首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We perform analytical and numerical studies of scaling relations of earthquakes and partition of elastic strain energy between seismic and aseismic components using a thermodynamically based continuum damage model. Brittle instabilities occur in the model at critical damage level associated with loss of convexity of the strain energy function. A new procedure is developed for calculating stress drop and plastic strain in regions sustaining brittle instabilities. The formulation connects the damage rheology parameters with dynamic friction of simpler frameworks, and the plastic strain accumulation is governed by a procedure that is equivalent to Drucker–Prager plasticity. The numerical simulations use variable boundary forces proportional to the slip-deficit between the assumed far field plate motion and displacement of the boundary nodes. These boundary conditions account for the evolution of elastic properties and plastic strain in the model region. 3-D simulations of earthquakes in a model with a large strike-slip fault produce scaling relations between the scalar seismic potency, rupture area, and stress drop values that are in good agreement with observations and other theoretical studies. The area and potency of the simulated earthquakes generally follow a linear log–log relation with a slope of 2/3, and are associated with stress drop values between 1 and 10 MPa. A parameter-space study shows that the area-potency scaling is shifted to higher stress drops in simulations with parameters corresponding to lower dynamic friction, more efficient healing, and higher degree of seismic coupling.  相似文献   

2.
Most seismic hazard estimations are based on the assumption of a Poisson process for earthquake occurrence, even though both observations and models indicate a departure of real seismic sequences from this simplistic assumption. Instrumental earthquake catalogues show earthquake clustering on regional scales while the elastic rebound theory predicts a periodic recurrence of characteristic earthquakes on longer timescales for individual events. Recent implementations of time-dependent hazard calculations in California and Japan are based on quasi-periodic recurrences of fault ruptures according to renewal models such as the Brownian Passage Time model. However, these renewal models neglect earthquake interactions and the dependence on the stressing history which might destroy any regularity of earthquake recurrences in reality. To explore this, we investigate the (coupled) stress release model, a stochastic version of the elastic rebound hypothesis. In particular, we are interested in the time-variability of the occurrence of large earthquakes and its sensitivity to the occurrence of Gutenberg–Richter type earthquake activity and fault interactions. Our results show that in general large earthquakes occur quasi-periodically in the model: the occurrence probability of large earthquakes is strongly decreased shortly after a strong event and becomes constant on longer timescales. Although possible stress-interaction between adjacent fault zones does not affect the recurrence time distributions in each zone significantly, it leads to a temporal clustering of events on larger regional scales. The non-random characteristics, especially the quasi-periodic behaviour of large earthquakes, are even more pronounced if stress changes due to small earthquakes are less important. The recurrence-time distribution for the largest events is characterized by a coefficient of variation from 0.6 to 0.84 depending on the relative importance of small earthquakes.  相似文献   

3.
Summary We consider a long strike-slip fault in a lithosphere modelled as an elastic slab. To the base of the slab a shear stress distribution is applied which simulates the viscous drag exerted by the asthenosphere. The resulant stress on the fault plane may directly fracture the lithosphere in its brittle upper portion; alternatively it may give rise at first to a stable aseismic sliding in the lower portion. In the latter case, stress concentration due to the deep aseismic slip is the relevant feature of the pre-seismic stress acting on the upper section of the lithosphere. The two cases are examined by use of dislocation theory and their observable effects compared. Different depths of the aseismic slip zone and the presence or absence of a uniform friction on the seismic fault are allowed for. If the model is applied to the San Andreas fault region, where a steady sliding condition actually seems to be present at shallow depth, it turns out that the slip amplitudes commonly associated with large earthquakes are consistent with average basal stress values which can be substantially lower than a few bars, a value often quoted as the steady state basal stress due to a velocity gradient in the upper asthenosphere.  相似文献   

4.
Scaling relationships between seismic moment, rupture length, and rupture width have been examined. For this purpose, the data from several previous studies have been merged into a database containing more than 550 events. For large earthquakes, a dependence of scaling on faulting mechanism has been found. Whereas small and large dip-slip earthquakes scale in the same way, the self-similarity of earthquakes breaks down for large strike-slip events. Furthermore, no significant differences in scaling could be found between normal and reverse earthquakes and between earthquakes from different regions. Since the thickness of the seismogenic layer limits fault widths, most strike-slip earthquakes are limited to rupture widths of between 15 and 30 km while the rupture length is not limited. The aspect ratio of dip-slip earthquakes is similar for all earthquake sizes. Hence, the limitation in rupture width seems to control the maximum possible rupture length for these events. The different behaviour of strike-slip and dip-slip earthquakes can be explained by rupture dynamics and geological fault growth. If faults are segmented, with the thickness of the seismogenic layer controlling the length of each segment, strike-slip earthquakes might rupture connected segments more easily than dip-slip events, and thus could produce longer ruptures than dip-slip events of the same width  相似文献   

5.
An important question in seismic hazard assessments is the frequency-size and recurrence interval statistics at a point on a fault. Does a point on a fault obey the same statistics as earthquakes in a region do? This is a difficult question to answer because the number of repetitive earthquakes on a particular fault that have been observed is small. In order to overcome this difficulty we consider slip events on the creeping section of the San Andreas fault in central California. Sequences of up to 100 events are obtained from creepmeter records. We compare the statistical distribution of recurrence times with the Brownian passage-time, lognormal, and Weibull distributions and using goodness-of-fit tests find that the Weibull is the preferred distribution. We also consider the frequency–amplitude distribution of slip events. We find that the data clearly do not obey a Gutenberg–Richter distribution. Instead there is a uniform distribution of event sizes for a large fraction of events.  相似文献   

6.
We present geological and morphological data, combined with an analysis of seismic reflection lines across the Ionian offshore zone and information on historical earthquakes, in order to yield new constraints on active faulting in southeastern Sicily. This region, one of the most seismically active of the Mediterranean, is affected by WNW–ESE regional extension producing normal faulting of the southern edge of the Siculo–Calabrian rift zone. Our data describe two systems of Quaternary normal faults, characterized by different ages and related to distinct tectonic processes. The older NW–SE-trending normal fault segments developed up to ≈400  kyr ago and, striking perpendicular to the main front of the Maghrebian thrust belt, bound the small basins occurring along the eastern coast of the Hyblean Plateau. The younger fault system is represented by prominent NNW–SSE-trending normal fault segments and extends along the Ionian offshore zone following the NE–SW-trending Avola and Rosolini–Ispica normal faults. These faults are characterized by vertical slip rates of 0.7–3.3  mm  yr −1 and might be associated with the large seismic events of January 1693. We suggest that the main shock of the January 1693 earthquakes ( M ~ 7) could be related to a 45  km long normal fault with a right-lateral component of motion. A long-term net slip rate of about 3.7  mm  yr −1 is calculated, and a recurrence interval of about 550 ± 50  yr is proposed for large events similar to that of January 1693.  相似文献   

7.
The Benevento region is part of the southern Apennines seismogenic belt, which experienced large destructive seismic events both in historical and in recent times. The study area lies at the northern end of the Irpinia fault, which ruptured in 1980 with a Ms = 6.9 normal faulting event, which caused about 3000 casualties. The aims of this paper are to image lateral heterogeneities in the upper crust of the Benevento region, and to try to identify the fault segments that are expected to generate such large earthquakes. This work is motivated by the recognition that lithological heterogeneities along major fault zones, inferred from velocity anomalies, reflect the presence of fault patches that behave differently during large rupture episodes. In this paper, we define the crustal structure of the Benevento region by using the background seismicity recorded during 1991 and 1992 by a local seismic array. These data offer a unique opportunity to investigate the presence of structural discontinuities of a major seismogenic zone before the occurrence of the next large earthquake. The main result that we obtained is the delineation of two NW-trending high-velocity zones (HVZs) in the upper crust beneath the Matese limestone massif. These high velocities are interpreted as high-strength regions that extend for 30-40 km down to at least 12 km depth. The correspondence of these HVZs with the maximum intensity regions of historical earthquakes (1688 AD, 1805 AD) suggests that these anomalies delineate the extent of two fault segments of the southern Apenninic belt capable of generating M = 6.5−7 earthquakes. The lateral offset observed between the two segments from tomographic results and isoseismal areas is possibly related to transverse right-lateral faults.  相似文献   

8.
Summary. A possible mechanism for the occurrence of slow earthquakes is investigated by calculating numerical solutions for the dynamical rupture process on a quasi-three-dimensional fault with heterogeneous frictional strengths. Experimental friction laws for the dependence of sliding frictional stress on slip velocity, which are based on the cohesive properties of fault asperities, are taken into considerations.
It is found that the applied stress does not drop very rapidly with time and the rupture velocity remarkably decreases as the dependence on slip-velocity becomes smaller. These deceleration effects for the rupture propagation are greatly enhanced with increasing heterogeneities in the distribution of frictional strength and as the initial shear stress has lower levels with respect to the average strength. For these cases, the growth of rupture is extremely slow in a nucleus region with the dimension as large as 10 times the initial rupture length, and gains a terminal velocity dependent on the above factors. The displacement-time function becomes noticeably extended in these cases, and indicates a stick—slip-like phenomena in the extended time interval for a strongly heterogeneous fault.
It seems that these results could explain the characteristic features of slow earthquakes.  相似文献   

9.
We propose a model which describes the formation of a strong asperity on a fault. We consider a fault surface which differs slightly from a plane due to a jog-like topographic variation. The fault is placed in an elastic space and is subject to a uniform stress field. The orientation of the fault is such that the normal traction (which is compressive) is greater on the topographic variation, determining a higher static friction and hence an asperity. The value of friction on this asperity depends on the magnitude of shear stress. For times of seismological interest, the increase in shear stress, at rates typical of tectonic processes, does not produce a sensible increase in friction with respect to the adjacent fault segments. A considerable increase in friction and the formation of a strong asperity (or even a barrier) can occur due to repeated seismic-slip episodes on the fault. Slip results in an elastic medium deformation, causing an increase in normal traction on the asperity and hence in friction. This process is described with the aid of a tensile Somigliana dislocation. Regions with high friction undergo partial fracturing of the fault-face material, which can produce fault gouge. The tensile dislocation introduces a small non-double-couple component in the seismic moment of the seismic event, the magnitude of this component depending mainly on the relative size of the asperity.  相似文献   

10.
The time-dependence of earthquake occurrence is mostly ignored in standard seismic hazard assessment even though earthquake clustering is well known. In this work, we attempt to quantify the impact of more realistic dynamics on the seismic hazard estimations. We include the time and space dependences between earthquakes into the hazard analysis via Monte Carlo simulations. Our target region is the Lower Rhine Embayment, a low seismicity area in Germany. Including aftershock sequences by using the epidemic type aftershock-sequence (ETAS) model, we find that on average the hypothesis of uncorrelated random earthquake activity underestimates the hazard by 5–10 per cent. Furthermore, we show that aftershock activity of past large earthquakes can locally increase the hazard even centuries later. We also analyse the impact of the so-called long-term behaviour, assuming a quasi-periodic occurrence of main events on a major fault in that region. We found that a significant impact on hazard is only expected for the special case of a very regular recurrence of the main shocks.  相似文献   

11.
中国地震灾害人口死亡风险定量评估(英文)   总被引:2,自引:1,他引:1  
基于地震灾害风险形成机理,在建立人口震害脆弱性曲线与确定地震发生参数的基础上,本文利用评估模型对我国Ⅴ-Ⅺ地震烈度下各县域单元的人口死亡风险进行评估并分析其空间分布格局。主要研究内容有:(1)首次采用基于过去—现在—未来的多方面地震孕灾环境资料来处理地震发生的可能性。具体综合历史地震综合烈度、地震活动断裂带分布、地震动峰值加速度三方面来确定全国2355个县域单元的地震发生参数;(2)利用1990-2009年我国历史地震灾情数据,对地震烈度与人员死亡率之间进行线性拟合,建立适合我国地震灾害风险评估的震害人口死亡脆弱性曲线;(3)利用震害风险评估模型对我国各县域单元的人口死亡风险进行定量评估,并分析风险空间分布格局,彻底摸清Ⅴ-Ⅺ地震烈度下我国各县域单元的地震灾害人口死亡风险。研究表明:在不同地震烈度下,我国广大的东、中部地区面临更高的风险,而西部的人口死亡风险相对较低。高风险区域呈零星状分布于山东与江苏大部、安徽北部、黑龙江与吉林东部等人口分布较密集且孕灾环境发育完备的区域。而无风险区域在全国范围内呈斑块状散布,分布格局基本保持不变。  相似文献   

12.
Summary. An asperity model is presented, including the effects of coupled elementary faults. This coupling is introduced by way of percolation theory. We postulate that the elementary faults have a typical size, whose dimensions are of order 0.3–0.4 km, and two kinds of characteristic earthquakes are obtained, one in the low magnitude range involving the rupture of a single elementary fault, and one in the high magnitude range involving a percolated cluster of faultlets, whose dimensions are proportional to the total fault. The magnitude–frequency relation of this model is constructed and the Gutenberg–Richter relation is obtained with a b value of 1 in the range of intermediate earthquakes. A relative enhancement in the probability of occurrence of large earthquakes is also observed. This effect is associated with 'characteristic earthquakes', whose magnitudes are related to the size of the active fault. Possible premonitors are discussed.  相似文献   

13.
This is the second paper of a series of two concerning strong ground motion in SW Iberia due to earthquakes originating from the adjacent Atlantic area. The aim of this paper is to use the velocity model that was proposed and validated in the companion paper for seismic intensity modelling of the 1969 ( M s= 8.0) and 1755 ( M = 8.5–8.7) earthquakes.
First, we propose a regression to convert simulated values of Peak Ground Velocity (PGV) into Modified Mercalli Intensity (MMI) in SW Iberia, and using this regression, we build synthetic isoseismal maps for a large ( M s= 8.0) earthquake that occurred in 1969. Based on information on the seismic source provided by various authors, we show that the velocity model effectively reproduces macroseismic observations in the whole region. We also confirm that seismic intensity distribution is very sensitive to a small number of source parameters: rupture directivity, fault strike and fault dimensions. Then, we extrapolate the method to the case of the great ( M = 8.5–8.7) 1755 earthquake, for a series of hypotheses recently proposed by three authors about the location of the epicentral region. The model involving a subduction-related rupture in the Gulf of Cádiz results in excessive ground motion in northern Morocco, suggesting that the source of the 1755 earthquake should be located further west. A rupture along the western coast of Portugal, compatible with an activation of the passive western Iberian margin, would imply a relatively low average slip, which, alone, would could not account for the large tsunami observed in the whole northern Atlantic ocean. A seismic source located below the Gorringe Bank seems the most likely since it is more efficient in reproducing the distribution of high intensities in SW Iberia due to the 1755 earthquake.  相似文献   

14.
In a tectonically active setting large earthquakes are always threats; however, they may also be useful in elucidating the subsurface geology. Instrumentally recorded seismicity is, therefore, widely utilized to extend our knowledge into the deeper crust, especially where basement is involved. It is because the earthquakes are triggered by underground stress changes that usually corresponding to the framework of geological structures. Hidden faults, therefore, can be recognized and their extension as well as orientation can be estimated. Both above are of relevance for assessment on seismic hazard of a region, since the active faults are supposed to be re-activated and cause large earthquakes. In this study, we analysed the 1999 October 22 earthquake sequence that occurred in southwestern Taiwan. Two major seismicity clusters were identified with spatial distribution between depths of 10 and 16 km. One cluster is nearly vertical and striking 032°, corresponding to the strike-slip Meishan fault (MSF) that generated the 1906 surface rupture. Another cluster strikes 190° and dips 64° to the west, which is interpreted as west-vergent reverse fault, in contrast to previous expectation of east vergence. Our analysis of the focal solutions of all the larger earthquakes in the 1999 sequence with the 3-D distribution of all the earthquakes over the period 1990–2004 allows us reinterpret the structural framework and suggest previously unreognized seismogenic sources in this area. We accordingly suggest: (1) multiple detachment faults are present in southwestern Taiwan coastal plain and (2) additional seismogenic sources consist of tear faults and backthrust faults in addition to sources associated with west-vergent fold-and-thrust belt.  相似文献   

15.
The frequency–energy distribution of global seismicity is studied using broad-band radiated energy of shallow earthquakes from January 1987 to December 1994 estimated by NEIC. Rank-ordering statistics are applied to enhance the resolution in retrieving the power-law distribution with undersampled data, namely a few tens of events. Seen in the perspective of broad-band radiated energy with higher resolution, a single (Gutenberg–Richter-type) power-law distribution can fit the data. For earthquakes with energy larger than 1014 J, the number N of events with energy E depends on E via N∝E −B , with the scaling constant B = 0.64 ± 0.04, corresponding to b = 0.95 ± 0.06. This relation is different from that of scalar seismic moment, which shows a transition of power-law distributions between small and large earthquakes. To demonstrate such a difference we use the same set of earthquakes with both broad-band energy estimation and CMT estimation. It is found that for the same data set, the energy distribution and the moment distribution show different patterns. The moment distribution has a clear kink between small and large earthquakes, while the energy distribution shows a single power law with no convincing kink between small and large earthquakes. To investigate the effect of different focal mechanisms and different seismic regions, events with strike-slip mechanisms and events within the Japan–Kuril region are considered. For these subsets of events, a similar pattern exists, in which the moment distribution shows a kink between small and large earthquakes, while the energy distribution shows a single power law.  相似文献   

16.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

17.
High‐resolution seismic imaging and coring in Lago Fagnano, located along a plate boundary in Tierra del Fuego, have revealed a dated sequence of Holocene mass‐wasting events. These structures are interpreted as sediment mobilizations resulting from loading of the slope‐adjacent lake floor during mass‐flow deposition. More than 19 mass‐flow deposits have been identified, combining results from 800 km of gridded seismic profiles used to site sediment cores. Successions of up to 6‐m thick mass‐flow deposits, pond atop the basin floor and spread eastward and westward following the main axis of the eastern sub‐basin of Lago Fagnano. We developed an age model, on the basis of information from previous studies and from new AMS‐14C ages on cored sediments, which allows us to establish a well‐constrained chronologic mass‐wasting event‐catalogue covering the last ~12 000 years. Simultaneously triggered, basin‐wide lateral slope failure and the formation of multiple debris flow and postulated megaturbidite deposits are interpreted as the fingerprint of paleo‐seismic activity along the Magallanes‐Fagnano transform fault that runs along the entire lake basin. The slope failures and megaturbidites are interpreted as recording large earthquakes occurring along the transform fault since the early Holocene. The results from this study provide new data about the frequency and possible magnitude of Holocene earthquakes in Tierra del Fuego, which can be applied in the context of seismic hazard assessment in southernmost Patagonia.  相似文献   

18.
Geological studies show evidence for temporal clustering of large earthquakes on individual fault systems. Since post-seismic deformation due to the inelastic rheology of the lithosphere may result in a variable loading rate on a fault throughout the interseismic period, it is reasonable to expect that the rheology of the non-seismogenic lower crust and mantle lithosphere may play a role in controlling earthquake recurrence times. We study this phenomenon using a 2-D, finite element method continuum model of the lithosphere containing a single strike-slip fault. This model builds on a previous study using a 1-D spring-dashpot-slider analogue of a single fault system to study the role of Maxwell viscoelastic relaxation in producing non-periodic earthquakes. In our 2-D model, the seismogenic portion of the fault slips when a predetermined yield stress is exceeded; stress accumulated on the seismogenic fault is shed to the viscoelastic layers below and recycled back to the seismogenic fault through viscoelastic relaxation. We find that random variation of the fault yield stress from one earthquake to the next can cause the earthquake sequence to be clustered; the amount of clustering depends on a non-dimensional number, W , called the Wallace number defined as the standard deviation of the randomly varied fault yield stress divided by the effective viscosity of the system times the tectonic loading rate. A new clustering metric based on the bimodal distribution of interseismic intervals allows us to investigate clustering behaviour of systems over a wide range of model parameters and those with multiple viscoelastic layers. For models with   W ≥ 1  clustering increases with increasing W , while those with   W ≤ 1  are unclustered, or quasi-periodic.  相似文献   

19.
Intense earthquake swarms at Long Valley caldera in late 1997 and early 1998 occurred on two contrasting structures. The first is defined by the intersection of a north-northwesterly array of faults with the southern margin of the resurgent dome, and is a zone of hydrothermal upwelling. Seismic activity there was characterized by high b -values and relatively low values of D , the spatial fractal dimension of hypocentres. The second structure is the pre-existing South Moat fault, which has generated large-magnitude seismic activity in the past. Seismicity on this structure was characterized by low b -values and relatively high D . These observations are consistent with low-magnitude, clustered earthquakes on the first structure, and higher-magnitude, diffuse earthquakes on the second structure. The first structure is probably an immature fault zone, fractured on a small scale and lacking a well-developed fault plane. The second zone represents a mature fault with an extensive, coherent fault plane.  相似文献   

20.
Large historical earthquakes in Italy define a prominent gap in the Pollino region of the southern Apennines. Geomorphic and palaeoseismological investigations in this region show that the Castrovillari fault (CF) is a major seismogenic source that could potentially fill the southern part of this gap. The surface expression of the CF is a complex, 10–13 km long set of prominent scarps. Trenches across one scarp indicate that at least four surface-faulting earthquakes have occurred along the CF since Late Pleistocene time, each producing at least 1 m of vertical displacement. The length of the fault and the slip per event suggest M =6.5-7.0 for the palaeoearthquakes. Preliminary radiocarbon dating coupled with historical considerations imply that the most recent of these earthquakes occurred between 380 BC and 1200 AD, and probably soon after 760 AD; no evidence for this event has been found in the historical record. We estimate a minimum recurrence interval of 1170 years and a vertical slip rate of 0.2-0.5 mm yr-1 for the CF, which indicates that the seismic behaviour of this fault is comparable to other major seismogenic faults of the central-southern Apennines. The lack of mention or the mislocation of the most recent event in the historical seismic memory of the Pollino region clearly shows that even in Italy, which has one of the longest historical records of seismicity, a seismic hazard assessment based solely on the historical record may not be completely reliable, and shows that geological investigations are critical for filling possible information gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号