首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了研究班公湖-怒江缝合带的壳幔电性结构及构造特征,并为其俯冲极性提供电性约束,对青藏高原中部申扎-双湖大地电磁测深剖面进行全面数据处理分析,获得了可靠的二维电性结构模型,研究表明:沿剖面上地壳分布的是规模不等的高阻体,底面埋深在10~25 km变化,高阻层之下发现由不连续的高导体构成的中下地壳高导层.通过对电性结构的分析,认为班公湖-怒江特提斯洋的俯冲消亡极性可能是双向的,随后拉萨-羌塘地体碰撞带处的上地壳高阻体发生拆沉,以上两次动力学事件可能共同作用于缝合带处的壳幔高导体,同时北拉萨地体的壳幔高导体还可能体现了构造作用、岩浆活动和成矿作用之间的关系.  相似文献   

2.
班公湖—怒江缝合带作为青藏高原拉萨地块和羌塘地块的重要缝合带, 具有比较复杂的构造演化史, 然而其深部结构和俯冲极性仍存在较大争议。本文利用横穿班公湖—怒江缝合带中段的近南北向大地电磁测线, 处理和分析大地电磁测深曲线和相位张量特征, 并通过三维大地电磁反演获得了班公湖—怒江缝合带两侧的深部电性结构。三维大地电磁反演结果显示, 沿测线分布显著的中下地壳高导异常。大致以班公湖—怒江缝合带为界, 可将中下地壳高导异常分为两部分, 北拉萨地块近水平展布的高导异常层和南羌塘地块下方明显北倾的高导异常。结合早期的研究资料, 分析认为中下地壳高导异常应该为地壳部分熔融所致, 且深部电性结构符合沿测线观测的大地热流值变化。同时, 中下地壳高导异常可能指示了中生代班公湖—怒江洋的俯冲闭合痕迹, 北倾的中下高导异常支持大洋向北俯冲至羌塘地块之下, 而北拉萨地块下方的高导异常层可能为低角度俯冲的小洋盆。  相似文献   

3.
西藏羌塘盆地大地电磁测深研究   总被引:27,自引:1,他引:27  
张胜业  张先觉 《地球科学》1996,21(2):198-202
介绍了大地电磁测深在西藏羌塘盆地的主要研究成果,对羌塘盆地的区域构造特征和构造格局作了初步的探讨;较详细地分析了羌塘盆地的深部地电结构,研究表明,南北羌塘在深部电性结构上具有明显的电性差异,在南羌塘和班公湖-怒江缝合带,一般有两个壳内高导层,而北羌塘一般只有一个壳内高导层,缺失下地壳高导层,这可能与青藏高原地壳物质东流关,羌塘盆地的岩石圈厚度为100~130km。  相似文献   

4.
印度大陆板块北向碰撞及俯冲导致的青藏高原快速隆升,使得青藏高原内部的物质组成及构造演化更为复杂,其中之一高原内部的低速层分布特征及其构造成因尚不明确.藏北高原中部的班公湖—怒江缝合带两侧宽频带地震观测程度较高,为调查班公湖—怒江缝合带两侧低速层分布特征提供了良好的客观条件.本文选取了INDEPTH-III项目布置在班公怒江缝合带两侧的宽频带地震台站记录的远震数据,开展接收函数分析,通过时频域相位滤波提高信噪比,并利用接收函数复谱比非线性反演方法得到了台站下方一维S波速度结构.反演结果表明班公湖—怒江缝合带两侧地壳中低速层广泛分布,且横向不连续,埋深在20~40 km之间,部分地区在0~15 km的上地壳也出现低速层.上地壳内的低速层分布特征主要与地表区域构造及沉积层分布相关;中下地壳内的低速层分布不仅受到了地体边界的约束,且可能与后期青藏高原整体隆升相关.  相似文献   

5.
根据2004年在青藏高原东南部完成的下察隅—昌都(1000线)宽频带大地电磁探测剖面数据研究高原东南部地壳导电性结构及断裂构造特征,这有助于推进印度与亚洲岩石圈碰撞、俯冲构造模式的研究。研究结果表明,沿剖面上地壳大范围分布的是规模不等的高阻体,电阻率大约在90~3000Ω.m,厚度由南向北增加,底界面的深度大约在5~30km变化。高阻层之下发现由不连续高导体构成的中地壳低阻层,其电阻率小于10Ω.m;其结构与青藏高原中、西部的壳幔高导体相似,但规模小得多,底面埋深也浅得多。沿剖面的上地壳存在多组规模不等、产状不同的横向电性梯度带或畸变带,它们反映了沿剖面地区地壳的断裂分布。通过与该区高精度重力资料对比,在重要的电性梯度带上,均存在布格重力低异常和负重力均衡异常。结合区域地质资料分析推断了嘉黎—然乌、班公—怒江和甲桑卡—赤布张错等主要断裂构造带的空间格局。  相似文献   

6.
印度大陆板块北向碰撞及俯冲导致的青藏高原快速隆升,使得青藏高原内部的物质组成及构造演化更为复杂,其中之一高原内部的低速层分布特征及其构造成因尚不明确。藏北高原中部的班公湖—怒江缝合带两侧宽频带地震观测程度较高,为调查班公湖—怒江缝合带两侧低速层分布特征提供了良好的客观条件。本文选取了INDEPTH-Ⅲ项目布置在班公怒江缝合带两侧的宽频带地震台站记录的远震数据,开展接收函数分析,通过时频域相位滤波提高信噪比,并利用接收函数复谱比非线性反演方法得到了台站下方一维S波速度结构。反演结果表明班公湖—怒江缝合带两侧地壳中低速层广泛分布,且横向不连续,埋深在20~40 km之间,部分地区在0~15 km的上地壳也出现低速层。上地壳内的低速层分布特征主要与地表区域构造及沉积层分布相关;中下地壳内的低速层分布不仅受到了地体边界的约束,且可能与后期青藏高原整体隆升相关。  相似文献   

7.
白勇  于国明  吴荣高 《地质通报》2010,29(8):1177-1184
为研究西藏措勤—洞错地区的地质结构,对2006年采集的1:50000重、磁剖面资料进行了分析、处理、曲线拟合计算与解释。结果表明,南端冈底斯基底走滑断隆带古生界褶皱基底很浅,缺失中生界;中部措勤盆地则埋深较大,最深可达9km,并表现为北深南浅的格局,主要充填了巨厚的中生界;北部班公湖-怒江缝合带的基底深度小于3km;剖面上羌塘地体的基底深度约3.5km。剖面中部措勤盆地北部坳陷与班公湖-怒江缝合带结晶基底磁性弱,北部和南部结晶基底磁性强。推断了12条断裂,其中F7断裂为措勤盆地北界,F1断裂为盆地南界。推断了6个花岗岩类岩体、2个蛇绿岩体及一套规模较大的火山岩,并描述了其地下赋存的特征。  相似文献   

8.
<正>1成矿地质背景矿区位于西藏自治区阿里地区改则县物玛乡境内,位于改则县城北西方向,直距约95 km。位于羌塘-三江复合板片南缘,班公湖-怒江缝合带西段北缘。以班公湖-怒江缝合带为界,北部属于羌塘-三江复合板片,南部属于冈底斯-念青唐古拉板片。地层属于羌塘-昌都地层区羌南地层分区。  相似文献   

9.
青藏高原是大约60 Ma以来印度次大陆与欧亚大陆直接碰撞形成的,是研究大陆碰撞过程和发展板块构造理论的最佳场所。冈底斯构造带位于印度次大陆与欧亚大陆碰撞的前沿地带,对冈底斯构造带的探测结果将直接影响到对大陆碰撞过程和整个青藏高原地壳变形过程的认识。2011年9月至2012年9月一条穿越冈底斯(GDS)地体的地震深部探测剖面始于班公怒江断裂带北缘,向南穿越了崩错—嘉黎断裂带、冈底斯地体、雅鲁藏布缝合线并跨过藏南拆离断层系(STD),终止于喜马拉雅山南坡。本文作者利用天然地震体波完成了该条剖面的二维走时残差反演,展现出了该地段深部构造格局。首先验证了冈底斯地体浅部存在大面积部分熔融层的研究结论;支持甲玛大型斑岩铜矿为大陆碰撞挤压条件下岩浆上侵的成矿模式;PKP曲线描绘出了本次研究区间内Moho界面的形态,确定地壳最厚处在雅江缝合线南北两侧约50 km区间。这些推论和发现为青藏高原深部的结构研究提供了重要信息。  相似文献   

10.
羌塘及南缘地区的地壳结构   总被引:1,自引:0,他引:1  
通过对INDEPTH III宽频地震资料的处理,采用最新发展的接收函数深度偏移叠加方法,获取羌塘盆地南部及与拉萨地块北侧的剖面。偏移图像勾画了羌塘地区的两盆夹一隆的基底,以及羌塘下地壳内存在的北倾构造序列。冈底斯的基底与羌塘地区有一定的延续性,而拉萨地块的上地壳则完全不同。同时通过与人工深反射地震剖面,发现主要大型的断裂构造在接收函数剖面上均可进行追踪对比,对于羌中隆起和和羌塘南北凹陷的深部成因有启示作用。同时发现班公-怒江缝合带Moho面错断并不明显,而在拉萨地块下方呈现的双Moho在色林错下方进行了合并。在南羌塘Moho面转换波强度不大,而北羌塘又重新恢复正常,推测这是拉萨地块向北的推挤造成羌塘下地壳部分地区重新分异的结果。双Moho的成因有待进一步分析,应该与拉萨地块下方大规模低速物质活动和MHT拆离断层的延伸有关。  相似文献   

11.
The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture,Bangong-Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.  相似文献   

12.
With the super-wide band magnetotelluric sounding data of the Jilong (吉隆)-Cuoqin (措勤) profile (named line 800) which was completed in 2001 and the Dingri (定日)-Cuomai (措迈) profile (named line 900) which was completed in 2004,we obtained the strike direction of each MT station by strike analysis,then traced profiles that were perpendicular to the main strike direction,and finally obtained the resistivity model of each profile by nonlinear conjugate gradients (NLCG) inversion. With these two models,we described the resistivity structure features of the crust and the upper mantle of the center-southern Tibetan plateau and its relationship with Yalung Tsangpo suture: the upper crust of the research area is a resistive layer with resistivity value range of 200-3 000 ?·m. The depth of its bottom surface is about 15-20 km generally,but the bottom surface of resistive layer is deeper in the middle of these two profiles. At line 900,it is about 30 km deep,and even at line 800,it is about 38 km deep. There is a gradient belt of resistivity at the depth of 15-45 km,and a conductive layer is beneath it with resistivity even less than 5 ?·m. This conductive layer is composed of individual conductive bodies,and at the south of the Yalung Tsangpo suture,the conductive bodies are smaller with thickness about 10 km and lean to the north slightly. However,at the north of the Yalung Tsangpo suture,the conductive bodies are larger with thickness about 30 km and also lean to the north slightly. Relatively,the conductive bodies of line 900 are thinner than those of line 800,and the depth of the bottom surface of line 900 is also shallower. At last,after analyzing the effect factors to the resistivity of rocks,it was concluded that the very conductive layer was caused by partial melt or connective water in rocks. It suggests that the middle and lower crust of the center-southern Tibetan plateau is very thick,hot,flabby,and waxy.  相似文献   

13.
由多个地体拼接而成的青藏高原,有着世界上最厚的地壳。在高原中部,从拉萨地体到羌塘地体,穿过班公湖—怒江缝合带(BNS)的地壳厚度变化长期存在争议。本文主要论述从拉萨地体北端横跨BNS到达羌塘地体的深地震反射剖面探测的结果。探测发现了清晰的Moho反射,揭示了拉萨地体—羌塘地体Moho深度和地壳厚度的变化。探测结果表明,在BNS下方Moho深度由南至北出现了6.2 km的急剧减小,并且与BNS向北28 km处的羌塘地体南部比较,地壳厚度变浅了12.5 km。否定了前人对BNS下方Moho存在20 km显著变化的认识。  相似文献   

14.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%.南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%北段中部坳褶带到班公湖一怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%.大于前人研究的特提斯喜马拉雅56%~6O%的短缩率.通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小.  相似文献   

15.
青藏高原主要地体地壳短缩作用研究现状及存在的问题   总被引:1,自引:0,他引:1  
施美凤  李亚林  黄继钧 《地质通报》2010,29(203):286-296
在对喜马拉雅、拉萨和羌塘3个地体已有的有关地壳短缩研究成果系统分析的基础上,对3个地体进行了平衡剖面恢复:北羌塘侏罗系短缩率为25.18%,南羌塘短缩率为33.57%;对拉萨地体南段(措勤盆地南部坳褶带)上白垩统恢复得出其短缩率为20.68%,北段中部坳褶带到班公湖-怒江缝合带南缘短缩率为25.3%;地处特提斯喜马拉雅地体东段的郎杰学地体三叠系短缩率达75%,大于前人研究的特提斯喜马拉雅56%~60%的短缩率。通过对比,对3个地体短缩变形的规律进行了分析,认为各地体内部短缩作用并不是一个连续均匀的过程,陆内变形主要是通过稳定地体边界和大型逆冲构造带来吸收的;拉萨地体和羌塘地体新生代内部变形较小。  相似文献   

16.
Lower Cretaceous strata in the Baingoin basin of the northern Lhasa terrane record initial collision between the Lhasa and Qiangtang blocks, followed by the early uplift of central Tibet. North-south traverses across the Baingoin basin highlight major differences between the Duba Formation in the north and the quasi-coeval Duoni Formation in the south. The Duba Formation documents upward transition from shallow shelf and deltaic environments to coarse-grained siliciclastic fluvial sedimentation. Abundance of detrital zircons yielding Jurassic-Cretaceous ages with εHf(t) values mainly between −2 and +10, occurrence of chert, Cr-spinel, and pyroxene grains, together with southward paleocurrent directions indicate that the Duba Formation was sourced from the southern Qiangtang terrane and Bangong-Nujiang suture zone to the north. The Duoni Formation in the south was deposited in shelfal to fan-delta and fluvial environments. Abundant volcanic clasts, detrital zircons yielding Cretaceous ages with mainly negative εHf(t) values, and northward paleocurrents indicate an active volcanic source located in the central Lhasa terrane to the south, with minor input from the northern Lhasa terrane. Only the northern part of the Baingoin basin was directly controlled by the Lhasa-Qiangtang collision and may thus be considered a peripheral foreland basin, whereas the southern part was mainly influenced by tectonic processes related to the northward subduction of Neotethyan lithosphere, and may thus be comparable to a retroarc foreland basin. But these sedimentary features and the 139–79 Ma Baingoin plutonic intrusion do not fit well with classical foreland-basin models. Zircon chronostratigraphy constrains the final consumption of Bangong-Nujiang oceanic lithosphere and initial collision between the Lhasa and Qiangtang microcontinents to have taken place by 122 Ma, which has major implications for paleotectonic reconstructions of the Tibetan Plateau.  相似文献   

17.
《Gondwana Research》2015,28(4):1487-1493
Receiver function imaging along a temporary seismic array (ANTILOPE-2) reveals detailed information of the underthrusting of the Indian crust in southern Tibet. The Moho dips northward from ~ 50 km to 80 km beneath the Himalaya terrane, and locally reaches ~ 85 km beneath the Indus–Yalung suture. It remains at ~ 80 km depth across the Lhasa terrane, and shallows to ~ 70 km depth under the Qiangtang terrane. An intra-crustal interface at ~ 60 km beneath the Lhasa terrane can be clearly followed southward through the Main Himalaya Thrust and connects the Main Boundary Thrust at the surface, which represents the border of the Indian crust that is underthrusting until south of the Bangong–Nujiang Suture. A mid-crustal low velocity zone is observed at depths of 14–30 km beneath the Lhasa and Himalaya terranes probably formed by partial melt and/or aqueous fluids.  相似文献   

18.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号