首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
The values of grains containing oil inclusions (GOI) in 120 reservoir sandstone samples from the central Junggar Basin of Northwest China were investigated. The sandstones are characterized by different types of hydrocarbon production and shows. The values range from 0.015% to 19.9%, and show a fairly good correlation with the hydrocarbon production/shows, which are qualitatively suggestive of reservoir hydrocarbon abundance and petroleum migration. Thus, it may be implied that the values can reflect hydrocarbon migration, being not controlled mainly by the other influencing factors. Further correlation between the values and the reservoir hydrocarbon production and show types indicates that the GOI method can be used in hydrocarbon migration study when the petroleum type of a reservoir is normal oil or gas alone, but it should be used with caution when light oil charges the reservoirs or a complex hydrocarbon migration event takes place. The case study in the central Junggar Basin using the method presents some new understanding on hydrocarbon migration. Thus, the method may help to solve specific petroleum geological problems, and can be treated as a routine tool in hydrocarbon migration study.  相似文献   

2.
The geochemical characteristics of crude oils and reservoir core extracts from the Kuche petroleum system are described and studied systematically by means of various geochemical techniques and methods to acquire molecular information. The results suggest crude oils from the petroleum system can be divided into two groups: marine oils and non-marine oils. The former represents the dominant oils found in the area. Tar mats were firstly discovered and determined accurately in terrestrial oil and gas reservoirs, with Lower Tertiary sandstone reservoirs in the Yaha oilfield of the Tarim Basin. However, based on the ratio of 20S/(20S 20R)C29 sterane as a maturity parameter, lacustrine oils filled into the Tertiary reservoirs in the direction toward the western part of the petroleum system. In contrast, according to the fact that methylcyclohexane indices of eastern oils are greater than those of western oils, the location in which coalgenerated oils filled into the Tertiary reservoirs lies in the eastern part of the petroleum system.  相似文献   

3.
In this study,12 crude oil samples were collected and analyzed from the Ordovician reservoir in the Halahatang Depression,Tarim Basin,China.Although the density of oil samples varies considerably,based on saturated hydrocarbon gas chromatographic(GC),saturated and aromatic hydrocarbon gas chromatographic-mass spectrometric(GC/MS) and stable carbon isotopic composition analyses,all the samples are interpreted to represent a single oil population with similar characteristics in a source bed or a source kitchen,organic facies and even in oil charge history.The co-existence of a full suite of n-alkanes and acyclic isoprenoids with UCM and 25-norhopanes in the crude oil samples indicates mixing of biodegraded oil with fresher non-biodegraded oil in the Ordovician reservoir.Moreover,according to the conversion diagram of double filling ratios for subsurface mixed crude oils,biodegraded/non-biodegraded oil ratios were determined as in the range from 58/42 to 4/96.Based on oil density and oil mix ratio,the oils can be divided into two groups:Group 1,with specific density>0.88(g/cm3) and oil mix ratio>1,occurring in the north of the Upper Ordovician Lianglitage and Sangtamu Formation pinchout lines,and Group 2,with specific density<0.88(g/cm3) and oil mix ratio<1,occurring in the south of the pinchout lines.Obviously,Group 2 oils with low densities and being dominated by non-biodegraded oils are better than Group 1 oils with respect to quality.It is suggested that more attention should be paid to the area in the south of the Upper Ordovician Lianglitage and Sangtamu Formation pinchout lines for further exploration.  相似文献   

4.
Fluid inclusions in minerals filled in pores of reservoir rocks can be used as a good indicator of pore genesis and development so as to shed light on oil generation,migration and accumulation.The relationship between pore evolution and oil generation has been established based on fluid inclusion studies on the Lower Ordovician carbonate reservoir strata in the Ordos Baisn,Northwest China.Seven stages of porosity development can be recogmized.i.e.,the penecontemporaneous,the early and middle-late diagenetic,the supergene,the early,middle and late re-burying stages.The dissolution pores an fissures formed in the supergene and middle-late reburying stage and the structural fractures formed in the late re-burying stage constitute the major traps of oil and gas.The major phase of oil migration and accumulation took place between Late Jurassic and Cretaceous,Corresponding to the middle and late re-burying stages.The generation and accumulation of oil can be closely related to Yenshanian tectonics.  相似文献   

5.
It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model, as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three end- members. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.  相似文献   

6.
As a new method, the ultraviolet spectrum technique is applied to studying the connectivity of biode-gradable heavy oil reservoirs. The similarity of crude oils can be judged according to the extinction coefficient (E) because aromatic hydrocarbons and non-hydrocarbons have conjugated bonds and obvious absorption in the ultraviolet range, and different materials have different characteristics and additives. The relationship diagram is made in terms of the extinction coefficients (E) of the samples by taking E as the Y-axis and wavelength as the X-axis. The connectivity of oil reservoirs is estimated according to the curve positions and characteristic fingerprints of the sampies. The connectivity of part of the reservoirs in the western part of the QHD32-6 oilfield was studied with this method. The results showed that the connectivity of samples from wells F7 and F8 in the Nm-2 oil reservoir zone is good, that of samples from wells F17 and F20 in the Nm-1 oil reservoir zone also is good, and that of samples from wells F17, F19, and F20 is poor.  相似文献   

7.
Based on the analysis of the hydrocarbon geochemical characteristics in the Kuqa petroleum system of the Tarim Basin, this study discusses the causes and controlling factors of the phase diversities and their differences in geochemical features. According to the characteristics and differences in oil and gas phase, the petroleum system can be divided into five categories: oil reservoir, wet gas reservoir, condensate gas-rich reservoir, condensate gas-poor reservoir and dry gas reservoir. The causes for the diversities in oil and gas phases include diversities of the sources of parent material, maturity of natural gas and the process of hydrocarbon accumulation of different hydrocarbon phases. On the whole, the Jurassic and Triassic terrestrial source rocks are the main sources for the hydrocarbon in the Kuqa Depression. The small differences in parent material may cause diversities in oil and gas amount, but the impact is small. The differences in oil and gas phase are mainly affected by maturity and the accumulation process, which closely relates with each other. Oil and gas at different thermal evolution stage can be captured in different accumulation process.  相似文献   

8.
Thickened heavy oils in China are genetically characteristic of continenta .As to their physico-chemical properties,these oils are very high in viscosity and low in sulphur and trace element con-tents.In the group constituents,the concentrations of non-hydrocarbons and asphaltene are very high but those of saturated hydrocarbons and aromatics are very low.The gas chromatograms of alkanes show that these heavy oils have high abundances of iso-alkanes and cyclic hydrocarbons.In all the steroids and terpenoids ,bicyclic sesquiterpenoids,tricyclic diterpenoids,re-arranged steranes and gammacerane are strongly bildegradation-resistent.The formation of heavy oil reservoirs is controlled mainly by late basin ascendance,biodegradation,flushing by meteoric water and oxidation in the oil-bearing formations.Ac-cording to their formation mechanisms,heavy oil reservoirs can be classified as four categories:weathering and denudation,marginal oxidation,secondary migration and thickening of bottom water .Spacially,heavy thick oil reservoirs are distributed regularly:they usually show some paragenetic relationships with normal oil reservoirs.Heavy oil reservoirs often occur in structural highs or in overlying younger strata.Their burial depth is about 200m.Horizontally,most of them are distributed on the margins of basins or depressions.  相似文献   

9.
<正>So far there has been no common opinion on oil source of the Chepaizi swell in the Junggar Basin.Therefore,it is difficult to determine the pathway system and trend of hydrocarbon migration, and this resulted in difficulties in study of oil-gas accumulation patterns.In this paper,study of nitrogen compounds distribution in oils from Chepaizi was carried out in order to classify source rocks of oils stored in different reservoirs in the study area.Then,migration characteristics of oils from the same source were investigated by using nitrogen compounds parameters.The results of nitrogen compounds in a group of oil/oil sand samples from the same source indicate that the oils trapped in the Chepaizi swell experienced an obvious vertical migration.With increasing migration distance,amounts and indices of carbazoles have a regular changing pattern(in a fine linear relationship).By using nitrogen compounds techniques,the analyzed oil/oil sand samples of Chepaizi can be classified into two groups.One is the samples stored in reservoir beds of the Cretaceous and Tertiary,and these oils came from mainly Jurassic source rock with a small amount of Cretaceous rock;the other is those stored in the Jurassic,Permian and Carboniferous beds,and they originated from the Permian source.In addition,a sample of oil from an upper Jurassic reservoir(Well Ka 6), which was generated from Jurassic coal source rock,has a totally different nitrogen compound distribution from those of the above-mentioned two groups of samples,which were generated from mudstone sources.Because of influence from fractionation of oil migration,amounts and ratios of nitrogen compounds with different structures and polarities change regularly with increasing migrating distance,and as a result the samples with the same source follow a good linear relationship in content and ratio,while the oil samples of different sources have obviously different nitrogen compound distribution owing to different organic matter types of their source rocks.These conclusions of oil source study are identical with those obtained by other geochemical bio-markers. Therefore,nitrogen compounds are of great significance in oil type classification and oil/source correlation.  相似文献   

10.
In the lower parts of oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation are oil-bearing layers newly found in oil exploration in the Ordos Basin.Based on GC,GC-MS analyses of saturated hydrocarbons from crude oils and source rocks,reservoir fluid inclusions and BasinMod,the origin of crude oils,accumulation period and accumulation models are discussed in combination with other petroleum geology data in this paper.The result shows that(1) there are two different types of crude oils in oil reservoir Chang 9 in the Longdong and Jiyuan regions:crude oils of typeⅠ(Well D86,Well A44,Well A75,Well B227,Well X62 and Well Z150) are mainly de-rived from the Chang 7 source rocks(including mudstones and shales) and distributed in the Jiyuan and Longdong regions;those of typeⅡ(Well Z14 and Well Y427),are distributed in the Longdong region,which are derived from the Chang 9 source rocks.Crude oils from oil reservoir Chang 10 in the Shanbei region are mainly derived from the Chang-9 source rocks;(2) there are two phases of hydrocarbon filling in oil reservoir Chang 9 in the Jiyuan and Longdong regions and oil reservoir Chang 10 in the Shanbei region:The first phase started at the early stage of J2z.The process of hydrocarbon filling was discontinuous in the Late Jurassic,because of the tectonic-thermal event in the Ordos Basin.The second phase was the main accumulation period,and hydrocarbons began to accumulate from the late stage of J2a to the middle-late of K1,mainly at the middle-late stage of K1;(3) there exist two types of accu-mulation models in oil reservoirs Chang 9 and Chang 10 of the Yanchang Formation:source rocks of the reservoirs in oil reservoir Chang 9 in the Jiyuan region and oil reservoir Chang 10 in the Shanbei region,the mixed type of reservoirs on the lateral side of source rocks and source rocks of the reservoirs in oil reservoir Chang 9 in the Long-dong region.  相似文献   

11.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

12.
The free, adsorbed and inclusion oils were recovered by sequential extraction from eleven oil and tar containing reservoir rocks in the Tazhong Uplift of Tarim Basin. The results of gas chromatography (GC) and GC–mass spectrometry analyses of these oil components and seven crude oils collected from this region reveal multiple oil charges derived from different source rocks for these oil reservoirs. The initially charged oils show strong predominance of even over odd n-alkanes in the range n-C12 to n-C20 and have ordinary maturities, while the later charged oils do not exhibit any predominance of n-alkanes and have high maturities. The adsorbed and inclusion oils of the reservoir rocks generally have high relative concentrations of gammacerane and C28 steranes, similar to the Cambrian-Lower Ordovician source rocks. In contrast, the free oils of these reservoir rocks generally have low relative concentrations of gammacerane and C28 steranes, similar to the Middle-Upper Ordovician source rocks. There are two interpretations of this result: (1) the initially charged oils are derived from the Cambrian-Lower Ordovician source rocks while the later charged oils are derived from the Middle-Upper Ordovician source rocks; and (2) both the initially and later charged oils are mainly derived from the Cambrian-Lower Ordovician source rocks but the later charged oils are contaminated by the oil components from the Silurian tar sandstones and the Middle-Upper Ordovician source rocks.  相似文献   

13.
《Applied Geochemistry》2005,20(7):1427-1444
Very high S oils (up to 14.7%) with H2S contents of up to 92% in the associated gas have been found in the Tertiary in the Jinxian Sag, Bohai Bay Basin, PR China. Several oil samples were analyzed for C and S stable isotopes and biomarkers to try to understand the origin of these unusual oil samples.The high S oils occur in relatively shallow reservoirs in the northern part of the Jinxian Sag in anhydrite-rich reservoirs, and are characteristic of oils derived from S-rich source rocks deposited in an enclosed and productive stratified hypersaline water body. In contrast, low S oils (as low as 0.03%) in the southern part of the Jinxian Sag occur in Tertiary lacustrine reservoirs with minimal anhydrite. These southern oils were probably derived from less S-rich source rocks deposited under a relatively open and freshwater to brackish lake environment that had larger amounts of higher plant inputs.The extremely high S oil samples (>10%) underwent biodegradation of normal alkanes resulting in a degree of concentration of S in the residual petroleum, although isoprenoid alkanes remain showing that biodegradation was not extreme. Interestingly, the high S oils occur in H2S-rich reservoirs (H2S up to 92% by volume) where the H2S was derived from bacterial SO4 reduction, most likely in the source rock prior to migration. Three oils in the Jinxian Sag have δ34S values from +0.3‰ to +16.2‰ and the oil with the highest S content shows the lightest δ34S value. This δ34S value for that oil is close to the δ34S value for H2S (∼0‰). It is possible that H2S was incorporated into functionalized compounds within the residual petroleum during biodegradation at depth in the reservoir thus accounting for the very high concentrations of S in petroleum.  相似文献   

14.
In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, China using chemical fingerprinting, isotopic analyzes and molecular and biological methods. The reservoir is highly methanogenic despite chemical indications of advanced oil degradation, such as depletion of n-alkanes, alkylbenzenes and light polycyclic aromatic hydrocarbon (PAH) fractions or changes in the distribution of several alkylated polycyclic aromatic hydrocarbons. The degree of degradation strongly varied between different parts of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. Geochemical data from oil, water and gas samples taken from the reservoir are consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation. Microcosms were inoculated with production and injection waters in order to characterize these processes in vitro. Subsequent degradation experiments revealed that autochthonous microbiota are capable of producing methane from 13C labelled n-hexadecane or 2-methylnaphthalene and suggest that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial communities from produced oil–water samples were composed of high numbers of microorganisms (on the order to 107), including methane producing Archaea within the same order of magnitude. In summary, the investigated sections of the Dagang reservoir may have significant potential for testing the viability of in situ conversion of oil to methane as an enhanced recovery method and biodegradation of the aromatic fractions of the oil may be an important methane source.  相似文献   

15.
CO2 pilot injection studies, with site-specific geologic assessment and engineering reservoir design, can be instrumental for demonstrating both incremental enhanced oil recovery and permanent geologic storage of greenhouse gases. The purpose of this paper is to present the geologic and reservoir analyses in support of a field pilot test that will evaluate the technical and economic feasibility of commercial-scale CO2-enhanced oil recovery to increase oil recovery and extend the productive life of the Citronelle Oil Field, the largest conventional oil field in Alabama (SE USA). Screening of reservoir depth, oil gravity, reservoir pressure, reservoir temperature, and oil composition indicates that the Cretaceous-age Donovan sand, which has produced more than 169 × 106 bbl in Citronelle Oil Field, is amenable to miscible CO2 flooding. The project team has selected an 81 ha (200 ac) 5-spot test site with one central gas injector, two producers, and two initially temporarily abandoned production wells that are now in production. Injection is planned in two separate phases, each consisting of 6,804 t (7,500 short tons) of food-grade CO2. The Citronelle Unit B-19-10 #2 well (Permit No. 3232) is the CO2 injector for the first injection test. The 14-1 and 16-2 sands of the upper Donovan are the target zones. These sandstone units consist of fine to medium-grained sandstone that is enveloped by variegated mudstone. Both of these sandstone units were selected based on the distribution of perforated zones in the test pattern, production history, and the ability to correlate individual sandstone units in geophysical well logs. The pilot injections will evaluate the applicability of tertiary oil recovery to Citronelle Field and will provide a large volume of information on the pressure response of the reservoirs, the mobility of fluids, time to breakthrough, and CO2 sweep efficiency. The results of the pilot injections will aid in the formulation of commercial-scale reservoir management strategies that can be applied to Citronelle Field and other geologically heterogeneous oil fields and the design of similar pilot injection projects.  相似文献   

16.
During 2003–2006, a pilot project of alternating water and CO2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivani? Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m3 of oil and 2.26 × 106 m3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivani? Field in order to calculate volumes available for CO2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO2 expressed at standard condition which can be injected in the main reservoirs of the Ivani? Field at near miscible conditions is above 15.5 billion m3.  相似文献   

17.
尕斯库勒油田N_1-N_2~1油藏经过多年开采已进入中等含水阶段,寻找剩余油是油藏稳产增产的首要任务。根据尕斯库勒油田N_1-N_2~1油藏的取芯、测井、生产动态等多种资料,采用"单因素解析多因素耦合"的研究思路,在深入解析沉积微相、储层构型、储层非均质性、微构造、井网布置、注采关系等单个因素对剩余油的控制机理后,针对地下不同的情况,筛选出相应的优势控制因素,从多因素耦合的角度对尕斯库勒油田N_1-N_2~1油藏的剩余油分布进行了研究。总结出3种由多种因素共同控制的剩余油分布模式,对进入高含水期油田剩余油的开采有重要意义。构造起伏明显时,沉积微相-微构造-封闭断层-注采关系的控油模式是主要的剩余油分布模式,储层构型-平面非均质性-井网部署的控油模式则适用于构造平缓的部位,而储层构型-夹层-韵律性-注采关系的控油模式是纵向上剩余油分布的主要模式。  相似文献   

18.
Thirty-one crude oils and 15 source rocks were selected for molecular geochemical and isotopic analyses in order to establish the genetic relationships between discovered oils and petroleum source rocks in the Weixinan Sub-basin, Beibuwan Basin, South China Sea. Three groups of oils were recognized. Group I oils are only found in the upper section of the Liusagang Formation, with a moderate abundance of C30 4-methylsteranes, low oleanane contents and lighter δ13C values, showing a close relation to the shale occurring in the upper section of the Liusagang Formation. Group II is represented by the majority of the discoveries and is distributed in multi-sets of reservoirs having different ages. The oils are characterized by a high abundance of C30 4-methylsteranes, low to moderate abundance of oleanane and heavy δ13C values, and shows a good correlation with the lacustrine shale and oil shale in the middle section of the Liusagang Formation. Group III oils occurred in the lower section of the Liusagang Formation. The oils have a lower concentration of C30 4-methylsteranes, relatively high abundance of oleananes and their δ13C values are intermediate. Oils of this group correlated well with the shallow lake-delta mudstone of the lower section of Liusagang Formation. These oil-source genetic relationships suggest a strong source facies control on the geographic distribution of oil groups within the Weixinan Sub-basin. The geochemical data indicate shale in the middle section of the Liusagang Formation has an excellent oil generation potential and the lower and upper sections contain dark shale and mudstone with good to fair oil potential. Future exploration or assessment of petroleum potential of the sub-basin could be improved by considering the proposed genetic relationship between the oil types and source rocks, as well as their distribution.  相似文献   

19.
The paper describes Lower Jurassic (horizons J16 and J15) and Achimovka (Neocomian clinoforms) reservoirs in the area of the Nyurol’ka megadepression and its framing (42,000 km2). The total thicknesses of seven Achimovka sedimentary cycles are mapped. The thermal history of the Togur and Bazhenov parental sediments in the sections of 39 deep wells is reconstructed by paleotemperature modeling. The geotemperature criterion is used to identify paleosources of oil generation, starting from the Jurassic. The distribution of the relative density of the resources of the generated Togur and Bazhenov oils is estimated and shown on sketch maps. The Lower Jurassic reservoir is divided into zones depending on the distribution of the relative density of the Togur oil resources, and the Achimovka reservoir, of the Bazhenov oil resources. The priority oil search zones are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号