined for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that μ values in martian source reservoirs vary by at least a factor of two. Additionally, the range of source μ values indicates that the μ value of bulk silicate Mars is approximately three. The amount of variation in the μ values of the mantle sources (μ ∼ 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate greater extents of U-Pb fractionation during formation of the mantle sources of martian basalts.  相似文献   

4.
Lead-205 decays to 205Tl with a half-life of 15 Myr and should have been present in the early solar system according to astrophysical models. However, despite numerous attempts, Tl isotopic measurements of meteorites have been unable to demonstrate convincingly its former presence. Here, we report large (∼5‰) variations in Tl isotope composition in metal and troilite fragments from a range of iron meteorites that were determined at high precision using multiple collector inductively coupled plasma mass spectrometry. The Tl isotopic compositions of seven metal samples of the IAB iron meteorites Toluca and Canyon Diablo define a correlation with 204Pb/203Tl. When interpreted as an isochron, this corresponds to an initial 205Pb/204Pb ratio of (7.4 ± 1.0) × 10−5. Alternative explanations for the correlation, such as mixing of variably mass-fractionated meteorite components or terrestrial contamination are harder to reconcile with independent constraints. However, troilite nodules from Toluca and Canyon Diablo contain Tl that is significantly less radiogenic than co-existing metal with isotope compositions that are variable and decoupled from 204Pb/203Tl. These effects are similar to those recently reported by others for Fe and Ni isotopes in iron meteorite sulfides and appear to be the result of kinetic stable isotope fractionation during diffusion. Though it cannot conclusively be shown that the metal fragments are unaffected by the secondary processes that disturbed the troilites, mass balance modeling indicates that the alteration of the troilites is unlikely to have significantly affected the Tl isotope compositions of the co-existing metals. It is therefore reasonable to conclude that the IAB metal isochron is a product of the in situ decay of 205Pb. If the I-Xe ages of IAB silicate inclusions record the same event as the 205Pb-205Tl chronometer then crystallization of the IAB metal was probably completed between 10 and 20 Myr after the condensation of the first solids. This implies an initial solar system 205Pb/204Pb of (1.0-2.1) × 10−4, which is in excellent agreement with recently published astrophysical predictions. Similar calculations yield an initial solar system Tl isotope composition of ε205Tl = −2.8 ± 1.7. The Tl isotopic composition and concentration of the silicate Earth depends critically on the timing and mechanism of core formation and Earth’s volatile element depletion history. Modeling of the Earth’s accretion and core formation using the calculated initial solar system Tl isotope composition and 205Pb/204Pb, however, does not yield reasonable results for the silicate Earth unless either the Earth lost Tl and Pb late in its accretion history or the core contains much higher concentrations of Pb and Tl than are found in iron meteorites.  相似文献   

5.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

6.
Summary The Dachang Sn-polymetallic ore district is one of the largest tin producing districts in China. Its origin has long been in dispute between magmatic-hydrothermal replacement and submarine exhalative-hydrothermal origin. The Dachang ore district comprises several types of ore deposits, including the Lamo magmatogenic skarn deposit near a granite intrusion, the Changpo-Tongkeng bedded and vein-type sulfide deposit, and the Gaofeng massive sulfide deposit. Sulfide minerals from the Lamo skarn ores show δ34S values in the range between −3 and +4‰ with a mean close to zero, suggesting a major magmatic sulfur source that likely was the intrusive Longxianggai granite. Sulfide minerals from the Gaofeng massive ores show higher δ34S values between +5 and +12‰, whereas sulfide minerals from the Changpo-Tongkeng bedded ores display lighter δ34S values between −7 and −0.2‰. The difference in the sulfur isotope ranges in the two deposits can be interpreted by different degrees of inorganic thermochemcial reduction of marine sulfate using a one-step batch separation fractionation model. Sulfur isotopic compositions from the vein-type ores at Changpo-Tongkeng vary widely from −8 to +4‰, but most of the data cluster around −2.9‰, which is close to that of bedded ores (−3.6‰). The sulfur in vein-type ores might be derived from bedded ores or it represents a mixture of magmatic- and sedimentary-derived sulfur. Pb isotopic compositions of sulfide minerals in the Dachang ore district reveal a difference between massive and bedded ores, with the massive ores displaying more radiogenic Pb isotope ratios. Correlations of 206Pb/204Pb and 207Pb/204Pb or 208Pb/204Pb for the massive and bedded ores are interpreted as two-component mixing of Pb leached from sedimentary host rocks and from deep-seated Precambrian basement rocks composed of metamorphosed volcano-sedimentary rocks. Pb isotopic compositions of sulfide minerals from vein-type ores overlap with those of bedded sulfides. Similar to the sulfur, the lead in vein-type ores might be derived from bedded ores. Skarn ores at Lamo show very limited variations in Pb isotopic compositions, which may reflect a major magmatic-hydrothermal lead source. Helium isotope data of fluid inclusions trapped in sulfides indicate that He in the massive and bedded ores has a different origin than He in fluorite of granite-related veins. The 3He/4He ratios of 1.2–2.9 Ra of fluid inclusions from sulfides at Gaofeng and Changpo-Tongkeng imply a contribution of mantle-derived fluids. Overall our data support a submarine exhalative-hydrothermal origin for the massive and bedded ore types at Dachang. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

7.
The Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province (ELIP) hosts Cu-Ni-platinum group element (PGE) sulfide ore layers within the lower part and Fe-Ti-V oxide-bearing horizons within the middle part. The major magmatic Cu-Ni-PGE sulfide ores and spatially associated cumulate rocks are examined for their PGE contents and Re-Os isotopic systematics. The samples yielded a Re-Os isochron with an age of 262 ± 27 Ma and an initial 187Os/188Os of 0.12460 ± 0.00011 (γOs(t) = −0.5 ± 0.1). The age is in good agreement with the previously reported U-Pb zircon age, indicating that the Re-Os system remained closed for most samples since the intrusion emplacement. They have near-chondritic γOs(t) values ranging from −0.7 to −0.2, similar to those of the Lijiang picrites and Song Da komatiites. Exceptionally, two samples from the roof zone and one from upper sequence exhibit radiogenic γOs(t) values (+0.6 to +8.6), showing minor contamination by the overlying Emeishan basalts.The PGE-rich ores contain relatively high PGE and small amounts of sulfides (generally less than 2%) and the abundance of Cu and PGE correlate well with S, implying that the distribution of these elements is controlled by the segregation and accumulation of a sulfide liquid. Some ore samples are poor in S (mostly <800 ppm), which may due to late-stage S loss caused by the dissolution of FeS from pre-existing sulfides through their interaction with sulfide-unsaturated flowing magma. The combined study shows that the Xinjie intrusion may be derived from ferropicritic magmas. The sharp reversals in Mg#, Cr/FeOT and Cr/TiO2 ratios immediately below Units 2-4, together with high Cu/Zr ratios decreasing from each PGE ore layer within these cyclic units, are consistent with multiple magma replenishment episodes. The sulfides in the cumulate rocks show little evidence of PGE depletion with height and thus appear to have segregated from successive inputs of fertile magma. This suggests that the Xinjie intrusion crystallized from in an open magma system, e.g., a magma conduit. The compositions of the disseminated sulfides in most samples can be modeled by applying an R factor (silicate-sulfide mass ratio) of between 1000 and 8000, indicating the segregation of only small amounts of sulfide liquid in the parental ferropicritic magmas. Thus, continuous mixing between primitive ferropicritic magma and differentiated resident magma could lead to crystallization of chromite, Cr-bearing magnetite and subsequently abundant Fe-Ti oxides, thereby the segregation of PGE-rich Cu-sulfide.When considered in the light of previous studies on plume-derived komatiites and picrites worldwide, the close-to-chondritic Os isotopic composition for most Xinjie samples, Lijiang picrites and Song Da komatiites suggest that the ferropicritic magma in the ELIP were generated from a plume. This comprised recycled Neoproterozic oceanic lithosphere, including depleted peridotite mantle embedded with geochemically enriched domains. The ascending magmas thereafter interacted with minor (possibly <10%) subducted/altered oceanic crust. This comparison suggests that the komatiitic melts in the ELIP originated from a greater-than normal degree of melting of incompatible trace element depleted, refractory mantle components in the plume source.  相似文献   

8.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

9.
At Long Valley (LV) model Sr isotope phenocryst ages and absolute U-Pb zircon ages from precaldera Glass Mountain (GM) and caldera-related Bishop Tuff (BT) rhyolites show that these crystals track >1 Myr of evolution of a voluminous rhyolite magmatic system. In detail, strong disparities between the different age populations complicate ideas for a unified model for rhyolite generation, differentiation, and storage. To better elucidate the age discrepancies a new in situ Pb isotope technique has been developed to measure the compositions of 113 individual LV feldspars (mainly sanidine) and their host glasses by UV laser ablation MC-ICPMS. Given sufficient signal the accuracy and precision of this technique approaches that of double-spike thermal ionization mass spectrometry. The utility of our technique for many geologic materials is, however, limited to determining Pb isotope ratios that include 206Pb, 207Pb, and 208Pb, but exclude 204Pb. New zircon 238U-206Pb crystallization ages were also obtained for two older Glass Mountain domes.A >1.5‰ difference between the Pb isotope compositions of feldspars from older (1.7-2.2 Ma) precaldera Glass Mountain (GM) rhyolites and younger LV rhyolites, including the BT, is found. The Pb isotope data for feldspars and their host glasses lie along a regional trend line between young basalts and evolved crust compositions, spanning ∼15% of that isotopic difference, and show a secular change towards increasing mantle contribution. Most feldspars have Pb isotope compositions that are similar to their host glasses and, as such, there persists an apparent >100 k.y. difference between Sr model feldspar ages and zircon ages for some GM rhyolites. Collectively, the feldspars define a Sr-Pb isotope mixing curve. Evidence for mixing complicates the interpretation that the Sr isotope data solely reflect radiogenic ingrowth. Where isotopically heterogeneous feldspar populations occur, there is greater uncertainty about the veracity of the Sr model ages. Specifically, we find no Pb isotope evidence that BT feldspars grew from older GM-like magmas.The distinct Pb isotope signatures for individual rhyolites and their feldspars support evidence based on zircon dating that LV volcanism did not erupt from a single long-lived magma chamber but rather tapped a number of different magmas. Moreover, contrary to the conventional model of gradual build-up prior to cataclysmic eruption, secular changes in the U-Pb age constraints on magma residence times and the magmas’ distinct Pb isotopic compositions suggest that, at Long Valley, eruptive volumes increase with shorter magma residence time and correlate with greater mantle input. Evidently, the plumbing and therefore activity at Long Valley was influenced by the evolving interaction between source and crustal magma system.  相似文献   

10.
We have studied Pb isotopic systems of K-feldspar, pyrite, and pyrrhotine from gabbroids and ore of the Velimyaki Early Proterozoic massif in the northern Ladoga region in the southeastern part of the Fennoscandian Shield. The isochronous Pb–Pb age of sulfides has been determined as ~450 Ma, which corresponds to intersection of the regression line with the lead accumulation curve with μ = 10.4–10.8; the model Pb age of sulfides is close to isochronous under the condition that the composition of lead evolved from a geochemical reservoir with an age of 1.9 Ga. The isotopic parameters of the lead in sulfides and K-feldspar indicate their formation in upper crust conditions (μ = 238U/204Pb > 10). From the obtained data, it follows that the isotopic composition of lead in K-feldspar corresponds to a Proterozoic age (1890 Ma) of magmatic crystallization of the rocks in the massif, and strongly radiogenic lead sulfides testify, with the greatest probability, to the later (Caledonian) formation of sulfide ores.  相似文献   

11.
Progressive leaching of plagioclase for Sr isotopes and microdrilling for Sr and Pb isotopes from grains of plagioclase and orthopyroxene from the Critical Zone and the Lower Zone indicates that these minerals are not in isotopic equilibrium. Leaching suggests Critical Zone plagioclase either lost Rb or had a more radiogenic Sri rim relative to the core, whereas plagioclase from an Upper Zone sample is isotopically homogeneous for Sri. Microdrilling analyses of plagioclase from the Lower and Critical Zones consistently have a higher initial 87Sr/86Sr (Sri) and a less radiogenic modeled 238U/204Pb composition (μ2) than coexisting orthopyroxene. The range of calculated Sri for plagioclase and orthopyroxene is 0.70506–0.70662(34) and 0.70290–0.70654(36), respectively. The average difference in Sri between mineral pairs was 0.00095. The range of calculated μ2 for plagioclase and orthopyroxene is 9.42–10.30 (average 9.7) and 9.83–15.75 (average 10.1), respectively. The range of measured 208Pb/206Pb for plagioclase and orthopyroxene is 34.757–36.439(33) and 36.669–41.845(85), respectively. One orthopyroxenite without evidence for more than one population of crystal size distribution, nonetheless had Sri = 0.70654 (36) with calculated μ2 of 10.32 for larger grains as compared with Sri = 0.70290 (32) and calculated μ2 of 9.97 for smaller grain-size fractions. Isotopic results from this study demonstrate that whole-rock isotopic data may not provide the appropriate level of detail necessary to address some processes in the Bushveld Complex. However, systematic changes have the potential to elucidate the timing of contamination with regard to other processes (crystal aging, compaction-driven recrystallization, and mineral exsolution) occurring within a slowly cooled crystal–liquid–vapor mush system.  相似文献   

12.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

13.
Summary Proterozoic sulfide deposits within the basement of northern Sweden have lead isotopic compositions that fall on a mixing line in the206Pb/204Pb-207Pb/204Pb diagram. These deposits contain a highly radiogenic Phanerozoic lead component that was leached from the Proterozoic basement at around 0.4 Ga during the Caledonian orogeny. Within the Proterozoic deposits, the less radiogenic lead isotopic compositions occur in undeformed and little deformed sections, while the more radiogenic lead isotopic compositions are observed along fault, fracture, and shear zones. These zones with radiogenic Phanerozoic lead also have higher contents of lead, zinc, and gold, respectively, than the other parts of the deposits, which suggests that these metals were introduced together with the radiogenic lead at a much later event than the metals in the unaltered Proterozoic deposit. The Proterozoic deposits acted as traps for metal additions along Caledonian reactivated fault and shear zones in the Proterozoic basement.
Kaledonische Metallanreicherung in niedrighaltigen proterozoischen Buntmetallerzen in Nordschweden
Zusammenfassung Proterozoische Sulfidvererzungen im proterozoischen Grundgebirge weisen Bleiisotopenzusammensetzungen auf, die auf eine Mischungslinie im206Pb/204Pb-207Pb/204Pb Diagramm fallen. Die proterozoischen Vererzungen enthalten eine Komponente radiogenen Bleis, welches im Verlaufe der kaledonischen Orogenese aus dem proterozoischen Grundgebirge ausgelaugt wurde. Wenig oder nicht deformierte Abschnitte in den proterozoischen Sulfidvererzungen weisen weniger radiogene Bleiisotopenzusammensetzungen auf, als Bruch- und Scherzonen in denselben Vererzungen. Diese Zonen mit radiogenem, kaledonischem Blei weisen auch höhere Blei-, Zink- und Gold-Gehalte auf als die übrigen Teile der Vererzung, was andeutet, daß diese Metalle zusammen mit dem radiogenen Blei zu einem viel späteren Zeitpunkt in die Vererzung eingebracht worden sind. Die proterozoischen Vererzungen bewirkten die Metallausfällung aus Fluiden, die entlang von kaledonisch mobilisierten Verwerfungen und Scherzonen flossen.


With 3 Figures  相似文献   

14.
Studies of sulfur and lead isotopic compositions in hydrothermal deposits are an important tool to determine the source and processes of both sulfur and lead, and to understand the origin of hydrothermal ore deposits. Here, the sulfur and lead isotopic compositions of sulfide minerals have been studied for different hydrothermal fields in the East Pacific Rise (EPR), Mid-Atlantic Ridge (MAR), Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR), and North Fiji Basin (NFB). The sulfur isotopic compositions of the studied sulfide samples are variable (δ34S 0.0 to 9.6‰, avg. δ34S 4.7‰; n = 60), being close to the associated igneous rocks (~ 0‰ for, e.g., basalt, serpentinized peridotite), which may reflect the S in the sulfide samples is derived mainly from the associated igneous rocks, and a relatively small proportion (< 36%) of seawater sulfur incorporated into these sulfides during mixing between seawater (δ34S 21‰) and hydrothermal fluid. In contrast for a mixed origin for the source of S, the majority of the lead isotopic compositions (206Pb/204Pb 17.541 ± 0.004 to 19.268 ± 0.001, 207Pb/204Pb 15.451 ± 0.001 to 15.684 ± 0.001, 208Pb/204Pb 37.557 ± 0.008 to 38.988 ± 0.002, n = 21) of the sulfides possess a basaltic Pb isotopic composition, suggesting that the lead in the massive sulfide is mainly leached from local basaltic rocks that host the sub-seafloor hydrothermal systems in sediment-free mid-ocean ridges and mature back-arc basins. Furthermore, sulfide minerals in the super-fast and fast spreading mid-ocean ridges (MORs) exhibit less spread in their the δ34S values compared to sulfides from super-slow, and slow spreading MORs, which is most easily explained as a lesser degree of fluid-rock interaction and hydrothermal fluid-seawater mixing during hydrothermal ore-forming process. Additionally, the S and Pb isotope compositions of sulfides are controlled by the fluid processes for forming seafloor massive sulfide deposits. We demonstrate that the variable sulfur and lead isotopic compositions exhibit a relationship with the sulfur and lead sources, fluid–rock interaction, and fluid–seawater mixing.  相似文献   

15.
Neodymium, Sr and Pb isotopic compositions, along with rare earth element (REE) concentrations were determined for twelve black ores and one yellow ore from twelve localities of the Kuroko deposits, Japan. The ores were generated by submarine hydrothermal activity during the Miocene age. Neodymium isotopic compositions of the ores (Nd: –4.9 to +6.5) mostly overlap with spatially associated igneous rocks. On a Nd versus Sr isotopic correlation diagram, however, 87Sr/86Sr ratios are shifted from the associated igneous rocks towards the higher contemporaneous seawater ratio. REE patterns are highly variable, ranging from light REE enriched to depleted, and show no Ce anomalies, as would be expected if they were derived from seawater. These results suggest that the REEs contained in ores were mainly derived from the associated igneous rocks, but that the ore Sr is a mixture derived from both seawater and the igneous rocks. Most Pb isotopic compositions fall within the range defined by the associated igneous rocks (206Pb/204Pb=18.35–18.84, 207Pb/204Pb=15.59–15.97 and 208Pb/204Pb=38.53–39.90), although several samples have very radiogenic compositions that were most likely derived from basement rocks. Our new Pb isotopic results display greater variation, and have a larger range of more radiogenic compositions than has been noted previously for these ores. In addition, the black ore with the most radiogenic Pb isotopic composition also has the least radiogenic Nd isotopic composition. This suggests that at least some of the Pb contained in the ores was derived mainly from older basement rocks. The large positive Eu anomalies for some black ores are consistent with a high-temperature origin for the parental fluids, irrespective of the source rock. The single yellow ore examined, however, has a small negative Eu anomaly, which may indicate derivation from a lower temperature fluid. Previous studies suggested that the Kuroko ores were formed in the presence of organic materials in an anoxic basin. Combined Nd, Sr, Pb and Os isotopic and REE abundance data indicate that multiple sources were involved in the genesis of Kuroko ores.  相似文献   

16.
拜仁达坝和维拉斯托是近年来在内蒙古东部地区发现的2个大型银多金属矿床,文章对其开展了硫和铅同位素研究。结果表明,拜仁达坝矿床矿石中硫化物的δ34S值为-4.0‰~+1.6‰,维拉斯托矿床矿石中硫化物的δ34S值为-0.8‰~+2.0‰,与岩浆热液型矿床的硫同位素值接近,表明这2个矿床中的硫主要来自岩浆。拜仁达坝矿区43件金属硫化物的206Pb/204Pb值为18.333~18.515,207Pb/204Pb值为15.532~15.656,208Pb/204Pb值为38.057~38.610;维拉斯托矿区20件金属硫化物的206Pb/204Pb值为18.304~18.377,207Pb/204Pb值为15.520~15.610,208Pb/204Pb值为38.112~38.435。拜仁达坝东矿区矿石中的铅同位素组成与维拉斯托矿区相似,变化范围小,相对贫放射性铅同位素,并且均为混合铅。矿石中的铅可能来自围岩地层及深源岩浆。  相似文献   

17.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

18.
新测行Jade热液活动区中5件块状硫化物样品的铅同位素组成,具有较小的变化范围,表现出较均一的铅同位素组成特征。在Pb-Pb图解上,块状硫化物的铅同位素数据构成线形排列,与该区沉积物和蚀变火山岩的铅同位素组成一致,而与该区新鲜火山岩相比具较高的放射成因铅,证实了该区海底块状硫化物中的铅是由沉积物长英质火山岩来源铅共同构成的混合铅。不同热液活动区铅同位素组成对比研究表明,地质-构造环境的不同是导致各  相似文献   

19.
It has long been debated that the Dabie orogenic belt belongs to the North China or Yangtze craton. In recent years, eastern China has been suggested, based on the Pb isotopic compositions of Phanerozoic ore and Mesozoic granitoid K-feldspar (revealing the crust Pb) in combination with Meso-Cenozoic basalts (revealing the mantle Pb), being divided into the North China and Yangtze Pb isotopic provinces, where the crust and mantle of the Yangtze craton are characterized by more radiogenic Pb. In this sense, previous researchers suggested that the pro-EW-trending Dabie crogenic belt with less radiogenic Pb in the crust was part of the North China craton. In this paper, however, the Late Cretaceous basalts in the central and southern parts of the Dabie orogenic belt are characterized by some more radiogenic Pb (206Pb/204Pb=17.936−18.349,207Pb/204Pb=15.500−15.688,208Pb/204Pb=38.399−38.775) and a unique U-Th-Pb trace element system similar to those of the Yangtze craton, showing that the Mesozoic mantle is of the Yangtze type. In addition, the decoupled Pb isotopic compositions between crust and mantle were considerably derived from their rheological inhomogeneity, implying a complicated evolution of the Dabie orogenic belt. The study was funded by the National Natural Science Foundation of China (No. 49794043) and the Open Laboratory of Constitution, Interaction and Dynamics of the Crust-Mantle System, China.  相似文献   

20.
Southern Ocean aerosols were collected at the Cape Grim Baseline Air Pollution Station from onshore air under baseline conditions between February 1999 and April 2000. Thermal ionization techniques (TIMS) and isotope dilution mass spectrometry (IDMS) were used to measure the isotopic composition and concentration of lead in the air giving concentrations as low as 0.6 ± 0.1 pg · m−3. Air collected under baseline conditions for 12 months (May 1999-April 2000) yielded an overall lead concentration of 11.0 ± 0.2 pg · m−3 and isotopic composition of 206Pb/207Pb = 1.154, 208Pb/207Pb = 2.387 and 206Pb/204Pb = 17.93. The range in isotopic ratios was consistent with the mixing of lead from major population centers in the Southern Hemisphere in the mid to high latitudes, except for the presence of highly radiogenic lead in some samples. Contributions from radiogenic lead of up to ∼0.8% were observed. Three periods with the highest percentage contribution of radiogenic lead (>0.5%) were investigated in more detail, and 4-d back-trajectories and radon concentrations were used to help identify the sources. The sources are probably associated with the mining and processing of uranium rich ores in southern Africa and possibly South Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号