首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   17篇
  国内免费   5篇
测绘学   4篇
大气科学   28篇
地球物理   53篇
地质学   91篇
海洋学   13篇
天文学   41篇
自然地理   32篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   10篇
  2015年   2篇
  2014年   14篇
  2013年   22篇
  2012年   10篇
  2011年   17篇
  2010年   7篇
  2009年   12篇
  2008年   12篇
  2007年   14篇
  2006年   12篇
  2005年   4篇
  2004年   12篇
  2003年   4篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有262条查询结果,搜索用时 31 毫秒
1.
2.
The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep‐sea records from methane‐influenced environments in three cores from an active and very heterogeneous seep‐area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS‐14C dates, sedimentary data and biostratigraphy. Extremely low δ13C values recorded in both benthic and planktonic foraminifera during the Bølling‐Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane‐derived authigenic carbonates. The δ18O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the δ18O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane‐related palaeo‐reductive environments.  相似文献   
3.
Six Cr‐spinel grains from NWA 6077 brachinite‐like and NWA 725 winonaite achondrites have been studied by single‐crystal X‐ray diffraction and structural refinement. From a chemical point of view, spinels from NWA 6077 show Cr/(Cr + Al) (i.e., Cr#) and Mg/(Mg + Fe2+) (i.e., Mg#) values similar to other brachinites, while the Cr# of NWA 725 is lower than that of literature winonaites. Spinels from NWA 6077 and NWA 725 meteorites show similar cell edges, while the oxygen positional parameter is rather different being about 0.2629 for NWA 6077 and 0.2622 for NWA 725. Considering both parameters, NWA 725 shows structural features that are close to some terrestrial spinel occurrences as in komatiites, kimberlites, or included in diamonds; those from NWA 6077 show values that have no terrestrial analogs. Olivine‐chromite closure temperature ranges from ~737 to ~765° C for NWA 725, being similar to that of literature winonaites and ~846 to ~884° C for NWA 6077. The logfO2 ranges from ?19.8 to ?20.5 and ?17.0 to ?17.9 for the two meteorites, respectively. The u values for terrestrial samples can give information about the cooling history of the samples. For the extraterrestrial samples, it seems that it can give information about the cooling only for spinels where it is lower than 0.2625. For higher values, it appears related only to the chemistry of the spinels.  相似文献   
4.
Xenotime is a widespread accessory mineral in lower greenschist to upper amphibolite facies metasedimentary rocks from the Palaeoproterozoic Mount Barren Group, southwestern Australia. Xenotime is closely associated with detrital zircon, commonly forming syntaxial outgrowths, in samples of sandstone, micaceous quartzite, slate, phyllite, garnet-bearing semi-pelites, and in kyanite-, garnet-, and staurolite-bearing mica schists. In situ geochronology of xenotime from lower greenschist sandstones has previously yielded multiple U–Pb ages with peaks at ~2.0, ~1.7, and ~1.65 Ga, interpreted to represent the age of detritus, early diagenesis, and a later thermal event, respectively. New U–Pb dating of xenotime in slate yields a major population at ~1.7 Ga with a minor population at ~1.2 Ga, reflecting diagenetic and metamorphic growth, respectively, whereas xenotime in phyllite forms a minor age population at ~1.7 Ga and a main peak at ~1.2 Ga. Mid-greenschist facies semi-pelitic schists (quartz-muscovite-garnet) contain xenotime that formed before 1.8 Ga and at 1.2 Ga, representing detrital and peak metamorphic ages, respectively. Xenotime in samples of amphibolite facies schist (650°C and ~8 kbars) yields U–Pb ages of ~1.2 Ga, coinciding with the time of peak metamorphism. A single analysis of a xenotime core from an amphibolite facies schist gave an age of ~1.8 Ga, consistent with the presence of detrital xenotime. Our results suggest that detrital xenotime may be preserved under greenschist facies conditions, but is largely replaced during upper amphibolite facies conditions. Detrital xenotime is replaced through dissolution–reprecipitation reactions forming compositionally distinct rims during greenschist and amphibolite facies metamorphism at 1.2 Ga. Diagenetic xenotime is present in lower greenschist facies samples, but was not observed in metasedimentary rocks that had experienced temperatures above mid-greenschist facies metamorphism (450°C). The apparent disappearance of detrital and diagenetic xenotime and appearance of metamorphic xenotime during prograde metamorphism indicates that some of the yttrium, heavy rare earth elements, and phosphorus needed for metamorphic xenotime growth are probably derived from the replacement of detrital and diagenetic xenotime.  相似文献   
5.
A field and petro-chemical classification of felsic magmatic phases (FMPs) at the world-class Cantung W skarn deposit was undertaken to document the evolution of magmatism and the relationships between different FMPs, metasomatism, and mineralization. Early FMPs include moderately differentiated (Zr/Hf = 18–26, Ti/Zr = 14–15) biotite monzogranitic plutons and early biotite-rich granitic dykes, and compositionally similar quartz–feldspar porphyry dykes. Late, highly fractionated (Zr/Hf = 8–17, Ti/Zr = 3–13) FMPs sourced from a deeper monzogranitic intrusion include: (1) leucocratic biotite- or tourmaline-bearing dykes derived from localized entrapments of residual magma; and, (2) sub-vertical NE-trending aplitic dykes derived from a larger segregation of residual fluid- and incompatible element-enriched magma. The aplitic dykes have textures, morphologies, spatial associations, and a pervasive calcic metasomatic mineral assemblage (Ca-plagioclase + quartz or clinozoisite) indicative of syn-mineralization emplacement. Very late-stage overpressuring and initiation of sub-vertical fractures into the overlying plutonic carapace and country rocks by supercritical magmatic fluid led to an interaction with calcareous country rocks that resulted in an increased aCa2+ in the fluid and the concurrent precipitation of W skarn. Residual magma also ascended with, and quenched in equilibrium with the magmatic fluid to from the aplitic dykes, then was metasomatized by the fluid as it interacted with calcareous country rocks. Overall, highly fractionated and moderately to very highly undercooled FMPs at Cantung provide evidence for a large and evolving felsic magmatic system at depth that segregated and maintained a stable fluid- and incompatible element-enriched residual magma until the latest stages of crystallization. The detailed study of FMPs associated with magmatic-hydrothermal mineral deposits allow us to refine our understanding of these mineralizing systems and better define metallogenic and exploration models for intrusion-related mineralization.  相似文献   
6.
Understanding the interactions of climate, physical erosion, chemical weathering and pedogenic processes is essential when considering the evolution of critical zone systems. Interactions among these components are particularly important to predicting how semiarid landscapes will respond to forecasted changes in precipitation and temperature under future climate change. The primary goal of this study was to understand how climate and landscape structure interact to control chemical denudation and mineral transformation across a range of semiarid ecosystems in southern Arizona. The research was conducted along the steep environmental gradient encompassed by the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO). The gradient is dominated by granitic parent materials and spans significant range in both mean annual temperature (>10 °C) and precipitation (>50 cm a?1), with concomitant shift in vegetation communities from desert scrub to mixed conifer forest. Regolith profiles were sampled from divergent and convergent landscape positions in five different ecosystems to quantify how climate-landscape position interactions control regolith development. Regolith development was quantified as depth to paralithic contact and degree of chemical weathering and mineral transformation using a combination of quantitative and semi-quantitative X-ray diffraction (XRD) analyses of bulk soils and specific particle size classes. Depth to paralithic contact was found to increase systematically with elevation for divergent positions at approximately 28 cm per 1000 m elevation, but varied inconsistently for convergent positions. The relative differences in depth between convergent and divergent landscape positions was greatest at the low and high elevation sites and is hypothesized to be a product of changes in physical erosion rates across the gradient. Quartz/Plagioclase (Q/P) ratios were used as a general proxy for bulk regolith chemical denudation. Q/P was generally higher in divergent landscape positions compared to the adjacent convergent hollows. Convergent landscape positions appear to be collecting solute-rich soil–waters from divergent positions thereby inhibiting chemical denudation. Clay mineral assemblage of the low elevation sites was dominated by smectite and partially dehydrated halloysite whereas vermiculite and kaolinite were predominant in the high elevation sites. The increased depth to paralithic contact, chemical denudation and mineral transformation are likely functions of greater water availability and increased primary productivity. Landscape position within a given ecosystem exerts strong control on chemical denudation as a result of the redistribution of water and solutes across the landscape surface. The combined data from this research demonstrates a strong interactive control of climate, landscape position and erosion on the development of soil and regolith.  相似文献   
7.
SHRIMP (Sensitive High‐Resolution Ion MicroProbe) analytical procedures have been developed to enable dating of the small, early diagenetic xenotime overgrowths that commonly occur on zircons in siliciclastic sedimentary rocks. The method will be particularly useful in Precambrian terranes, where diagenetic xenotime dating could play a role equivalent to biostratigraphic dating in the Phanerozoic. Reliable 207Pb/206Pb data are more readily obtained than 206Pb/238U, which also favours application to the Precambrian. However, it is demonstrated that 206Pb/238U dating of larger overgrowths (>10 μm) is also viable and applicable to Phanerozoic samples. SHRIMP Pb/Pb geochronology of authigenic xenotime in an unmetamorphosed Palaeoproterozoic sandstone in the Kimberley Basin has constrained diagenesis to a precision of ± 7 Ma. In contrast, greenschist‐facies metasediments of the Archaean Witwatersrand Basin, South Africa, contain both authigenic and alteration xenotime that record a complex history of growth from early diagenesis to the last major thermal event to affect the basin.  相似文献   
8.
This discussion paper, by a Working Group of INTIMATE (Integration of ice‐core, marine and terrestrial records) and the Subcommision on Quaternary Stratigraphy (SQS) of the International Commission on Stratigraphy (ICS), considers the prospects for a formal subdivision of the Holocene Series/Epoch. Although previous attempts to subdivide the Holocene have proved inconclusive, recent developments in Quaternary stratigraphy, notably the definition of the Pleistocene–Holocene boundary and the emergence of formal subdivisions of the Pleistocene Series/Epoch, mean that it may be timely to revisit this matter. The Quaternary literature reveals a widespread but variable informal usage of a tripartite division of the Holocene (‘early’, ‘middle’ or ‘mid’, and ‘late’), and we argue that this de facto subdivision should now be formalized to ensure consistency in stratigraphic terminology. We propose an Early–Middle Holocene Boundary at 8200 a BP and a Middle–Late Holocene Boundary at 4200 a BP, each of which is linked to a Global Stratotype Section and Point (GSSP). Should the proposal find a broad measure of support from the Quaternary community, a submission will be made to the International Union of Geological Sciences (IUGS), via the SQS and the ICS, for formal ratification of this subdivision of the Holocene Series/Epoch. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
9.
In order to contribute to our understanding of the linkage between climate and ocean circulation we have studied benthic foraminifera from near the northern end of the Faeroe–Shetland Channel covering isotope stages 6 to lower stage 3 (∼150–55 ka). Our records demonstrate shifts between recurring assemblages, which on millennial timescales monitor the outflow history of Norwegian Sea Deep Water. The records show that the outflow is closely linked to the climate of the region as documented in the Greenland ice cores. Outflow was relatively strong during all major warmer interstadials whereas there was no outflow during the colder stadials. During isotope substage 5e outflow was stable for ∼10–12 kyr with significant changes at the beginning and end only.  相似文献   
10.
Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号