首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Silicate weathering of soil-mantled slopes in an active Alpine landscape   总被引:1,自引:0,他引:1  
Despite being located on high, steep, actively uplifting, and formerly glaciated slopes of the Swiss Central Alps, soils in the upper Rhone Valley are depleted by up to 50% in cations relative to their parent bedrock. This depletion was determined by a mass loss balance based on Zr as a refractory element. Both Holocene weathering rates and physical erosion rates of these slopes are unexpectedly low, as measured by cosmogenic 10Be-derived denudation rates. Chemical depletion fractions, CDF, range from 0.12 to 0.48, while the average soil chemical weathering rate is 33 ± 15 t km−2 yr−1. Both the cosmogenic nuclide-derived denudation rates and model calculations suggest that these soils have reached a weathering steady-state since deglaciation 15 ky ago. The weathering signal varies with elevation and hillslope morphology. In addition, the chemical weathering rates decrease with elevation indicating that temperature may be a dominant controlling factor on weathering in these high Alpine basins. Model calculations suggest that chemical weathering rates are limited by reaction kinetics and not the supply rate of fresh material. We compare hillslope and catchment-wide weathering fluxes with modern stream cation flux, and show that high relief, bare-rock slopes exhibit much lower chemical weathering rates despite higher physical erosion rates. The low weathering fluxes from rocky, rapidly eroding slopes allow for the broader implication that mountain building, while elevating overall denudation rates, may not cause increased chemical weathering rates on hillslopes. In order for this sediment to be weathered, intermediate storage, for instance in floodplains, is required.  相似文献   

2.
Abstract

The exhumation of rocks in a plate convergence setting is commonly related to erosion and/or tectonic denudation accompanied by isostatic adjustment. Isostatic compensation is the physical response to denudation. It leads to unroofing of deep levels of the crust. A new model for producing topographic relief is proposed which explains well the rapid exhumation of high-temperature rocks in the Central Alps via erosion and tectonic denudation (i.e. gravitational collapse and normal faulting). It is shown that the forward motion of the cold and rigid Adriatic indenter into the European crust is twofold. Firstly, horizontal compression led to the vertical extrusion of the deepest ductile European basement into shallower levels. This tectonic process induced heat transfer through the southern steep belt as well as heat advection together with the extruded material, resulting in the metamorphic aureole observed in the Central Alps. Secondly, the lower part of the Adriatic crust protruded into the warm European crust as a result of continuous forward motion. Geophysical data suggest that the isostatic response to indentation (i.e. deepening of the alpine root) has been inhibited by the mechanical strength of the cold and rigid Adriatic crust. Then, the indentation process induced a deviation from isostatic equilibrium by creating a tremendous topographic relief. This relief disappeared rapidly, possibly as fast as it forms, by enhanced erosion and tectonic denudation leading to rapid exhumation of the metamorphic dome.  相似文献   

3.
How and how fast do hillslope soils form as the landscape’s morphology changes over time? Here results are shown from an ongoing study that simultaneously examines the morphologic and geochemical evolution of soil mantled hillslopes that have been exposed to distinctively different denudation history. In Northern Sierra Nevada, California, the authors are investigating a tributary basin to the Middle Fork Feather River. A major incision signal from the river is well marked in a knickpoint within the tributary basin which stretches from its mouth to the Feather River at an elevation of ~700 m to the plateau at an elevation of ~1500 m. Hillslopes are significantly steeper below the knickpoint. The area’s total denudation rates are currently being constrained using cosmogenic radio nuclides, but a previous study suggested an order of magnitude difference in total denudation rates below and above the knickpoint. When compared with topographic attributes calculated from LIDAR data, physical erosion rates can be modeled as a linear function of ridge top curvature. Surprisingly, over the wide range of total denudation rates, soil thicknesses do not vary significantly until a threshold point where soil mantled landscapes abruptly shift to bedrock dominated landscapes. Bioturbation by tree falls appear to buffer soil thickness over the wide range of physical soil erosion rates. From three hillslopes with different physical erosion rates, the concentrations of Zr, which were considered conserved during dissolution and leaching, were determined and used as a proxy for the degree of mass losses via chemical denudation. There is a general trend that colluvial soils along the hillslopes with lower physical erosion rates are enriched in fine size fractions, Zr, and pedogenic crystalline Fe oxides. Likewise, the saprolites show greater degrees of chemical denudation at the sites above the knickpoint, presumably because of the saprolites’ longer turnover time in the slowly eroding landscapes. In the two steep hillslopes below the knickpoint, no significant or systematic topgraphic trends were found for soil geochemistry. However, soils show increasing Zr enrichment in the downslope direction in the hillslope above the knickpoint, which suggests a critical denudation rate beyond which soils’ turnover time is too short to develop a geochemical catena. As detailed CRN-based soil production rates and catchment scale denudation rates are acquired, the data will be combined with a mass balance model to calculate the rates of chemical denudation and weathering in soils and saprolites along the denudation gradient.  相似文献   

4.
Coupling between tectonics and surface processes is usually ill‐quantified as other factors such as climate and lithology affect the later. We provide catchment‐wide 10Be denudation rates of the Mand catchment in the Zagros Fold Belt (Iran) to infer correlations between these rates and ongoing tectonic shortening in the region. Denudation rates are generally low (~0.05–0.1 mm/a) but increase to ~1 mm/a near the Halikan anticline, where changes in precipitation, lithology or hillslope gradient are insignificant. The denudation rates upstream and downstream of the Halikan anticline are consistent with the GPS convergence rates in these areas. The sharp increase in denudation rates over the Halikan anticline denotes its growth as previously detected from terrace incision. It also reveals small wavelength coupling between crustal deformation and erosion. Denudation rates are therefore a useful and sensitive tool that helps constraining non‐brittle active tectonics such as folding of a sedimentary cover.  相似文献   

5.
Erosion-driven uplift of the modern Central Alps   总被引:2,自引:0,他引:2  
We present a compilation of data of modern tectono-geomorphic processes in the Central European Alps which suggest that observed rock uplift is a response to climate-driven denudation. This interpretation is predominantly based on the recent quantification of basin-averaged Late Holocene denudation rates that are so similar to the pattern and rates of rock uplift rates as determined by geodetic leveling. Furthermore, a GPS data-based synthesis of Adriatic microplate kinematics suggests that the Central Alps are currently not in a state of active convergence. Finally, we illustrate that the Central Alps have acted as a closed system for Holocene redistribution of sediment in which the peri-Alpine lakes have operated as a sink for the erosional products of the inner Central Alps.While various hypotheses have been put forward to explain Central Alpine rock uplift (e.g. lithospheric forcing by convergence, mantle processes, or ice melting) we show with an elastic model of lithospheric deformation, that the correlation between erosion and rock uplift rates reflects a positive feedback between denudation and the associated isostatic response to unloading. Thus, erosion does not passively respond to advection of crustal material as might be the case in actively converging orogens. Rather, we suggest that the geomorphic response of the Alpine topography to glacial and fluvial erosion and the resulting disequilibrium for modern channelized and associated hillslope processes explains much of the pattern of modern denudation and hence rock uplift. Therefore, in a non-convergent orogen such as the Central European Alps, the observed vertical rock uplift is primarily a consequence of passive unloading due to erosion.  相似文献   

6.
We present 10Be‐based basin‐averaged denudation rates for the entire western margin of the Peruvian Andes. Denudation rates range from c. 9 mm ka?1 to 190 mm ka?1 and are related neither to the subduction of the Nazca plate nor to the current seismicity along the Pacific coast and the occurrence of raised Quaternary marine terraces. Therefore, we exclude a tectonic control on denudation on a millennial time‐scale. Instead, we explain >60% of the observed denudation rates with a model where erosion rates increase either with mean basin slope angles or with mean annual water discharge. These relationships suggest a strong environmental control on denudation.  相似文献   

7.
The 9.5 km2 Illgraben catchment, located in the Rhône valley in the Central Alps of Switzerland, is one of the most active debris flow torrents in the Alps. In this paper we present sediment yield data collected in 2006 for segments where hillslopes and channels form a fully connected network and contrast these with sediment yields measured for disconnected hillslopes. The data reveal that sediment yields are 1–2 orders of magnitude larger in segments where hillslopes are connected with the channel network than on disconnected hillslopes. Support for this conclusion is provided by observations made on 1959, 1999 and 2004 aerial photographs that the vegetation cover in the disconnected segments is still intact, whereas denudation rates of several centimeters per year in the connected segments have inhibited the establishment of a stable vegetation cover. Furthermore, sediment supplied from hillslopes during the past 40 years has temporarily accumulated along the Illgraben channel, indicating that the channel aggraded over this period and has not yet recovered. An implication of this observation is that initiation of debris flows in the Illgraben catchment is limited more by the availability of intense rainfall than sediment. In contrast, on disconnected hillslopes, sediment flux does not appear to be driven by precipitation.The petrographic composition of the Illgraben fan deposits indicates two distinct sediment sources, one related to rockfall and the other to landslides and debris flows. The presence of clasts from both sources implies multiple processes of erosion, deposition, mixing and re-entrainment in the catchment before the material is exported to the Illgraben fan and to the Rhône River. In addition, delivery of large amounts of coarse-grained sediment to the Rhône causes a modification of the flow pattern from meandering or anastomosing upstream to braided downstream. Hence, the direct connectivity between hillslope and channelized processes in the Illgraben catchment causes not only rapid topographic modifications in the catchment, but also morphologic adjustment in the Rhône valley downstream.  相似文献   

8.
Climatic and tectonic controls on the relative abundance of solutes in streams draining the New Zealand Southern Alps were investigated by analyzing the elemental and Sr isotope geochemistry of stream waters, bedload sediment, and hydrothermal calcite veins. The average relative molar abundance of major cations and Si in all stream waters follows the order Ca2+ (50%) > Si (22%) > Na+ (17%) > Mg2+ (6%) > K+ (5%). For major anions, the relative molar abundance is HCO3 (89%) > SO42− (7%) > Cl (4%). Weathering reactions involving plagioclase and volumetrically small amounts of hydrothermal calcite define the ionic chemistry of stream waters, but nearly all streams have a carbonate-dominated Ca2+ and HCO3 mass-balance. Stream water Ca/Sr and 87Sr/86Sr ratios vary from 0.173 to 0.439 μmol/nmol and from 0.7078 to 0.7114, respectively. Consistent with the ionic budget, these ratios lie solely within the range of values measured for bedload carbonate (Ca/Sr = 0.178 to 0.886 μmol/nmol; 87Sr/86Sr = 0.7081 to 0.7118) and hydrothermal calcite veins (Ca/Sr = 0.491 to 3.33 μmol/nmol; 87Sr/86Sr = 0.7076 to 0.7097).Streams draining regions in the Southern Alps with high rates of physical erosion induced by rapid tectonic uplift and an extremely wet climate contain ∼10% more Ca2+ and ∼30% more Sr2+ from carbonate weathering compared to streams draining regions in drier, more stable landscapes. Similarly, streams draining glaciated watersheds contain ∼25% more Sr2+ from carbonate weathering compared to streams draining non-glaciated watersheds. The highest abundance of carbonate-derived solutes in the most physically active regions of the Southern Alps is attributed to the tectonic exhumation and mechanical denudation of metamorphic bedrock, which contains trace amounts of calcite estimated to weather ∼350 times faster than plagioclase in this environment. In contrast, regions in the Southern Alps experiencing lower rates of uplift and erosion have a greater abundance of silicate- versus carbonate-derived cations. These findings highlight a strong coupling between physical controls on landscape development and sources of solutes to stream waters. Using the Southern Alps as a model for assessing the role of active tectonics in geochemical cycles, this study suggests that rapid mountain uplift results in an enhanced influence of carbonate weathering on the dissolved ion composition delivered to seawater.  相似文献   

9.
Since 2002 the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) in Udine (Italy), the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) and the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), are collecting, analyzing, archiving and exchanging seismic data in real time, initially in the framework of the EU Interreg IIIa Italia-Austria project “Trans-national seismological networks in the South-Eastern Alps”. As outcome of the successful cooperation, in the 2013 OGS, ARSO and ZAMG decided to officially merge their seismic monitoring efforts into the “Central and Eastern European Earthquake Research Network—CE3RN”. This work reports the results of a nine-month real-time test of the earthquake early warning (EEW) algorithm probabilistic and evolutionary early warning system carried out at the CE3RN. The study allowed identifying the actions to be implemented in order to let the CE3RN become in the next future an efficient cross-border EEW system.  相似文献   

10.
This research assesses the morphological consequences of recent (post‐‘Little Ice Age’) paraglacial reworking of valley‐side sediment mantles in the European Alps. It aims to identify the extent and conditioning factors of slope adjustment at sites in the Swiss Alps, model the temporal pattern, and assess the rates of sediment reworking involved. Gully systems have cut into steep, high‐level lateral moraines, and debris cones have accumulated downslope. Debris flow is the dominant agent of sediment transfer. Factors controlling the extent of this activity include moraine slope gradient, relief and moisture availability. Gullies appear to have reached their maximum dimensions within ca. 50 yr of deglaciation, after which gully relief is reduced by removal of inter‐gully slopes and gully infilling (within 80–140 yr). On the most recently deglaciated terrain, minimum erosion rates average ca. 95 mm yr?1 since gully initiation, greatly exceeding ‘normal’ erosion rates in other environments. Mean annual accumulation of a single debris cone since ice retreat was calculated to be ca. 30 mm yr?1. Implications of these findings are applied to patterns of paraglacial sediment‐mantled slope adjustment, conceptualising paraglacial landscape response in terms of a sediment release exhaustion model, and paraglacial landform succession. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The Rodna Mountains afford the most internal structural window into the crystalline units of the Eastern Carpathians in Romania. The Rodna Mountains consist of Variscan metamorphic nappes that were restacked in the Alpine phase of Carpathian development forming the Subbucovinian and Infrabucovinian nappes. In order to evaluate age of deformation, ten samples were taken from the zone of greenschist facies mylonitic schist that marks the Alpine tectonic boundary between the Subbucovinian and Infrabucovinian nappes and 40Ar/39Ar laser single-grain ages determined for schistosity-forming muscovite. Microstructural assessment of quartz and muscovite distinguished two deformation events. Single-grain ages from the microstructurally most strongly reworked samples (four samples) give a tight clustering of ages at ca. 95 Ma. The least reworked schists have a broader clustering of ages spanning ca. 200–280 Ma with a late Permian peak and some samples showing outlier ages in the range 200–100 Ma. The relative development of the outliers, which correlates with evidence for increased microstructural reworking, is interpreted to mark progressive isotopic resetting. The ca. 95 Ma ages for the most reworked schists are estimates for the age of the Alpine nappe stacking. The ca. 200–280 Ma ages are similar to those of magmatism, metamorphism, and sedimentation thought to mark post-Variscan-pre-Alpine rifting and ocean basin formation in parts of the Alps and may be the thermal imprint of a related event in the Eastern Carpathians.  相似文献   

12.
Slope instabilities in the central Southern Alps, New Zealand, are assessed in relation to their geological and topographic distribution, with emphasis given to the spatial distribution of the most recent failures relative to zones of possible permafrost degradation and glacial recession. Five hundred nine mostly late-Pleistocene- to Holocene-aged landslides have been identified, affecting 2% of the study area. Rock avalanches were distinguished in the dataset, being the dominant failure type from Alpine slopes about and east of the Main Divide of the Alps, while other landslide types occur more frequently at lower elevations and from schist slopes closer to the Alpine Fault. The pre-1950 landslide record is incomplete, but mapped failures have prevailed from slopes facing west–northwest, suggesting a structural control on slope failure distribution. Twenty rock avalanches and large rockfalls are known to have fallen since 1950, predominating from extremely steep east–southeast facing slopes, mostly from the hanging wall of the Main Divide Fault Zone. Nineteen occurred within 300 vertical metres above or below glacial ice; 13 have source areas within 300 vertical metres of the estimated lower permafrost boundary, where degrading permafrost is expected. The prevalence of recent failures occurring from glacier-proximal slopes and from slopes near the lower permafrost limit is demonstrably higher than from other slopes about the Main Divide. Many recent failures have been smaller than those recorded pre-1950, and the influence of warming may be ephemeral and difficult to demonstrate relative to simultaneous effects of weather, erosion, seismicity, and uplift along an active plate margin.  相似文献   

13.
We explore the controls of the litho‐tectonic architecture on the erosional flux in the 370‐km2 Glogn basin (European Alps). In this basin, the bedding and schistosity of the bedrock dip parallel to the topographic slope on the NW valley flank, leading to a non‐dip slope situation on the opposite SE valley side. While the dip slope condition has promoted the occurrence of landslides (e.g. the c. 30‐km2 deep‐seated Lumnezia landslide), the opposite non‐dip slope side of the valley hosts >100‐m‐deeply incised tributary streams. 10Be concentrations of stream sediments yield catchment‐averaged denudation rates that vary between 0.27 ± 0.03 and 2.19 ± 0.37 mm a?1, while the spatially averaged denudation rate of the entire basin is 1.99 ± 0.34 mm a?1. Our 10Be‐based approach reveals that the Lumnezia landslide front contributes c. 30–65% of the entire sediment budget, although it covers <5% of the Glogn basin. This suggests a primary control of the bedrock bedding on erosion rates and processes.  相似文献   

14.
研究区主要包括北京东部的通州、平谷、顺义、燕郊、大厂和三河,位于华北沉降带北部、阴山东西向构造带南缘。该区地势总体上西北略高,东南略低,为大型缓倾斜平原,地形不仅受本区内北东向断裂的影响,还受北西向断裂的影响。资源三号卫星立体影像(ZY3)DEM和NASA航天飞机雷达地形任务(SRTM)DEM在北京地区地貌特征研究中显示出了许多优于其他DEM的优势。文章利用包括水系偏转、河长坡降指标(SL)、面积-高程积分值(HI)、等值线分级色彩显示和地形粗糙度等几种地形参数,分析了地形特征与断层构造活动性的关系。水系的右旋偏转证实了该区北东向断裂的右旋走滑活动,如夏垫断裂和其他相邻断裂。SL指数表明,河床纵剖面在横跨断层处均是陡坡;HI的高值主要集中在南口-孙河断裂与该区其他北东向断裂的交汇处,夏垫断裂的中段,以及香河县西北部,反映了该区强烈的构造活动,同时也反映出可能存在隐伏断层。另外,研究表明,面积、高程积分值的高值区与低值区相邻衔接处,往往是地震危险性较大的地方。此外,平原区相同值域的面积-高程积分所反映的构造活动强度应该与山区不同,因此地貌演化阶段划分标准也应与山区有所不同。等值线分级色彩显示对地形变化非常敏感,当与已识别的断层重叠时,大部分地形突变的地方都与断层活动有关。地形粗糙度分析显示不同断裂带的地形粗糙度与断裂活动强度呈正相关关系。  相似文献   

15.
The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10–20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.  相似文献   

16.
《Geodinamica Acta》1999,12(5):291-301
As a result of recent drillings in the Walensee Valley (eastern Switzerland) a new fades model for the Quaternary filling of Alpine valleys has been developed. A detailed lithological model and some new radiocarbon dating allowed the calculation of regional sedimentation and denudation rates and their change during the Late- and Postglacial period. It is shown that these changes follow the paraglacial sedimentation model by Church and Ryder [1]. The absolute quantification of the sediment budgets between the Last Glaciation and today points to denudation rates in the order of 1.5 mm y−1 for the catchment of the Lake of Walenstadt. This is 50 % higher than suggested from current tectonic and isostatic estimates up to now. In that case present day uplift of the Alps would not be in balance with denudation.  相似文献   

17.
Melting triggered by influx of a free aqueous fluid in the continental crust has commonly been inferred, but the source of water in such contexts remains a matter of debate. We focus on the Tertiary migmatites in the Southern Steep Belt of the Central Alps (Switzerland) to discuss the petrology, structures and geodynamic setting of water-assisted melting. These migmatites comprise various structural types (e.g. metatexites, diatexites, melt in shear zones), which reflect variable leucosome fractions. The melting event itself as well as the variable melt fractions are related to the amount of aqueous fluids. At a given P and T, melt-fractions in rocks of minimum melt composition correlate with the amount of infiltrated aqueous fluids. In more granodioritic systems the water distributes between melt and newly crystallizing hydrous phases such as amphibole, such that the melt fraction correlates with the contents of H2O, Al, and Ca in the system. Phase-equilibrium modelling indicates that the stabilization of amphibole leads to slightly lower melt fractions than in a granitic system at the same P, T and bulk water content. Phase-equilibrium models further indicate that in the Alpine migmatite belt: (1) several wt.% water (fluid:rock ratio of  1:30) are necessary to produce the inferred melt fraction; (2) the activity of H2O in the fluid is high; and (3) spatially associated metapelites are unlikely as a source for the required aqueous fluids.

We present a tectonic scenario for the southern margin of the Central Alps, to which these migmatites are confined, and we propose that water was produced from dehydration reactions in metapelites in the Southern Alps. We model fluid production rates at the time of melting and demonstrate that the resulting fluid flow pattern is mainly controlled by the differences in permeability between the fluid source region and melting region. The proposed model requires strong gradients in temperature and permeability for the two tectonic blocks. This is consistent with the scenario involving indenter tectonics at the boundary between the Central and the Southern Alps in Oligocene times.  相似文献   


18.
A study of erosion rates by in-situ 10Be concentrations in granites of Miocene high-elevation paleosurfaces in Corsica indicates maximum erosion rates between 8 and 24 mm/kyear. The regional distribution of measured erosion rates indicates that the local climatic conditions, namely precipitation, the petrographic composition of granites, and the degree of brittle deformation govern erosion rates. Chemical erosion dominates even at elevations around 2,000 m in presently subalpine climate conditions. Field evidence indicates that erosion operates by continuous dissolution and/or disintegration to grains (grusification). The erosion rates are relatively high with respect to the preservation of inferred Early Miocene landscapes. We infer temporal burial in the Middle Miocene and significantly lower erosion rates in the Neogene until ∼3 Ma to explain the preservation of paleosurfaces, in line with fission track data. Valley incision rates that are a magnitude higher than erosion rates on summit surfaces result in relief enhancement and long-term isostatic surface uplift. On the other hand, widening and deepening of valleys by cyclic glaciation progressively destroys the summit surface relics.
Wolfgang FrischEmail:
  相似文献   

19.
ABSTRACT Data are presented about modern sediment discharge of the Swiss rivers and related to the size of catchments. The information reveals that the Central Alps have experienced denudation rates of ≈0.15 mm yr−1 in the foreland, and ≈0.5 mm yr−1 in the Alpine core. Mapping, however, indicates that modern erosion only affects 30–50% of the Alpine surface, and that fluvial and associated hillslope processes have focused erosion in 50–200-m-deep valleys. These valleys are incised into the glacial surface. If this limited spatial extent of erosion is considered, then effective erosion rates are significantly higher than average denudation rates. These effective rates equal or locally exceed modern rates of rock uplift. This implies that the modification of erosional processes related to the Pleistocene/Holocene climate change has resulted in an increase in the relief at a local scale. At a drainage basin scale, however, the relief appears not to change at present.  相似文献   

20.
In this work, an integrated methodology was applied to assess the water erosion hazard in Upper Orcia Valley, an area of Southern Tuscany (Italy), greatly affected by severe denudation processes, that caused the development of widespread badlands. Prediction of areas prone to calanchi badland development was carried out by applying a susceptibility assessment method based on conditional statistical analysis, preceded by a bivariate statistical analysis aimed at selecting the most influential causal factors of erosion. Water erosion rates at badland sites were estimated by means of an empirical statistical method, implemented to evaluate the erosion intensity (Tu denudation index) and based on some geomorphic parameters as independent variables. This methodology allows associating the denudation intensity to the spatial prediction. The validation procedure, based on a random partition of calanchi badland areas, confirmed the efficiency of the spatial zonation of the erosion hazard values. Moreover, the comparison of the estimated erosion rates with the results of decadal investigations on denudation processes affecting the study area, performed by different monitoring methods, showed the effectiveness of the estimation model. These results allowed concluding that the proposed procedure represents a useful tool to be applicable for soil protection strategy planning in land management of Mediterranean areas characterized by similar morphoclimatic features, even when direct erosion rate measures are not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号