首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

2.
Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been determined at monthly resolution in five Law Dome (coastal Eastern Antarctica) ice core sections dated from ∼1757 AD to ∼1898 AD. ‘Natural’ background Pb concentrations in ∼1757 AD average ∼0.2 pg g−1 and can be attributed to mineral dust and volcanic emissions, with 206Pb/207Pb ratios reaching up to 1.266 ± 0.002. From ∼1887 AD to ∼1898 AD, Pb concentrations reached ∼5 pg g−1 and 206Pb/207Pb ratios decreased to 1.058 ± 0.001 as a result of additional inputs of Pb from anthropogenic sources. Seasonal variability in the late 1880s has been investigated by decoupling volcanic Pb from the total measured Pb concentrations, revealing spring and autumn maxima, and consistent winter minima, in anthropogenic Pb and mineral dust (Ba) concentrations. We link this variability to the annual cycle in the position and strength of the Antarctic Circumpolar Trough and, the Southern Ocean westerly winds to the north of the trough region. During the autumn and spring seasons, these systems increase in strength, transporting more impurity laden air from the Southern Hemisphere continental regions to Eastern Antarctica and Law Dome. As this Pb is isotopically identical to that emitted from south-eastern Australia (Broken Hill, Port Pirie) this implies a relatively direct air trajectory pathway from southern Australia to Law Dome (Eastern Antarctica).  相似文献   

3.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

4.
Lead concentrations and isotopic composition of sediment samples collected from three sites within the Lebanese coastal zones were measured: at Akkar, Dora and Selaata. Akkar is located far from any direct source of contamination, while Dora and Selaata receive urban and industrial wastes, respectively. Low Pb concentrations (6–16 μg g−1) were detected in the Akkar sediments, and high concentrations of Pb (70–101 μg g−1) were detected in the Dora sediments. Measuring stable isotope ratios of Pb makes it possible to identify the principal sources of Pb in the Akkar sediments as Pb emitted from gasoline combustion and Pb originating from natural sources. On the other hand, Pb stable isotopic ratios in Dora sediments indicate that they are more highly influenced by anthropogenic sources. Isotopic Pb ratios in the Selaata deposits, where Pb concentrations range between 5 and 35 μg g−1, have an exceptional radiogenic signature for marine sediments 1.25 < 206Pb/207Pb < 1.6 and 0.5 < 206Pb/208Pb < 0.67, which shows the impact of the phosphogypsum discharged by Selaata’s chemical plant. Isotopic Pb analysis applied to EDTA extracts, to test the mobility of Pb, shows that that this mobility is high (>60%) after 24 h of extraction, and that the extracted Pb is less radiogenic than the residual Pb.  相似文献   

5.
We evaluate initial (26Al/27Al)I, (53Mn/55Mn)I, and (182Hf/180Hf)I ratios, together with 207Pb/206Pb ages for igneous differentiated meteorites and chondrules from ordinary chondrites for consistency with radioactive decay of the parent nuclides within a common, closed isotopic system, i.e., the early solar nebula. The relative initial isotopic abundances of 26Al, 53Mn, and 182Hf in differentiated meteorites and chondrules are consistent with decay from common solar system initial values, here denoted by I(Al)SS, I(Mn)SS, and I(Hf)SS, respectively. I(Mn)SS and I(Hf)SS = 9.1 ± 1.7 × 10−6 and 1.07 ± 0.08 × 10−4, respectively, correspond to “canonical” I(Al)SS = 5.1 × 10−5. I(Hf)SS so determined is consistent with I(Hf)SS = 9.72 ± 0.44 × 10−5 directly determined from an internal Hf-W isochron for CAI minerals. I(Mn)SS is within error of the lowest value directly measured for CAIs. We suggest that erratically higher values measured for CAIs in carbonaceous chondrites may reflect proton irradiation of unaccreted CAIs by the early Sun after other asteroids destined for melting by 26Al decay had already accreted. The 53Mn incorporated within such asteroids would have been shielded from further “local” spallogenic contributions from within the solar system. The relative initial isotopic abundances of the short-lived nuclides are less consistent with the 207Pb/206Pb ages of the corresponding materials than with one another. The best consistency of short- and long-lived chronometers is obtained for (182Hf/180Hf)I and the 207Pb/206Pb ages of angrites. (182Hf/180Hf)I decreases with decreasing 207Pb/206Pb ages at the rate expected from the 8.90 ± 0.09 Ma half-life of 182Hf. The model solar system age thus determined is TSS,Hf-W = 4568.3 ± 0.7 Ma. (26Al/27Al)I and (53Mn/55Mn)I are less consistent with 207Pb/206Pb ages of the corresponding meteorites, but yield TSS,Mn-Cr = 4568.2 ± 0.5 Ma relative to I(Al)SS = 5.1 × 10−5 and a 207Pb/206Pb age of 4558.55 ± 0.15 Ma for the LEW86010 angrite. The Mn-Cr method with I(Mn)SS = 9.1 ± 1.7 × 10−6 is useful for dating accretion (if identified with chondrule formation), primary igneous events, and secondary mineralization on asteroid parent bodies. All of these events appear to have occurred approximately contemporaneously on different asteroid parent bodies. For I(Mn)SS = 9.1 ± 1.7 × 10−6, parent body differentiation is found to extend at least to ∼5 Ma post-TSS, i.e., until differentiation of the angrite parent body ∼4563.5 Ma ago, or ∼4564.5 Ma ago using the directly measured 207Pb/206Pb ages of the D’Orbigny-clan angrites. The ∼1 Ma difference is characteristic of a remaining inconsistency for the D’Orbigny-clan between the Al-Mg and Mn-Cr chronometers on one hand, and the 207Pb/206Pb chronometer on the other. Differentiation of the IIIAB iron meteorite and ureilite parent bodies probably occurred slightly later than for the angrite parent body, and at nearly the same time as one another as shown by the Mn-Cr ages of IIIAB irons and ureilites, respectively. The latest recorded episodes of secondary mineralization are for carbonates on the CI carbonaceous chondrite parent body and fayalites on the CV carbonaceous chondrite parent body, both extending to ∼10 Ma post-TSS.  相似文献   

6.
Extreme U and Pb isotope variations produced by disequilibrium in decay chains of 238U and 232Th are found in calcite, opal/chalcedony, and Mn-oxides occurring as secondary mineral coatings in the unsaturated zone at Yucca Mountain, Nevada. These very slowly growing minerals (mm my−1) contain excess 206Pb and 208Pb formed from excesses of intermediate daughter isotopes and cannot be used as reliable 206Pb/238U geochronometers. The presence of excess intermediate daughter isotopes does not appreciably affect 207Pb/235U ages of U-enriched opal/chalcedony, which are interpreted as mineral formation ages.Opal and calcite from outer (younger) portions of coatings have 230Th/U ages from 94.6 ± 3.7 to 361.3 ± 9.8 ka and initial 234U/238U activity ratios (AR) from 4.351 ± 0.070 to 7.02 ± 0.12, which indicate 234U enrichment from percolating water. Present-day 234U/238U AR is ∼1 in opal/chalcedony from older portions of the coatings. The 207Pb/235U ages of opal/chalcedony samples range from 0.1329 ± 0.0080 to 9.10 ± 0.21 Ma, increase with microstratigraphic depth, and define slow long-term average growth rates of about 1.2-2.0 mm my−1, in good agreement with previous results. Measured 234U/238U AR in Mn-oxides, which pre-date the oldest calcite and opal/chalcedony, range from 0.939 ± 0.006 to 2.091 ± 0.006 and are >1 in most samples. The range of 87Sr/86Sr ratios (0.71156-0.71280) in Mn-oxides overlaps that in the late calcite. These data indicate that Mn-oxides exchange U and Sr with percolating water and cannot be used as a reliable dating tool.In the U-poor calcite samples, measured 206Pb/207Pb ratios have a wide range, do not correlate with Ba concentration as would be expected if excess Ra was present, and reach a value of about 1400, the highest ever reported for natural Pb. Calcite intergrown with opal contains excesses of both 206Pb and 207Pb derived from Rn diffusion and from direct α-recoil from U-rich opal. Calcite from coatings devoid of opal/chalcedony contains 206Pb and 208Pb excesses, but no appreciable 207Pb excesses. Observed Pb isotope anomalies in calcite are explained by Rn-produced excess Pb. The Rn emanation may strongly affect 206Pb-238U ages of slow-growing U-poor calcite, but should be negligible for dating fast-growing U-enriched speleothem calcite.  相似文献   

7.
The use of stable Pb isotopes for tracing Pb contamination within the environment has strongly increased our understanding of the fate of airborne Pb contaminants within the boreal forest. This paper presents new stable Pb isotope (206Pb/207Pb ratio) measurements of solid soil samples, stream water (from a mire outlet and a stream draining a forest dominated catchment) and components of Picea abies (roots, needles and stemwood), and synthesizes some of the authors’ recent findings regarding the biogeochemistry of Pb within the boreal forest. The data clearly indicate that the biogeochemical cycling of Pb in the present-day boreal forest ecosystem is dominated by pollution Pb from atmospheric deposition. The 206Pb/207Pb ratios of the mor layer (O-horizon), forest plants and stream water (mainly between 1.14 and 1.20) are similar to atmospheric Pb pollution (1.14–1.19), while the local geogenic Pb of the mineral soil (C-horizon) has high ratios (>1.30). Roots and basal stemwood of the analyzed forest trees have higher 206Pb/207Pb ratios (1.15–1.30) than needles and apical stemwood (1.14–1.18), which indicate that the latter components are more dominated by pollution derived Pb. The low 206Pb/207Pb ratios of the mor layer suggest that the upward transport of Pb as a result of plant uptake is small (<0.04 mg m−2 a−1) in comparison to atmospheric inputs (∼0.5 mg m−2 a−1) and annual losses with percolating soil-water (∼2 mg m−2 a−1); consequently, the Pb levels in the mor layer are now decreasing while the pool of Pb in the mineral soil is increasing. Streams draining mires appear more strongly affected by pollution Pb than streams from forested catchments, as indicated by Pb concentrations about three times higher and lower 206Pb/207Pb ratios (1.16 ± 0.01 in comparison to 1.18 ± 0.02). To what extent stream water Pb levels will respond to the build-up of Pb in deeper mineral soil layers remains uncertain.  相似文献   

8.
The weathered surface expression of the Lady Loretta lead-zinc-silver deposit outcrops almost continuously over a distance of about 4 km. Lead isotope ratios have been determined for samples, some of which contain > 4000 ppm Pb, from geochemically anomalous areas in order to assign drilling priorities to the anomalies.Twelve of the 43 samples analyzed contain isotopically homogeneous lead with ratios (207Pb/206Pb 0.9532–0.9549) similar to the expected targets for major ore deposits in the Mount Isa-McArthur River metallogenic province (207Pb/206Pb 0.955–0.962). Three main zones of interest can be outlined on the basis of lead isotopic data. The top priority is assigned to a 100-m-long section of the ironstone which coincides with the known outcrop of the ore. Lower priority for drilling is given to the two other zones which outcrop over smaller areas and have more radiogenic lead in their immediate surroundings. Several samples with anomalously high lead contents (> 1000 ppm) contain more radiogenic lead (207Pb/206Pb < 0.950) which was most likely derived from the weathering country rocks by supergene leaching and redeposition. Of the 22 samples containing ≥ 380 ppm Pb, lead isotopic analyses would have reduced the number deserving further attention to 10. Lead isotopic analyses in the early stages of exploration could have assisted in minimizing exploration expenditure at Lady Loretta.  相似文献   

9.
Uranium-lead ratios (commonly represented as 238U/204Pb = μ) calculated for the sources of martian basalts preserve a record of petrogenetic processes that were active during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of μ values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range (206Pb/204Pb = 11.16-11.61). In contrast, the Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in 206Pb/204Pb-207Pb/204Pb-208Pb/204Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial Pb. This terrestrial Pb contamination generated a 206Pb-207Pb array in the QUE fractions that appears to represent an ancient age, which contrasts with a much younger crystallization age of 327 ± 10 Ma derived from Rb-Sr and Sm-Nd isochrons (Borg L. E., Nyquist L. E., Taylor L. A., Wiesmann H. and Shih C. -Y. (1997) Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta61, 4915-4931). Despite the contamination, and accepting 327 ± 10 Ma as the crystallization age, we use the U-Pb data to determine the initial 206Pb/204Pb of QUE 94201 to be 11.086 ± 0.008 and to calculate the μ value of its mantle source to be 1.82 ± 0.01. The μ value calculated for the QUE 94201 source is the lowest determined for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that μ values in martian source reservoirs vary by at least a factor of two. Additionally, the range of source μ values indicates that the μ value of bulk silicate Mars is approximately three. The amount of variation in the μ values of the mantle sources (μ ∼ 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate greater extents of U-Pb fractionation during formation of the mantle sources of martian basalts.  相似文献   

10.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

11.
Angrite Sahara 99555 (hereafter SAH), precisely dated by Baker et al. (Baker J., Bizzarro M., Wittig N., Connelly J. and Haack H. (2005) Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature436, 1127-1131), has been proposed as a new reference point for the early Solar System timescale and for calculation of the revised minimum age of our Solar System. The Pb-Pb age of SAH of 4566.18 ± 0.14 Ma, reported by Baker et al., differs from the Pb-Pb age of D’Orbigny, another basaltic angrite, of 4564.42 ± 0.12 Ma (Amelin Y. (2008) U-Pb ages of angrites. Geochim. Cosmochim. Acta72, 221-232), despite the fact that the relative 53Mn-53Cr and 182Hf-182W ages of these meteorites are identical. Here I report U-Pb data for 21 whole rock and pyroxene fractions from SAH, analyzed using the same approach as D’Orbigny (Amelin, 2008). These fractions contain between 1.3 and 8.9 pg of total common Pb, slightly more than analytical blank. Measured 206Pb/204Pb ratios are between 625 and 2817 for D’Orbigny, blank-corrected 206Pb/204Pb ratios are between 1173 and 6675. Eight acid-washed whole rock fractions yielded an isochron age of 4564.86 ± 0.38 Ma, MSWD = 1.5. Data for pyroxene fractions plot mostly above the whole rock isochron, and do not form a linear array in 207Pb/206Pb vs. 204Pb/206Pb isochron coordinates. The 207Pb/206Pb model dates of the pyroxene fractions vary from 4563.8 ± 0.3 to 4567.1 ± 0.5 Ma. The difference between whole rock and pyroxene U-Pb systematics may be a result of re-distribution of radiogenic Pb at a mineral grain scale several million years after crystallization. Complexities of Sm-Nd, Lu-Hf, and possibly 26Al-26Mg mineral systematics of SAH, described previously, may be related to the same process that caused the re-distribution of radiogenic Pb. Disturbance of isotopic chronometers renders SAH an imperfect anchor for the early Solar System timescale. The problems with age determination revealed by the studies of SAH call for greater attention in Pb-isotopic dating of angrites and other achondrites.  相似文献   

12.
In situ U-Pb isotopic measurements were carried out by ion microprobe on the Zr-rich accessory minerals zirconolite [CaZrTi2O7], tranquillityite [Fe82+(ZrY)2Ti3Si3O24] and baddeleyite [ZrO2] in low-K, high-Ti mare basalt 10047 collected during the Apollo 11 mission. The analysed minerals are concentrated in pockets of late-stage mesostasis that comprises an intergrowth of silica, barian K-feldspar and Si-Al-K glass, from a phaneritic, subophitic, basalt comprising mainly pyroxene, plagioclase, ilmenite, cristobalite and troilite. Most Zr-rich minerals are unaltered, however, some tranquillityite is replaced by a complex intergrowth of zirconolite, baddeleyite, ilmenite and fayalite, suggesting that the mineral became unstable during crystallization. Several baddeleyite crystals have also undergone alteration to secondary zircon. Zirconolite was analysed in thin section 10047,11 and tranquillityite and baddeleyite in 10047,227, using a ∼6 μm primary ion beam. Both zirconolite and tranquillityite have significant U and low initial Pb contents, and are highly suitable for Pb/Pb dating. Fifteen analyses of zirconolite give a 207Pb/206Pb age of 3708 ± 7 Ma (207Pb/206Pb:204Pb/206Pb isochron; 95% confidence, including renormalisation of ratios) and twenty-five analyses of tranquillityite give 3710 ± 6 Ma. The 207Pb/206Pb dates are consistent with each other and refine results from an earlier study. Baddeleyite data were less precise, mainly due to lower secondary ionisation efficiency. Our results show that zirconolite and tranquillityite can provide precise isotopic dates and, given their presence in other samples, they represent important U-Pb chronometers for refining lunar geology.  相似文献   

13.
We have investigated the potential of hübnerite for U-Pb dating. Hübnerite forms typically at medium to low-temperatures in a wide range of pneumatolytic-hydrothermal mineral deposits, particularly porphyry molybdenum and Sn-specialized granites. Hübnerite from the Sweet Home Mine (Alma, Colorado) formed in a Pb-rich, U-poor environment, but still developed relatively radiogenic Pb isotopic compositions. The low Pbcommon contents in hübnerite (0.075 to 0.155 ppm) demonstrate that Pb is efficiently excluded from the crystal lattice. In contrast, U may substitute for Mn. The U-Pb data of hübnerite scatter. Most of the scatter originates from samples with 206Pb/204Pb values below 50, where Pbblank contributes up to 30% to Pbtotal. Using the least radiogenic galena Pb, samples with 206Pb/204Pb values above 70 have overlapping 206Pb∗/238U and 207Pb∗/235U values and yield a 206Pb/238U age of 25.7 ± 0.3 Ma (2σ). Late stage apatite from the Sweet Home Mine yields a 206Pb/204Pb-238U/204Pb isochron corresponding to an age of 24.8 ± 0.5 Ma (2σ). A comparison of the U-Pb hübnerite ages with literature 40Ar/39Ar ages on earlier sericite and the U-Pb age on later apatite suggests that (i) hübnerite yields accurate U-Pb ages and (ii) the evolution of the Sweet Home mineralization from greisen-type mineralization to medium-temperature hydrothermal vein mineralization took place in a few hundred thousand years at most. Aqueous low-N2-bearing and aqueous inclusions in the dated hübnerite have homogenization temperatures between 325 and 356 °C and moderate salinity (up to 6.7 wt% NaCl equiv.). Thus, hübnerite represents one of the rare examples of a mineral that can be dated accurately and carries petrological information.  相似文献   

14.
Early Proterozoic volcanic and sedimentary rocks of the Rappen district in northern Sweden were deposited at a destructive plate margin to the south of the Archaean craton of the western Baltic Shield. The volcano-sedimentary suite was intruded by two generations of early Proterozoic granites at ca. 1.89–1.85 Ga and ca.1.82–1.78 Ga, respectively, and metamorphosed at upper amphibolite facies conditions. Small stratabound iron, copper, and zinc deposits occur in felsic to mafic tuffs and arkosic sediments. Small deposits of molybdenum, tungsten, and uranium formed during the emplacement of the younger granites. The lead isotopic compositions of sulfide trace lead from the various deposits are highly heterogeneous. In the 206Pb/204Pb–207Pb/204Pb diagram they fall on mixing arrays between little evolved early Proterozoic lead and highly radiogenic Caledonian lead. The least radiogenic lead isotopic compositions from the various deposits have a wide range of 207Pb/204Pb ratios and thus indicate variable involvement of Archaean crustal lead in the Proterozoic deposits. Deposits hosted by siliciclastic rocks have higher 207Pb/204Pb ratios than deposits hosted in mafic to felsic tuffites. The lead isotopic heterogeneity suggests that the lead in the various deposits was locally derived and, furthermore, that the sedimentary rocks in part originated from the Archaean craton to the north. Lead mixing arrays in the 206Pb/204Pb–207Pb/204Pb diagram demonstrate that in Paleozoic time radiogenic lead was mobilized and transported in the basement. Source ages calculated from the mixing arrays (ca.1.9 Ga and ca.1.8 Ga) correspond to the age of the Early Proterozoic volcanism and metamorphism respectively. One group of deposits includes lead from at least three sources and illustrates that radiogenic lead was multiply mobilized and transported in the Proterozoic basement. It occurs in deposits that occur in zones that became permeable during the reactivations of the basement.  相似文献   

15.
The Pb, Sr and Nd isotopic compositions of biomonitors (lichen, moss, bark) and soil litter from different regions in the Rhine valley, as well as of <0.45 μm particles separated out of ice of the Rhône and Oberaar glaciers and lichens from the Swiss Central Alps, have been determined in order to deduce the natural baseline of the atmospheric isotopic compositions of these regions, which are suggested to be close to the isotopic compositions of the corresponding basement rocks or soils at the same sites. 206Pb/207Pb and 87Sr/86Sr isotope ratios are positively correlated. Most polluted samples from traffic-rich urban environments have the least radiogenic Pb and Sr isotopic compositions with 206Pb/207Pb and 87Sr/86Sr ratios of 1.11 and 0.7094, respectively. These ratios are very different from those of the atmospheric baseline for the Vosges mountains and the Rhine valley (206Pb/207Pb: 1.158–1.167; 87Sr/86Sr: 0.719–0.725; εNd: −7.5 to −10.1). However, this study indicates that the baseline of the atmospheric natural Pb and Sr isotopic compositions is affected by anthropogenic (traffic, industrial and urban) emissions even in remote areas. Lichen samples from below the Rhône and Oberaar glaciers reflect the baseline composition close to the Grimsel pass in the Central Swiss Alps (87Sr/86Sr: 0.714 − 0.716; εNd: −3.6 to −8.1). The 143Nd/144Nd isotope ratios are highly variable (8ε units) and it is suggested that the variation of the 143Nd/144Nd is controlled by wet deposition and aerosols originating from the regional natural and industrial urban environments and from more distant regions like the Sahara in North Africa. The least anthropogenetically affected samples collected in remote areas have isotopic compositions closest to those of the corresponding granitoid basement rocks.  相似文献   

16.
An investigation of the Pb isotopic compositions of plagioclase and sulfide in a stratigraphic interval including the UG2 chromitite of the eastern Bushveld Complex has been conducted to determine the Pb isotopic composition(s) of the magma(s) that crystallized to form this part of the intrusion, gain a better understanding of why coexisting plagioclase and sulfide commonly exhibit widely different Pb isotopic compositions, and explore the use of Pb isotopes in deducing post-accumulation history. Analyses were obtained in situ with a NuPlasma multicollector ICP-MS coupled with 193 nm Excimer or 213 nm lasers.Most plagioclase compositions fall on the 207Pb/204Pb vs 206Pb/204Pb geochron of 2.06 Ga, which is the solidification age of the intrusion. The measured ratios have not been affected by radiogenic ingrowth, and plagioclase generally remained closed to Pb exchange after initial cooling. The array of plagioclase compositions on the geochron is significantly larger than that defined by analytical error. This indicates that in terms of Pb at least two different magma compositions were present. The composition of the least radiogenic magma was approximated by that of the contemporaneous BSE with μ (238U/204Pb) and ω (232Th/204Pb) values of ≈9.0 and 35, respectively, suggesting a mantle derivation with little or no involvement of the continental crust, while the second magma possessed a Pb isotopic composition similar to the upper crust with μ ≈ 9.6.Compared to plagioclase, sulfides generally possess slightly higher 206Pb/204Pb ratios for equivalent 207Pb/204Pb ratios such that their compositions fall between the 2.06 and 1.86 Ga geochrons. The latter age is much younger than the cooling age. The data are interpreted to mean that the Bushveld Complex remained buried in the crust at temperatures of several hundred °C for about 200 Ma after solidification, and that any sulfides accessible to fluid continued to re-equilibrated during this time with more radiogenic Pb. The sulfide Pb may have been transported into the Bushveld Complex by fluids from an external reservoir when the rocks were still partially molten and thus permeable. Alternatively, the sulfide Pb may have originated mainly from radiogenic decay of U and Th present in minerals other than the sulfides in the immediately surrounding Bushveld rocks, followed by local redistribution of Pb by whatever fluid was present. Indeed, some sulfides are characterized by 208Pb/204Pb ratios sufficiently high that an external source is unlikely. This observation and the fact that the sulfides display small-scale heterogeneity suggest that most, if not all, of the radiogenic sulfide Pb was locally derived. It also implies that during the post-solidification, re-equilibration period there was no large-scale fluid-flow through the microfracture network because otherwise the isotopic heterogeneities would not have been preserved. The minerals in 2 of the 19 samples studied contain young Pb, presumably introduced by meteoric waters that permeated the macrofracture network.  相似文献   

17.
Stepwise Pb-removal experiments, using both vacuum volatilization and HF-leaching techniques, on acid-washed K-feldspar concentrates from Precambrian igneous rocks show that all contain some unsupported radiogenic Pb. Two types of radiogenic Pb were recognized. One has a “normal” isotopic composition, with relative abundances of 206Pb, 207Pb and 208Pb consistent with the age and U-Th contents of the rocks. The other type of unsupported radiogenic lead in the feldspars is apparently pure 206Pb, derived from long-term migration and accumulation of radioactive daughter(s) of 238U. This “pure 206pb” lead occupies different sites from the “normal” radiogenic lead, and tends to show a release maximum during vacuum volatilization at about 1150°C.The usefulness of stepwise vacuum volatilization may be limited by the tendency of a small amount of radiogenic lead to concentrate in the least volatile fraction. Stepwise partial HF attacks appear to give at least as good separation of radiogenic from original feldspar lead, and are recommended as a routine procedure for isotopic analyses of Precambrian feldspars. The fact that most of the five K-feldspars examined contained unsupported radiogenic lead implies that caution must be used in applying total-sample lead analyses of Precambrian feldspars to problems of lead-isotope evolution in crustal rocks.  相似文献   

18.
Asuka 881394 is a unique basaltic meteorite that originated in the crust of a differentiated planetesimal in the early Solar System. We present high precision Pb, Mg, and Cr isotopic compositions of bulk samples and mineral separates from this achondrite. A 207Pb-206Pb internal isochron obtained from the radiogenic pyroxene and whole-rock fractions of Asuka 881394 yields an absolute age of 4566.5 ± 0.2 Ma, which we consider to be the best estimate for the crystallization age of this basaltic achondrite. The 26Al-26Mg systematics show some evidence of disturbance, but 5 of the 6 analyzed whole-rock and mineral fractions define an isochron corresponding to a 27Al/26Al ratio of (1.28 ± 0.07) × 10−6. Comparison with the 26Al-26Mg and Pb-Pb systematics in the D’Orbigny achondrite translates to a 26Al-26Mg age of 4565.4 ± 0.2 Ma for Asuka 881394. The 53Mn-53Cr systematics in whole-rock, silicate and chromite fractions correspond to a 53Mn/55Mn ratio of (3.85 ± 0.23) × 10−6. Compared to the most precise 53Mn-53Cr and Pb-Pb systematics available for the D’Orbigny angrite, this translates to a 53Mn-53Cr age of 4565.3 ± 0.4 Ma; similarly, a comparison with the NWA 4801 angrite yields a 53Mn-53Cr age of 4565.5 ± 0.4 Ma, in agreement with the age obtained relative to D’Orbigny. While the 26Al-26Mg and 53Mn-53Cr ages appear to be concordant in Asuka 881394, these ages are ∼1 Ma younger than its 207Pb-206Pb age. This discordance might have been caused by one or more of several reasons, including differences in the closure temperatures for Pb versus Cr and Mg diffusion in their host minerals combined with slow cooling of the parent body as well as differential resetting of isotopic systems by a process other than volume diffusion, e.g., shock metamorphism. The ancient age of Asuka 881394 suggests that basaltic volcanism on its parent planetesimal occurred within ∼3 Ma of the formation of earliest solids in the Solar System, essentially contemporaneously with chondrule formation. This requires that the Asuka 881394 parent body was fully accreted within ∼500,000 yrs of Solar System formation.  相似文献   

19.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

20.
Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 ± 37 Ma and an initial value of −0.27 ± 0.74. The age-initial (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 ± 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 ± 53 Ma. The other is 4003 ± 95 Ma and is concordant with an Ar-Ar age for 78236. The 207Pb-206Pb age of 4333 ± 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged μ (238U/204Pb) value of the source can be estimated at 27 ± 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low μ value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high μ value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号