首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied carbon dynamics on various surface parts of a highly patterned fen, typical in northern Finland, to examine the importance of different microsites to the areal carbon fluxes. The studies were carried out in June-September 1995 on a mesotrophic flark fen (an aapa mire) in Kaamanen (69°08'N, 27° 17'E). Wet flarks, moist lawns and dry strings accounted for 60%, 10% and 30% of the surface area, respectively. A static chamber technique was applied to measure the CH4 exchange, the instantaneous net ecosystem exchange (NEE, transparent chamber) and the ecosystem respiration (Rtot' opaque chamber) in several microsites. The static chamber results were compared with those obtained by the eddy covariance technique. The mean daytime areal net ecosystem CO2 exchange rate measurement in conditions where photosynthesis was light saturated (PAR>400 μmol m-2 s-1) varied during the measurement period from −59 mg CO2-C m−2h−1 (release) to 250 (uptake). The mean CH4 emission during the measuring period was 78 mg CH4-Cm−2 d−1 on the flarks, 68 mg on the lawn and 6.0 mg on the strings. The strings without shrubs (mainly Betula nana ) were in general net sources of CO2, even during the middle of the growing season, whereas the lawns, flarks and also strings growing B. nana showed a daytime net uptake of CO2. Areally integrated chamber results showed lower CO2 and higher CH4 fluxes than predicted from the eddy covariance measurements.  相似文献   

2.
Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and quantity of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were estimated in High-Arctic Adventdalen, Svalbard, and sub-Arctic Latnjajaure, Sweden, using a new trace gas-based method to track real-time diffusion rates through the snow. Summer measurements from snow-free soils were made using a chamber-based method. Measurements were obtained from different snow regimes in order to evaluate the effect of snow depth on winter CO2 effluxes. Total annual emissions of CO2 from the sub-Arctic site (0.662–1.487 kg CO2 m–2 yr–1) were found to be more than double the emissions from the High-Arctic site (0.369–0.591 kg CO2 m–2 yr–1). There were no significant differences in winter effluxes between snow regimes or vegetation types, indicating that spatial variability in winter soil CO2 effluxes are not directly linked to snow cover thickness or soil temperatures. Total winter emissions (0.004–0.248 kg CO2 m–2) were found to be in the lower range of those previously described in the literature. Winter emissions varied in their contribution to total annual production between 1 and 18%. Artificial snow drifts shortened the snow-free period by 2 weeks and decreased the annual CO2 emission by up to 20%. This study suggests that future shifts in vegetation zones may increase soil respiration from Arctic tundra regions.  相似文献   

3.
Two strains of psychrotolerant Antarctic marine bacteria were isolated and characterized using biochemical and molecular techniques. Sequencing of 16S rRNA gene showed that UVvi strain belongs to the genus Arthrobacter whereas UVps strain is related to the Flexibacter-Cytophaga-Bacteroides (FCB) group. Response of the strains to solar radiation was studied during the summer of 1999 in Potter Cove, near Jubany station (South Shetland Island, Antarctica). The effect of photosynthetically available radiation (PAR, 400-700 nm), ultraviolet-A (UV-A, 320-400 nm) and ultraviolet-B radiation (UV-B, 280-320 nm) on cell viability was studied using mixed cultures in quartz bottles covered with interferential filters and exposed to solar radiation. In all experiments, four treatments were used: dark (with light screened out), PAR (with UV radiation screened out), PAR+UV-A (UV-B screened out) and PAR+UV-A+UV-B. Under the assayed conditions, PAR+UV-A and PAR+UV-A+UV-B radiation showed similar negative effects on the viability of the studied strains. However, at the end of the exposure time, mortality values in PAR+UV-A+UV-B treatments were higher than those observed under PAR+UV-A treatments. In both PAR+UV-A and PAR+UV-A+UV-B treatments we observed high levels of hydrogen peroxide compared with the dark control. The Arthrobacter UVvi strain showed significant recovery in dark conditions after exposure to the PAR+UV-A but not after the PAR+UV-A+UV-B treatment. This strain proved to be more resistant to UV radiation than the FCB group-related UVps strain. The results showed that UV radiation has a deleterious effect on these Antarctic marine bacteria and also revealed that the analysed components of the Antarctic bacterioplankton may have different responses when they are exposed to the same irradiance conditions.  相似文献   

4.
Loess-palaeosol deposits in the lower Danube area represent the southeastern edge of the loess cover in Europe. Detailed rock magnetic investigations of the loess/palaeosol sequence in Viatovo in NE Bulgaria reveal that magnetite and maghemite of very fine superparamagnetic grain size are responsible for the magnetic enhancement of palaeosol units. A detailed palaeoclimatic record is obtained through high-resolution measurements of magnetic susceptibility, frequency dependent magnetic susceptibility and CaCO3 content. Magnetic proxies indicate a more warm and humid climate during the development of the older palaeosol units (S4–S6).  相似文献   

5.
Peat monoliths taken from a boreal peatland system were incubated at two different light intensities to investigate the effect of the photosynthetic rate of vascular plants ( Eriophorum angustifolium ) on net CH4 emission. The experimental set-up consisted of six replicate monoliths as controls and six where the photosynthetic active radiation (PAR) was reduced by 60%. NEP and total system respiration decreased significantly in response to reduced PAR. No significant changes in CH4 emission were found, but two different trends were noted. Methane emissions from the shaded monoliths initially seemed to be higher than emissions from the controls. After approximately four weeks the trend was reversed. The pattern may have been caused by "leakage" of organic compounds from inactivated roots that fueled CH4 production. It is suggested that a new balanced exchange of potential substrate carbon between the plants and the surrounding peat was established. Comparably less easily degradable carbon compounds would then become available for CH4 production. The fact that there appeared to be an effect of decreased carbon flow on CH4 emission is further supported by a tendency for lower concentrations of organic acids in porewater in the shaded monoliths at the end of the experiment. These results indicate a possible lagtime on the order of weeks before changes in photosynthesis rates and NEP have an effect onCH4 emission rates. Nevertheless it confirms the linkage between CO2 and CH4 cycling in wetland ecosystems.  相似文献   

6.
b
The results are presented from tidal gravity measurements at five sites in Europe using LaCoste and Romberg ET gravimeters. Improvements that we have made to the accuracies of these gravimeters are discussed. It is shown that the 'standard' calibration of the International Center for Earth Tides, used for worldwide tidal gravity profiles, is 1.2 per cent too high. The M2 and O1 observations are compared with model calculations of the Earth's body tide and ocean tide loading and it is shown that there is a very significant improvement in the agreement between observations and models compared to that obtained with previous tidal gravity measurements. For O1, where the ocean tide loading and attraction in central Europe is only 0.4 per cent of the body tide, our measurements verify that the Dehant-Wahr anelastic body tide model gravimetric factor is accurate to 0.2 per cent. It is also shown that the effects of lateral heterogeneities in Earth structure on tidal gravity are too small to explain the large anomalies in previously published tidal gravity amplitudes. The observations clearly show the importance of conserving tidal mass in the Schwiderski ocean tide model. For sites in central Europe, the M2 and O1 observations and the models are in agreement at the 0.1 μgal (10−9 m s−2) level and tidal corrections to this accuracy can now be made to absolute gravity measurements.  相似文献   

7.
Knowledge of the environmental controls of carbon dioxide fluxes is essential for understanding the dynamics of carbon exchange between ecosystems and atmosphere. In this study we investigated soil respiration and moss photosynthesis as well as their contribution to the net carbon dioxide flux of two different wet tundra systems. During two summers, in situ carbon dioxide fluxes were measured in a tussock tundra and in a low-centre polygonal tundra on Taimyr Peninsula, central Siberia. Measurements were carried out by means of a multichannel gas exchange system. Results show pronounced differences in soil respiration rates as related to microscale topography, mainly due to differences of soil water table and soil temperatures. Modelling of soil respiration for individual microsites revealed differences of process performance with respect to both factors. The wet microsites showed the highest potential regarding an increase of soil respiration rates in warmer and drier climate change scenarios. Another important process compensating the CO2 release from the soil was the photosynthesis of the moss layer, assimilating as much as 51% to 98% of the daily amount of carbon dioxide released from wet tundra soils. This result demonstrates the importance of mosses in the context of tundra ecosystem processes. The magnitude of net system fluxes of the whole system at the depression of the polygonal tundra was strongly influenced by changes in soil water table. Consequently, any changes of the hydrology, as anticipated in the context of global change, would effectively alter the carbon balance of wet tundra systems.  相似文献   

8.
Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt & Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day −1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997), which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds VP/VS was about 9 per cent lower than in the surrounding rocks. Theory (Mavko & Mukerji 1995), experiment (Ito, DeVilbiss & Nur 1979), and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that VP/VS is sensitive to pore-fluid compressibility, through its effect on VP . The observed VP/VS anomaly is probably caused directly by CO2, and seismic VP/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.  相似文献   

9.
This review covers selected aspects of recent international efforts to measure and model greenhouse gas emission from northern wetlands, to identify the environmental factors that control gas emission, and to investigate wetlands'responses (particularly with respect to gas emission) to global change. Both bottom-up and top-to-bottom approaches, based respectively on local observations plus inventory of gas fluxes and inverse modelling of global circulation, agree on the size of the high latitude (>60°N) contribution to global methane, which should be about 13% or 70 Tg/year. It has been shown that winter and spring fluxes are an essential part in the annual budget of CH4 and especially CO2 exchange (varying from 5 to 50%). Soil micro-organisms were shown to be able to respire during winter even at-16°C. In comparison to aerobically respiring organisms, anaerobic methanogenic bacteria were less active in frozen soil, although they are subjected to significant stimulation by soil freeze-thaw cycles. The absence of immediate coupling of methanogenesis with plant photosynthesis implies that substrates for methane formation are derived from peat decomposition rather than from root exudation.  相似文献   

10.
This paper provides an overview of results obtained through a number of studies of actual and potential trace gas exchanges in Eurasian and Greenlandic tundra ecosystems. The chief findings include:
i) Long-term accumulation rates of carbon in organic tundra soils, i.e. net uptake of atmospheric CO2, are strongly controlled by simple climatic parameters (mean July temperature, annual precipitation). Warmer and wetter conditions stimulate carbon sequestration rates in Arctic terrestrial ecosystems.
ii) The release of carbon through ecosystem respiration is also heavily influenced by climate. However, the release of dead organic soil carbon as CO2 is constraind by the lability of the stored organic compounds. This lability decreases significantly with depth (i.e. age) of the soils; moreover, this in turn decreases the temperature sensitivity of the decomposition process.
iii) Methane emissions from typical tundra habitats in northern Eurasia are slightly lower than from seemingly similar habitats in North America although this difference probably can be attributed to the colder climatic setting of the studied sites compared with the general climatic conditions at the North American sites. There is a strong linkage between CO2 exchange, CH4 formation and emission rates in some wet tundra ecosystems.
iv) Atmospheric uptake of CH4 occurs in some dry and mesic tundra habitats and there are indications that these uptake rates could be affected negatively by atmospheric nitrogen deposition. Emissions of N2O are rarely seen fromArctic soils but there appear to be a strong potential for denitrification and, hence, N2O release. This might be due to high rates of denitrification during the spring thaw and possibly associated significant releases of N2O in this period.  相似文献   

11.
Summary. The contamination effect when a discrete Fourier analysis is applied to a short length of data in order to estimate the main diurnal (O1) and semi-diurnal (M2) components of the solid body tide is estimated and it is shown that a moderate length of record (30 days) has distinct advantages over larger record lengths of less than 60 days or so.  相似文献   

12.
Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.  相似文献   

13.
The influence of goose grazing intensity and open-topped chambers (OTCs) on near-surface quantities and qualities of soil organic carbon (SOC) was evaluated in wet and mesic ecosystems in Svalbard. This study followed up a field experiment carried out in 2003–05 (part of the project Fragility of Arctic Goose Habitat: Impacts of Land Use, Conservation and Elevated Temperatures). New measurements of soil CO2 effluxes, temperatures and water contents were regularly made from July to November 2007. SOC stocks were quantified, and the reactivity and composition measured by basal soil respiration (BSR) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Results reveal variations in soil carbon cycling, with significant seasonal trends controlled by temperature, water content and snow. Experimental warming (OTCs) increased near-surface temperatures in the growing season, resulting in significantly higher CO2 effluxes. Different grazing intensities had no significant effects on observed soil respiration, but BSR rates at the mesic site (13–23 µg CO2 g soil-C−1 h−1) were highest with moderate grazing and lowest in the absence of grazing. A limited effect of grazing on microbial respiration is consistent with a lack of significant differences in SOC quantity and quality. NMR data show that the composition of A-horizon SOC is dominated by O-N-alkyl C and alkyl C groups, and less by carboxyl C and aromatic C groups: but again no marked variation in response to grazing was evident. It can be concluded that two years after a goose grazing experiment, SOC cycling was less than the natural variation within contrasting vegetation types.  相似文献   

14.
Carbon fluxes in the Arctic Ocean—potential impact by climate change   总被引:1,自引:0,他引:1  
Because of its ice cover the central Arctic Ocean has not been considered as a sink of atmospheric carbon dioxide. With recent observations of decreasing ice cover there is the potential for an increased air–sea carbon dioxide flux. Though the sensitivity of the carbon fluxes to a climate change can at present only be speculated, we know the responses to some of the forcing, including: melting of the sea ice cover make the air–sea flux operate towards equilibrium; increased temperature of the surface water will decrease the solubility and thus the air-sea flux; and an open ocean might increase primary production through better utilization of the nutrients.
The potential change in air-sea CO2 fluxes caused by different forcing as a result of climate change is quantified based on measured data. If the sea ice melts, the top 100 m water column of the Eurasian Basin has, with the present conditions, a potential to take up close to 50 g C m−2. The freshening of the surface water caused by a sea ice melt will increase the CO2 solubility corresponding to an uptake of ∼ g C m−2, while a temperature increase of 1°C in the same waters will out-gas 8 g C m−2, and a utilization of all phosphate will increase primary production by 75 g C m−2.  相似文献   

15.
Approaches to Modelling the Surface Albedo of a High Arctic Glacier   总被引:1,自引:0,他引:1  
Broadband surface albedo measurements, made during the summer melt season at three weather stations on John Evans Glacier (79°40 ' N, 74°00 ' W), varied strongly with the solar zenith angle ( θ z ). Tests were carried out to assess the impact of diurnal variations in surface albedo on seasonal net shortwave radiation ( K * ) totals. Removing the diurnal signal from albedo measurements by daily averaging of hourly measurements, or by applying midday measurements to all hours of the day, changed K * by up to 16%. Ignoring measurements made at θ z & 75°, to account for measurement (cosine) error at high θ z , decreased K * by between 5 and 18%. Given the sensitivity of K * to diurnal patterns in surface albedo, experiments were carried out with two albedo models. One model accounted for albedo variations with θ z and one did not. The model driven by θ z , when implemented within a surface energy balance model for John Evans Glacier, produced better melt estimates. This suggests that diurnal variations in surface albedo should be accounted for in energy balance models of glacier melt.  相似文献   

16.
Changes in annual frost frequency and annual frost accumulation associated with a variety of temperature change scenarios are mapped for northern England. Estimates of future changes are obtained through application of analytical theory to convert predictions of mean daily minimum temperatures and their inter-diurnal variability to accumulated frost degrees and frost frequency. The baseline climate is provided by regression analysis of surface data involving up to ten terrain variables. Future scenarios include warm and cold analogues, maritime and continental airflow scenarios, arbitrary warming and two general circulation model (GCM) simulations: UKHI (United Kingdom Meteorological Office High Resolution GCM Equilibrium Experiment) and GISS (Goddard Institute for Space Studies). Considerable contrasts emerge between scenarios, with substantial reductions in frost frequency and accumulation in the two GCM 2 *CO2 simulations. This is to be expected in a maritime area where small changes in temperature have a large influence on parameters involving threshold temperatures. Increases in frost occur under the continental airflow scenario. Changes in frost do not necessarily complement those in accumulated warmth, and therefore indices combining possible changes in warmth and frost are helpful.  相似文献   

17.
Fifty-seven Antarctic marine bacteria were examined for their ability to degrade commercial diesel oil as the sole organic substrate at both 4 °C and 20 °C. Based on the preliminary screening, two isolates (B11 and B15) with high capacity to degrade diesel oil were selected and their biodegradation efficiency was quantified by gas chromatographic analysis. As expected for psychrotrophs, diesel oil biodegradation was slower at 4 °C than at 20 °C. The two strains also mineralized the C28 n-paraffin octacosane at 20 °C and polychlorinated biphenyls (PCBs) at 4 °C and 20 °C.  相似文献   

18.
Two abundant and partly dominating lichen species, Celraria nivalis and Cetraria delisei , were compared with respect to their thallus water content and their gas-exchange response to light, temperature and moisture in the field and in the laboratory. C. nivalis had higher net photosynthetic rates than C. delisei . The differences between the species were more pronounced when photosynthesis was related to dry weight than to chlorophyll content. Light compensation and light saturation of photosynthesis increased with increasing temperature. Higher light compensation and saturation values were found in C. delisei than in C. nivalis . The chionophobous C. nivalis showed moisture compensation and optimum water content for net photosynthesis at higher thallus water contents than the chionophilous C. delisei . Depression of net photosynthesis at thallus saturation, found in both species, is thought to be due to the increased internal CO2 diffusive resistance at high thallus water content. The maximum thallus water contents of C. nivalis were higher than those of C. delisei . The lower drying rate, found in C. delisei in comparison with that of C. nivalis , is attributed to the more sheltered position of its habitat and to morphological characteristics.  相似文献   

19.
Summary. We have analysed the east-west tilt components, O1, K1, N2, M2 and S2 from a continuously recording tiltmeter located in Uwekahuna Vault on Kilauea Volcano, Hawaii, for the period 1971—79. Detailed analysis of the M2 component gives values of 30.9 ± 2.0 (95 per cent) nrad and 116.0 ± 2.0° for the amplitude and phase, respectively, compared to values of 48.5 nrad and 139.4° for the equilibrium tide. the total theoretical tide, found by summing the equilibrium and load tides, amounts to 37.2 nrad at a phase of 121.7°. the 20 per cent discrepancy with that observed may be due to an inaccurate cotical chart, cavity effects in the vault, strain—tilt coupling or an inappropriate solid earth model. In the vicinity of Hawaii (≤ 3°) two independent cotidal charts give almost identical results for the near field ocean load. At greater distances, we use the Schwiderski (1978) cotidal chart. We estimate that local cavity and strain—tilt coupling effects are less than 12 per cent owing to the agreement between geodetically determined and instrumental tilt but we can not rule out regional effects. Assuming these are small and the cotical charts correct, we find that the M2 results are brought into satisfactory agreement if, instead of using an average oceanic earth model in the (< 75 km) vicinity of Hawaii, we use an earth model with nearly one-half the oceanic rigidity. Such a low upper mantle and crustal rigidity is consistent with Kilauea's position above the thermal upwelling associated with the Hawaiian hotspot.  相似文献   

20.
In the northern Barents Sea Opening (BSO) the K1 tidal energy is predominant in the diurnal tidal frequency band, suggesting the generation of a topographic wave with the K1 tidal frequency. Tidal energy of the K1 component becomes strong where bottom topography undulates in the BSO and the scale of the undulation is close to the wavelength of the K1 wave. An analytical model is developed to investigate the energy enhancement mechanism of the tidally induced topographic wave due to a resonance between tidal current, a topographic wave and periodic topography. The wave excited by the resonance is identified as a resonant double Kelvin wave (DKW) and the significant K1 energy in the BSO could be due to the excitation of the resonant DKW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号