首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Lalibela is a medieval settlement in Northern Ethiopia famous for its 11 beautifully carved rock hewn churches, registered as World Heritage Site in 1978. The rock hewn churches are grouped into three based on their proximity: the Bete Medhane Alem (Church of the Holy Saviour), Bete Gabriel–Rufael (Church of St. Gabriel–Rafael) and Bete Giorgis (Church of St. George) groups. The churches are carved out of a single, massive scoriaceous basalt hill which was deposited along an East–West extending palaeovalley in the Oligo-Miocene Trap basalt of the northwestern Ethiopian plateau.The Rock Mass Rating (RMR) classification scheme was used to classify the rock mass (assuming each church as a separate rock mass) based on their uniaxial compressive strength and the spacing and conditions of discontinuities. Though most of the churches are hewn from medium to high strength rock mass, discontinuities make them vulnerable to other deteriorating agents mainly weathering, and water infiltration. Most of the rock hewn churches are affected by pre-carving cooling joints and bedding plane discontinuities, and by mostly but not necessarily post-carving tectonic and seismic induced cracks and fractures. Material loss due to deep weathering triggered by rain water infiltration and uncontrolled groundwater seepage affects most of the churches, particularly the Bete Merqorios (Church of St. Mark) and Bete Aba Libanos (Church of Father Libanos) churches. The scoriaceous basalt which is porous and permeable allows easy passage of water while the underlying basalt is impermeable, increasing the residence time of water in the porous material, causing deep weathering and subsequent loss of material in some of the churches and adjoining courtyards.  相似文献   

2.
There is a tank hewn into coastal Pleistocene limestone near Diu city on the Saurashtra Peninsula of western India. Site survey and a review of similar structures worldwide provide evidence that this tank could have been used for holding fish or Murex snails. The approximately 5 × 5 m tank is connected to the sea by a 1‐m‐deep canal; today it would be impossible to use the tank, given that not even the high spring tides can fill it. It is suggested that the Diu coast was uplifted by ∼0.5 m after the tank was hewn in the coastal platform. Since that time, the carved surfaces have been modified by coastal karst dissolution and have developed deep gouge marks. Uplift of the Diu coast raises the possibility of a major seismic event in Diu during the latter part of the last millennium.  相似文献   

3.
The Lalibela rock-hewn churches are one of the most important religious pilgrimage sites in Ethiopia. These churches are carved from the scoriaceous basalt rock substrate, which has been exposed to attack by biological agents with significant loss of surface material. Particularly, the widespread growth of lichens and other microorganisms on the carved surfaces of the churches has proven to represent a substantial threat for the preservation of the site. In this study, laboratory tests have been conducted to assess the feasibility of using laser technology as an efficient cleaning method of biological patina from polymineralic stone substrates. Multi-analytical techniques were applied for the characterization of the stone samples collected from two of the Lalibela churches: Bete Giyorgis and Bete Amanuel. Stone samples artificially inoculated with bacteria, yeast, fungi isolates, and lichen-encrusted samples were laser cleaned using UV and IR laser wavelengths. The high content of Fe and Ti oxides and the high porosity have made the stone surfaces easily susceptible to low-energy laser treatment. Results indicate that laser cleaning can be applied to polymineralic lithotypes and UV irradiation can successfully remove lichen colonies. Further studies need to be conducted to optimize the laser procedure in polymineralic, high porosity stones.  相似文献   

4.
This article deals with a geological investigation carried out as a fundamental part of the conservation and static restoration of several antique churches excavated in andesitic tuff in the Göreme valley and adjacent areas of Cappadocia in Central Anatolia, Turkey. Two stages have been completed already, in 1982 and 1985, respectively, and the work is still in progress. Seismicity is not regarded as a structural hazard, but the geological history includes a series of volcanic episodes since the Oligocene (about 38 million years ago), which persisted into fairly recent times and laid down a great thickness of tuff rock. Erosion sculptured this tuff preferentially because of irregular harder, basaltic layers, which later capped rock pinnacles, the so-called peribacalars, in which churches were hewn over a thousand years ago. Because the host rock is heavily fissured, precipitation has entered and has damaged many mural paintings. These are also subject to vandalism, and efforts have been made to restore them by the usual conservation intervention. However, grouting is necessary and must take into account the porosity of the tuff, which also permits capillary rise from crypts. Sometimes, during wet episodes, water flushes into these and scours the interior walls as well. The basic problem remains geological, and the contribution of the earth sciences is very important. Thus, an engineering geology study has determined that the tuff rock is suitable both for building retaining walls and acting as a constituent in cement grout. It is expected that the UNESCO/ICCROM program to save the churches will be completed successfully within the next five years or so.  相似文献   

5.
Trace fossils are described here from the Adigrat Sandstone formation of hitherto uncertain Palaeozoic-Mesozoic age in south-central Eritrea. The formation is subdivided into a lower unit, the Adi MaEkheno Member, and an upper informal unit, Member 2. The formation was deposited on the locally mudcracked top of the glacigenic Edaga Arbi Beds, suggesting that these two rock units were formed in a very short time interval. The Adi MaEkheno Member and the lower part of Member 2 contain trace fossils Arthrophycus alleghaniensis (Harlan), Arthrophycus ?brongniartii (Harlan), Didymaulichnus lyelli (Rouault), Palaeophycus tubularis Hall, Taenidium isp., thin winding ridges, winding ridges and furrows, simple cylinders, and ‘stellate’ forms. A. alleghaniensis is distinctively of Ordovician–Silurian (?Early Devonian) age. The trace fossil association belongs to the Cruziana ichnofacies that indicates a shallow marine environment between the normal and storm wave bases. The trace fossil data and stratigraphic relationships indicate that the Adigrat Sandstone formation and the Edaga Arbi Beds in Eritrea are Ordovician–Silurian in age. The Edaga Arbi Beds are correlated with other Upper Ordovician (Hirnantian) glacial units in northern Africa and the Arabian Peninsula, lending these beds the status of a marker unit in the Lower Palaeozoic stratigraphy of the Horn of Africa. The Jurassic “Adigrat Sandstone” in central-west and eastern Ethiopia cannot be correlated with the Adigrat Sandstone formation in its type area and in Eritrea.  相似文献   

6.
Large bodies of fluidized sandstone occur in the Jurassic Entrada, Carmel, Page and Navajo Formations at several locations in south‐central Utah. They are most abundant in the Entrada Sandstone, where they commonly occur in clusters, have a cylindrical form and have a sharp contact with their cross‐bedded host rock. These clastic pipes are as wide as 75 m and have exposed heights of as much as 100 m. Some of the Entrada pipes extend well into the underlying Carmel redbeds. Other clastic pipes in the Entrada Sandstone are less deformed and display various degrees of brittle‐to‐hydroplastic deformation and liquefaction. Clastic pipes in the Page and Navajo Sandstones are less common, but are similar in size and form to those in the Entrada and Carmel, and probably have a similar origin. Some massive sandstone bodies are irregular in form and have tongue‐like projections into the host rock, implying forcible injection of fluidized sand. Several pipe–host contacts in the Entrada Sandstone display small‐scale ring faults. Where relative displacement can be clearly demonstrated, pipe sandstones are invariably down‐faulted, locally as much as 5 m. At two sites, Carmel host rock is upwarped around the Entrada pipes. Stratified and cross‐bedded breccia blocks occur in many Entrada pipes, and preliminary petrographic analysis indicates that at least some of these breccia blocks are derived from the host rock. Homogeneous pipe sandstones are also petrographically similar to their Entrada host rock, suggesting that some pipes originate through fluidization of the fine‐grained Entrada. Fluidization of the Entrada must have occurred in a water‐saturated environment during early diagenesis but before complete lithification, most probably under considerable porewater pressure. Although there are no known modern analogues to these huge masses of structureless sandstone, they may have a small‐scale modern counterpart in earthquake‐induced sandblows. These features were most probably caused by large‐magnitude seismic events during the Middle Jurassic, although other possibilities cannot be ruled out at this point.  相似文献   

7.
K–Ar dating was applied on authigenic potassic minerals which are abundant in sandstones from the south of the Sanfranciscana Basin, Western Minas Gerais State, central Brazil. The Quintinos Member fluvial sandstones (Três Barras Formation, Areado Group) contain significant amounts of authigenic K‐feldspar as microcrystals of adularia and sanidine habits. The ages of these microcrystals cluster into three groups: 106.1 ± 2.2, 89.9 ± 1.9 and 88.8 ± 1.8 Ma (from Albian to Coniacian). The older age of 106.1 ± 2.2 Ma was obtained from the coarse fraction analysed (10–20 µm) that can contain a mixture of detrital potassic minerals (K‐feldspar, muscovite, biotite and illite) and different authigenesis of K‐feldspar (overgrowths and microcrystals). Thus, only the younger ages were interpreted as precipitation of K‐feldspar microcrystals during the Late Cretaceous into the Quintinos Member sandstones. Moreover, these ages can document the formation of microcrystals within a few million years after deposition of the sandstones. The ages of authigenic illite from the Capacete Formation epiclastic sandstones (Mata da Corda Group) range from 88.5 ± 1.9 to 71.5 ± 1.9 Ma (Coniacian–Campanian). These results suggest the timing of the illitization event in these sandstones as well as a synchrony with K‐feldspar authigenesis in the Quintinos Member sandstones. These results are well constrained and are in agreement with stratigraphic, biostratigraphic and radiometric ages previously reported for the Sanfranciscana Basin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The mountains in the eastern region of southern Africa are of significant regional importance, providing for a diverse range of land use including conservation, tourism and subsistence agriculture. The higher regions are comprised of flood basalts and are immediately underlain by predominantly aeolian-origin sandstones. Our understanding of the weathering of these basalts and sandstones is reviewed here, with particular focus on the insights gained from the Lesotho Highlands Water Project and an ongoing study into the deterioration of rock art. While the chemical weathering attributes of the basalts have been substantially investigated, it is evident that the environmental surface conditions of rock moisture and temperature, as affecting weathering processes, remain largely unknown. Within the sandstones, studies pertaining to rock art deterioration present insights into the potential surface weathering processes and highlight the need for detailed field monitoring. Outside of these site-specific studies, however, little is understood of how weathering impacts on landscape development; notably absent, are detail on weathering rates, and potential effects of biological weathering. Some palaeoenvironmental inferences have also been made from weathering products, both within the basalts and the sandstones, but aspects of these remain controversial and further detailed research can still be undertaken.  相似文献   

9.
The mountains in the eastern region of southern Africa are of significant regional importance, providing for a diverse range of land use including conservation, tourism and subsistence agriculture. The higher regions are comprised of flood basalts and are immediately underlain by predominantly aeolian-origin sandstones. Our understanding of the weathering of these basalts and sandstones is reviewed here, with particular focus on the insights gained from the Lesotho Highlands Water Project and an ongoing study into the deterioration of rock art. While the chemical weathering attributes of the basalts have been substantially investigated, it is evident that the environmental surface conditions of rock moisture and temperature, as affecting weathering processes, remain largely unknown. Within the sandstones, studies pertaining to rock art deterioration present insights into the potential surface weathering processes and highlight the need for detailed field monitoring. Outside of these site-specific studies, however, little is understood of how weathering impacts on landscape development; notably absent, are detail on weathering rates, and potential effects of biological weathering. Some palaeoenvironmental inferences have also been made from weathering products, both within the basalts and the sandstones, but aspects of these remain controversial and further detailed research can still be undertaken.  相似文献   

10.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

11.
Detrital glaucony in the Palaeogene glauconitic sandstones in Siri Canyon, Danish North Sea, has been analysed from 15 exploration wells by X‐ray diffraction, electron microprobe and scanning electron microscopy. These sandstones consist of mixed‐layer illite/smectite and have a large variability in chemical composition and structure. In the most shallow wells (ca 1700 m), the glaucony is rich in Fe and consists of mixed‐layer illite/smectite with random‐interstratification (R = 0). In the depth interval from 1700 to 2000 m, the composition changes as Si is incorporated. The structure changes to ordered R = 1. Further increase in burial leads to the loss of Fe. Ordered R = 3 mixed‐layer illite/smectite is recognized from burial depths of 2200 m. The proportion of illite in illite/smectite mixed layers increases only slightly with depth and temperature. Although the structural changes generally are associated with chemical changes, they can also take place isochemically when the detrital glaucony is tightly embedded in earlier cement, which prevented chemical exchange. The glaucony transformation in the Siri Canyon sandstones partly reflects a supply of Si and partly significant loss of Fe. Thus, the glaucony transformation relates to the general diagenesis of the host sandstone. These sandstones are cemented by microquartz at an early stage, followed by precipitation of Fe‐rich grain‐coating berthierine or chlorite.  相似文献   

12.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes.  相似文献   

13.
Mineralogical and geochemical variations in ten rock surface crusts are described from a large rock shelter known as Carpenter's Gap 1 in the southern Kimberley, formed at the junction between a sandstone floor and an overlying limestone roof. The finely laminated crusts, containing quartz, clays, oxalate and phosphate minerals, and sulfate salts (bassanite, gypsum, epsomite), formed over quartz‐rich sandstones. Mineralogical analyses of crusts, determined by X‐ray diffraction, and major element geochemical trends, in the form of element maps of cross sections, show a complex distribution of hemi‐, mono‐, and dihydrated sulfate and oxalate minerals vertically and laterally within the shelter. These mineralogical changes have occurred under fluctuating moisture and temperature regimes, which follow a general drying trend spatially with distance from the back wall and temporally over a period of about 20,000 years. Documenting these mineralogical changes is a first step in understanding the nature of microclimatic controls on the formation of rock surface coatings in shelters and their implications for palaeoenvironmental reconstructions and for dating engravings covered by these crusts. © 2001 John Wiley & Sons, Inc.  相似文献   

14.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

15.
With the aim of better understanding the tight gas reservoirs in the Zizhou area of east Ordos Basin, a total of222 samples were collected from 50 wells for a series of experiments. In this study, three pore-throat combination types in sandstones were revealed and confirmed to play a controlling role in the distribution of throat size and the characteristics of gas-water relative permeability. The type-Ⅰ sandstones are dominated by intercrystalline micropores connected by cluster throats, of which the distribution curves of throat size are narrow and have a strong single peak(peak ratio 30%). The pores in the type-Ⅱ sandstones dominantly consist of secondary dissolution pores and intercrystalline micropores, and throats mainly occur as slice-shaped throats along cleavages between rigid grain margins and cluster throats in clay cement.The distribution curves of throat size for the type-Ⅱ sandstones show a bimodal distribution with a substantial low-value region between the peaks(peak ratio 15%). Primary intergranular pores and secondary intergranular pores are mainly found in type-Ⅲ samples, which are connected by various throats. The throat size distribution curves of type-Ⅲ sandstones show a nearly normal distribution with low kurtosis(peak ratio 10%), and the micro-scale throat radii(0.5 μm) constitute a large proportion. From type-Ⅰ to type-Ⅲ sandstones, the irreducible water saturation(Swo) decreased; furthermore, the slope of the curves of Krw/Krg in two-phase saturation zone decreased and the two-phase saturation zone increased,indicating that the gas relative flow ability increased. Variations of the permeability exist in sandstones with different porethroat combination types, which indicate the type-Ⅲ sandstones are better reservoirs, followed by type-Ⅱ sandstones and type-Ⅰ sandstones. As an important factor affecting the reservoir quality, the pore-throat combination type in sandstones is the cumulative expression of lithology and diagenetic modifications with strong heterogeneity.  相似文献   

16.
In the framework of the German R&D joint project CLEAN (CO2 large-scale enhanced gas recovery in the Altmark natural gas field), Rotliegend reservoir sandstones of the Altensalzwedel block in the Altmark area (Saxony-Anhalt, central Germany) have been studied to characterise litho- and diagenetic facies, mineral content, geochemical composition, and petrophysical properties. These sands have been deposited in a playa environment dominated by aeolian dunes, dry to wet sand flats and fluvial channel fills. The sediments exhibit distinct mineralogical, geochemical, and petrophysical features related to litho- and diagenetic facies types. In sandstones of the damp to wet sandflats, their pristine red colours are preserved and porosity and permeability are only low. Rocks of the aeolian environment and most of the channel fill deposits are preferentially bleached and exhibit moderate to high porosity and permeability. Although geochemical element whole rock content in these rocks is very similar, element correlations are different. Variations in porosity and permeability are mainly due to calcite and anhydrite dissolution and differences in clay coatings with Fe-bearing illitic-chloritic composition exposed to the pore space. Moreover, mineral dissolution patterns as well as compositions (of clays and carbonate) and morphotypes of authigenic minerals (chlorite, illite) are different in red and bleached rocks. Comparison of the geochemical composition and mineralogical features of diagenetically altered sandstones and samples exposed to CO2-bearing fluids in laboratory batch experiments exhibit similar character. Experiments prove an increase in wettability and water binding capacity during CO2 impact.  相似文献   

17.
Geochemical analysis of sandstones from the Sardar Formation (from two stratigraphic successions) in east-central Iran were used for identification of geochemical characterization of sandstones, provenance and tectonic setting. Sandstones in the two lithostratigraphic successions have similar chemical compositions suggesting a common provenance. Bulk-rock geochemistry analysis of Carboniferous sandstones from Sardar Formation indicates that they are mainly quartz dominated and are classified as quartzarenites, sublitharenites and subarkoses, derived from acid igneous to intermediate igneous rocks. Discrimination function analysis indicates that the sandstones of Sardar Formation were derived from quartzose sedimentary provenance in a recycled orogenic setting. Also, major and trace elements in sandstones of Sardar Formation (e.g., K2O/Na2O vs. SiO2) indicate deposition in a stable passive continental margin (PM). Chemical index of alteration (CIA) for these rocks (> 65%) suggests a moderate to relatively high degree of weathering in the source area.  相似文献   

18.
The discovery of Permian, Mesozoic and Palaeocene palynomorphs from the Nindam forearc basin, exposed along the Indus Suture Zone in Ladakh, is reported. The palynomorphs are from volcanogenic sandstones and are poorly preserved, distorted and show the effects of abrasion (striation marks). The frequent occurrence of Proxapertites indicates the assemblage is at least Palaeocene in age. The Palaeocene palynomorphs and sediments were transported to the Nindam trough from nearby elevated landward regions (islands). These Palaeocene provenance areas were characterized by an estuarine, nearshore, tropical, warm‐humid environment and were situated at equatorial palaeolatitudes. However, the occurrence of Permian and Mesozoic palynomorphs in the assemblage indicates that the Late Palaeozoic and Mesozoic Tethyan sedimentary rocks exposed along the northern margin of the Indian plate were redeposited into the tectonically active Cretaceous–Palaeocene trench–subduction complex that existed between the Indian and the Asian plates until the collision took place at ~50–60 Ma.  相似文献   

19.
川东北元坝地区须家河组石英砂岩沉积与储层特征   总被引:1,自引:0,他引:1  
在川东北元坝及周边地区首次发现纯净的石英砂岩沉积,石英砂岩厚度10~15 m左右。研究表明,石英砂岩主要以夹层形式出现在须一、二段,但沉积环境相当特殊,主要为海泛或湖泛早期沉积的滩坝砂体,不属于须家河组广泛发育的三角洲沉积体系,石英砂体呈近东西向展布,明显受到米仓山-大巴山前陆前渊带的控制。石英砂岩以粉-细砂为主,分选好,磨圆度高,杂基含量低,具有较高的成熟度,与其它地区不同,研究区石英砂岩具有良好的储集性能,其主要原因是由于石英砂岩中石英颗粒内具有高密度原生微裂缝,这些原生裂缝在沉积后成岩过程中可能闭合,但在后期的构造挤压背景下石英砂岩的脆性特性及破碎颗粒容易导致大量裂缝发育,裂缝的发育同时促进原生裂缝充填物和粒间填屑物的溶蚀,形成以裂缝为主的孔隙性储层。在研究区具有裂缝的石英颗粒并不局限在石英砂岩,我们推测具有裂缝的石英与物源有关。  相似文献   

20.
ERNESTO SCHWARZ 《Sedimentology》2012,59(5):1478-1508
The interpretation of sharp‐based shallow‐marine sandstone bodies encased in offshore mudstones, particularly transgressive units, has been a subject of recent debate. This contribution provides a multiple‐dataset approach and new identification criteria which could help in the recognition of transgressive offshore sandstone bodies worldwide. This study integrates sedimentology, ichnology, taphonomy and palaeoecology of Mulichinco Formation strata in the central Neuquén Basin (Argentina) in order to describe and interpret sharp‐based sandstone bodies developed in ramp‐type marine settings. These bodies are sandwiched between finer‐grained siliciclastics beneath and thin carbonates above. The underlying sediments comprise progradational successions from offshore mudstones to offshore transition muddy sandstones, grading occasionally into lower shoreface sandstones. The surfaces capping the regressive siliciclastics are flat and regionally extensive, and are demarcated by skeletal concentrations and a Glossifungites suite; they are also marked by sandstone rip‐up clasts, with encrustations and borings on all sides. These surfaces are interpreted as composite discontinuities, cut during a relative sea‐level fall and remodelled during the initial transgression. The overlying transgressive sandstone bodies are 3 to 7 m thick, >4 km long and about three times longer than wide; they are composed of fine‐grained sandstones with little lateral change in grain size. Cross‐stratification and/or cross‐lamination are common, typically with smaller‐scale structures and finer grain size towards the top. Large‐scale, low‐angle (5° to 8°) inclined stratification is also common, dipping at ca 30° with respect to body elongation and dominant currents. These sandstone bodies are interpreted as offshore sand ridges, probably developed under the influence of tidal currents. Intense burrowing is typical at the top of each unit, suggesting an abandonment stage. Final deactivation favoured colonization by epibenthic‐dominated communities and the formation of skeletal‐rich limestones during the latest transgressive conditions. As partial reworking of pre‐existing ridges occurred during this stage, the Mulichinco sandstone bodies are considered the remnants of transgressive offshore sand units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号