首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ice‐dammed lake at the margin of the glacier Sälkaglaciären, in the Kebnekaise Mountains in northern Sweden, drained suddenly in July 2003 producing a flood with a measured peak discharge of 9.5±0.25 m3s‐1. The total lake volume of 4.55×105 million3 drained within two days. The hydrograph of this event is characteristic of a jökulhlaup controlled by a single basal ice tunnel that enlarges due to melting. The jökulhlaup had an exponential rise to a peak discharge, and following the peak, a very steep fall in discharge as the water supply to the drainage system ceased. A similar jökulhlaup was observed in August 1990 with an estimated release of 8.05×105 m3 water. Jökulhlaups at Sälkaglaciären are recurring events and have been indirectly observed since the 1950s.  相似文献   

2.
Hooker Glacier in the central Southern Alps of New Zealand has undergone significant downwasting and recession (~2.14 km) during the last two centuries. High retreat rates (51 m a?1 1986–2001, 43 m a?1 2001–2011) have produced a large (1.22 km2) proglacial lake. We present a retreat scenario for Hooker Glacier. A retreat scenario predicts that the glacier terminus will stabilise >3 km up‐valley of the current lake outlet after 2028 when ice velocity equals calving rate.  相似文献   

3.
The well‐constrained seismic stratigraphy of the offshore Canterbury basin provides the opportunity to investigate long‐term changes in sediment supply related to the formation of a transpressive plate boundary (Alpine Fault). Reconstructions of the relative motion of the Australian and Pacific plates reveal divergence in the central Southern Alps prior to ~20.1 Ma (chron 6o), followed by increasing average rates of convergence, with a marked increase after ~6 Ma (late Miocene). A strike–slip component existed prior to 33.5 Ma (chron 13o) and perhaps as early as Eocene (45 Ma). However, rapid strike–slip motion (>30 mm yr?1) began at ~20.1 Ma (chron 6o). Since ~20.1 Ma there has been no significant change in the strike–slip component of relative plate motion. Sedimentation rates are calculated from individual sequence volumes that are then summed to represent sequence groups covering the same time periods as the tectonic reconstructions. Rates are relatively high (>22 mm yr?1), from 15 to ~11.5 Ma (sequence group 1). Rates decrease to a minimum (<15 mm yr?1) during the ~11.5–6 Ma interval (sequence group 2), followed by increased rates during the periods of ~6–2.6 Ma (21 mm yr?1; group 3) and 2.6–0 Ma (~25 mm yr?1; group 4). Good agreement between sedimentation and tectonic convergence rates in sequence groups 2–4 indicates that tectonism has been the dominant control on sediment supply to the Canterbury basin since ~11.5 Ma. In particular, high sedimentation rates of 21 and ~25 mm yr?1 in groups 3 and 4, respectively, may reflect increased plate convergence and uplift at the Southern Alps at ~6 Ma. The early‐middle Miocene (~15–11.5 Ma) high sedimentation rate (22 mm yr?1) correlates with low convergence rates (~2 mm yr?1) and is mainly a response to global climatic and eustatic forcing.  相似文献   

4.
《Polar Science》2014,8(4):370-384
An anomalous phytoplankton bloom was recorded in the Indian Ocean sector of the Antarctic Zone (AZ) of the Southern Ocean (SO) during the austral summer, 2011. Possible mechanisms for the triggering of such a large bloom were analyzed with the help of in situ and satellite data. The bloom, which formed in January 2011, intensified during February and weakened by March. High surface chlorophyll (Chl) concentrations (0.76 mg m−3) were observed in the area of the bloom (60°S, 47°E) with a Deep Chlorophyll Maximum (DCM) of 1.15 mg m−3 at a depth of 40–60 m. During 2011, both the concentration and spatial extent of sea ice were high on the western side of the bloom, between 0°E and 40°E, and enhanced freshwater influx was observed in the study area as a result of melting ice. A positive Southern Annular Mode (SAM) (with a resultant northward horizontal advection) and an intense La Niña during 2010–2011 are possible reasons for the high sea-ice concentrations. The enhanced Chl a observed in the study region, which can be attributed to the phytoplankton bloom, likely resulted from the influx of nutrient-laden freshwater derived from melting sea ice.  相似文献   

5.
Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ~13 km of basin strata provide a two‐ and three‐dimensional record of continuous deposition since ~18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5±0.5 Ma at the northernmost part of the foreland, to 8.6±0.1 Ma in the central (medial) part of the foreland and to 1.9±0.2, ~1.04 and 0.7±0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time‐transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9±3.3 Ma. Southward progradation occurred at an average rate of ~3 mm year?1 between 15.5 and 2 Ma, before accelerating to ~10 mm year?1. Abrupt changes in sediment‐accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ~4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4±0.1 and 1.4±0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross‐section through the foreland produces total shortening of 13–21 km and migration of the deformation front at 2.1–3.4 mm year?1 between 19 and 13.5 Ma, 1.4–1.6 mm year?1 between 13.5 and 4.0 Ma and 10 mm year?1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin‐capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5–6 Ma, increased sediment‐accumulation (~0.8 mm year?1) and gravel progradation (~10 mm year?1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (~10 mm year?1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland.  相似文献   

6.
Glacier mass balance and mass balance gradient are fundamentally affected by changes in glacier 3D geometry. Few studies have quantified changing mountain glacier 3D geometry, not least because of a dearth of suitable spatiotemporally distributed topographical information. Additionally, there can be significant uncertainty in georeferencing of historical data and subsequent calculations of the difference between successive surveys. This study presents multiple 3D glacier reconstructions and the associated mass balance response of Kårsaglaciären, which is a 0.89 ± 0.01 km2 mountain glacier in sub‐arctic Sweden. Reconstructions spanning 101 years were enabled by historical map digitisation and contemporary elevation and thickness surveys. By considering displacements between digitised maps via the identification of common tie‐points, uncertainty in both vertical and horizontal planes were estimated. Results demonstrate a long‐term trend of negative mass balance with an increase in mean elevation, total glacier retreat (1909–2008) of 1311 ± 12 m, and for the period 1926–2010 a volume decrease of 1.0 ± 0.3 × 10–3 km3 yr–1. Synthesising measurements of the glaciers’ past 3D geometry and ice thickness with theoretically calculated basal stress profiles explains the present thermal regime. The glacier is identified as being disproportionately fast in its rate of mass loss and relative to area, is the fastest retreating glacier in Sweden. Our long‐term dataset of glacier 3D geometry changes will be useful for testing models of the evolution of glacier characteristics and behaviour, and ultimately for improving predictions of meltwater production with climate change.  相似文献   

7.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

8.
Glacier Benito is a temperate outlet glacier on the west side of the North Patagonian Icefield. Rates of thinning and ablation were obtained using data collected by the British Joint Services Expedition in 1972/73 and subsequent data collected in 2007 and 2011. Ice‐front recession rates were based on dendrochronological dating for the terminal moraines and aerial and satellite imagery of the ice front in 1944, 1998 and 2002. Between the first Benito survey in 1973 and 2007, the lower glacier thinned by nearly 150 m at an average rate of 4.3 m yr?1 with the rate increasing to 6.1 m yr?1 between 2007 and 2011, a 28.7% increase during the latter period. Increases in ice movement and ablation were negligible: ice movement for 1973 and 2007 averaged 0.45 m day?1 and ablation averaged 0.05 m day?1. Ice front recession along the glacier's centre line from 1886 to 2002 was approximately 1860 m. Retreat rates between 1886 and 1944 averaged 8.9 m yr?1. Thereafter glacier asymmetry makes measurement along the glacier centre line unrepresentative of areal change until 1998 when symmetry was restored; retreat between 1944 and 1998 was 15.4 m yr?1. From 1998 to 2002 the rate increased dramatically to 127.2 m yr?1. Recession from the southern end of Benito's terminal moraine in the 1850s supports an early date for initial retreat of the Icefield's glaciers.  相似文献   

9.
This study evaluates interannual variations and trends in growing season daily temperature sum and daily precipitation sum in Finland during 1961–2011, and their connections to well known atmospheric circulation patterns. Changes in summer (June–August) climate partially explain changes in growing season daily temperature sum and daily precipitation sum over Finland, which naturally decreased from south to north. On a national scale, growing season warmed and became wetter during 1961–2011, as growing season daily temperature sum and daily precipitation sum significantly (p < 0.05) increased by 5.01 ± 3.17°C year–1 and 1.39 ± 0.91 mm year–1, respectively. The East Atlantic pattern was the most influential atmospheric circulation pattern for variations in growing season daily temperature sum (rho = 0.40) across Finland and the East Atlantic/West Russia pattern was most influential for growing season daily precipitation sum variability (rho = –0.54). There were significant (p < 0.05) increasing trends in growing season daily temperature sum and daily precipitation sum throughout Finland during 1961–2011. Increased growing season daily temperature sum was mainly observed in northern, central, western, eastern and coastal areas of south‐western Finland. This warming was positively associated with the East Atlantic pattern in the north, centre and south, but negatively associated with the East Atlantic/West Russia pattern in eastern Finland. Increased GSP mostly occurred in southern, eastern, western, central, northern and north‐western Finland. These wetting trends were positively correlated with the East Atlantic pattern in the north and negatively correlated with the Polar pattern in the south and the East Atlantic/West Russia pattern in the east, west, centre and north‐east of Finland. The overall agroclimatic year‐to‐year variability in Finland between 1961 and 2011 was mostly linked to variations in the East Atlantic and East Atlantic/West Russia patterns.  相似文献   

10.
Instantaneous mortality rates of the common planktonic copepod Oithona similis were investigated for the first time in Kola Bay, a region of the Barents Sea that is influenced by freshwater discharge. The rates were estimated in different seasons (December, May, September 2005 and July 2006). A vertical life table approach (VLT) was used to assess mortality. The total abundance of O. similis (copepodites IV and V, and adults) was highest in autumn and lowest in winter. The maximum mortality of O. similis for the stage pair copepodite IV–copepodite V (0.005 ± 0.001 day?1) occurred in December 2005, while the highest mortality rates for the pairs copepodite VM–adult male (0.453 ± 0.026 day?1) and copepodite VF–adult female (0.228 ± 0.006 day?1) occurred in summer 2006. Simple regression analyses showed that the total abundance of each stage and the mortality rates were positively significantly correlated with water temperature. The mortality rates for the stage pairs copepodite VM–adult male and copepodite VF–adult female were positively significantly correlated with chlorophyll a concentration. The abundance and mortality rate of O. similis in each season was determined by life cycle factors, and possibly by the dynamics of its food resources and potential predators.  相似文献   

11.
Measurements of winter balance (bw) and summer balance (bs) have been carried out at Storbreen since 1949. Here we apply a simple mass balance model to study the climate sensitivity and to reconstruct the mass balance series priorto 1949. The model is calibrated and validated with data from an automatic weather station (AWS) operating in the ablation zone of Storbreen since 2001. Regression analysis revealed that bw was best modelled using precipitation data southwest of the glacier. Results from the model compared well with reported mass balance values for the period 1949–2006, obtained correlations (r) for bw and bs varied between 0.83 and 0.87 depending on model set up. Reconstruction of the mass balance series for the period 1924/1925–1948/1949 suggested a cumulative mass deficit of c. 30 m w.e. mainly due to highly negative summer balances, but also lower bwthan the average for 1949–2006. Calculated change in specific mass balance for a ±1°C change in air temperature was ±0.55 m w.e., whereas a ±10 % increase in precipitation represented a change of ±0.20 m w.e. Model results further indicated that for a 2°C warming, the ablation season will be extended by c. 30 days and that the period of ice melt at the AWS location will increase from c. 40 to c. 80 days.  相似文献   

12.
During the deglaciation stages of the last glacial period a rock avalanche took place on the glacier that occupied the upper sector of the Cuerpo de Hombre Valley (Sierra de Béjar). The material displaced during the avalanche fell onto the ice, was transported by the glacier and later deposited as supraglacial ablation till. The cause of the avalanche was the decompression of the valley slopes after they were freed from the glacier ice (stress relaxation). Reconstruction of the ice masses has been carried out to quantify the stress relaxation that produced the collapse. The rock avalanche took place on a lithologically homogeneous slope with a dense fracture network. The avalanche left a 0.4 ha scar on the slope with a volume of displaced material of 623 ± 15 × 103 m3. The deposit is an accumulation of large, angular, heterometric boulders (1–100 m3 in volume) with a coarse pebble‐size matrix. The avalanche can be explained as a relaxation process. This implies rock decompression once the glacier retreat left the wall ice free (debuttressing). Calculations show that the avalanche took place where the decompression stresses were highest (130–170 kPa). In the Spanish Central System paleoglaciers the largest accumulation of morainic deposits occurred after the glacial maximum and the earliest stages of the ice retreat. The process described here is used as an example to formulate a hypothesis that the largest accumulations of tills were formed in relation to enhanced slope dynamics once some glacier retreat had occurred.  相似文献   

13.
Flow velocities of active rock glaciers in the Austrian Alps   总被引:1,自引:0,他引:1  
High surface flow velocities of up to 3 m a–1 were measured near the front of three active rock glaciers in the western Stubai Alps (Rei‐chenkar) and Ötztal Alps (Kaiserberg and Ölgrube) in Tyrol (Austria) using differential GPS technology. Flow velocities have increased since about 1990. The highest velocities were recorded in 2003 and 2004, but showed a slight decrease in 2005. At the Reichenkar rock glacier, flow rates are constant throughout the year, indicating that meltwater has no significant influence on the flow mechanism. At Ölgrube rock glacier, flow velocities vary seasonally with considerably higher velocities during the melt season. Meltwater is likely to influence the flow of Ölgrube rock glacier as evident by several springs near the base of the steep front. Because the high surface velocities cannot be explained by internal deformation alone on Reichenkar rock glacier, we assume that horizontal deformation must also occur along a well defined shear zone within a water‐saturated, fine‐grained layer at the base of the frozen body. The increased surface flow velocities since about 1990 are probably caused by slightly increased ice temperature and greater amounts of meltwater discharge during the summer, a product of global warming.  相似文献   

14.
Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990–1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. The difference between radio-echo sounding depth and measured drilling depth was about 4 m. Annual ablation (including snow, firn, and ice) measured for the 1990–1991 period averaged about 0.93 m/a. Densification proceeds rapidly on Upper Fremont Glacier. Measured densities in the near-surface parts of the glacier ranged from 4.4 x 105 g/m3 at the surface to larger than 8.5 x 105 g/m3 at depths exceeding 14 m. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. The yearly mean air temperature of the study site during the period from July 11, 1990 to July 10, 1991 was -6.9°. Borehole temperatures from 10-m depths are 0 ± 0.4°. The warmer borehole temperatures relative to the yearly mean air temperature may be caused by the latent heat of freezing, as meltwater from the surface percolates into the glacier and refreezes. [Key words: glaciers, Wyoming, Wind River Range, ice thickness, ablation rates.]  相似文献   

15.
A 70-year history of precipitation δ18O record has been retrieved using an ice core drilled from a plat portion of the firn area in the Guoqu Glacier (33o34′37.8″ N, 91o10′35.3″ E, 5720 m a.s.l.) on Mt. Geladaindong (the source region of Yangtze River) during October and November, 2005. Based on the seasonality of δ18O records and the significant positive relationships between monsoon/non-monsoon δ18O values and summer/spring air temperature from the nearby meteorological stations, the history of summer and spring air temperature have been reconstructed for the last 70 years. The results show that both summer and spring air temperature variations present similar trends during the last 70 years. Regression analysis indicates that the slope of the temperature-δ18O relationship is 1.3℃/‰ for non-monsoon δ18O values and spring air temperature, and 0.4℃/‰ for monsoon δ18O values and summer air temperature. Variation of air temperature recorded in the ice core is consistent with that in the Northern Hemisphere (NH), however, the warming trend in the Geladaindong region is more intense than that in the NH, reflecting a higher sensitivity to global warming in the high elevation regions. In addition, warming trend is greater in spring than in summer.  相似文献   

16.
Estimates of the physical boundary conditions on sediment source and sink regions and the flux between them provide insights into the evolution of topography and associated sedimentary basins. We present a regional‐scale, Plio‐Quaternary to recent sediment budget analysis of the Grande, Parapeti and Pilcomayo drainages of the central Andean fold‐thrust belt and related deposits in the Chaco foreland of southern Bolivia (18–23°S). We constrain source‐sink dimensions, fluxes and their errors with topographic maps, satellite imagery, a hydrologically conditioned digital elevation model, reconstructions of the San Juan del Oro (SJDO) erosion surface, foreland sediment isopachs and estimated denudation rates. Modern drainages range from 7453 to 86 798 km2 for a total source area of 153 632 km2. Palaeo‐drainage areas range from 9336 to 52 620 km2 and total 100 706 km2, suggesting basin source area growth of ~50% since ~10 Ma. About 2.4–3.1 × 104 km3 were excavated from below the SJDO surface since ~3 Ma. The modern foredeep is 132 080 km2 with fluvial megafan areas and volumes ranging from 6142 to 22 511 km2 and from 1511 to 3332 km3, respectively. Since Emborozú Formation deposition beginning 2.1 ± 0.2 Ma, the foreland has a fill of ~6.4 × 104 km3. The volume and rate of deposition require that at least ~40–60% of additional sediment be supplied beyond that incised from below the SJDO. The data also place a lower limit of ≥0.2 mm year?1 (perhaps ≥0.4 mm year?1) on the time‐ and space‐averaged source area denudation rate since ~2–3 Ma. These rates are within the median range measured for the Neogene, but are up to 2 orders of magnitude higher than some observations, as well as analytic solutions for basin topography and stratigraphy using a two‐dimensional mathematical model of foreland basin evolution. Source‐to‐sink sediment budget analyses and associated interpretations must explicitly and quantitatively reconcile all available area, volume and rate observations because of their inherent imprecision and the potential for magnification when they are convolved.  相似文献   

17.
The daily water balance for the drainage basin of Koryto Glacier, Kamchatka Peninsula, Russia, was calculated during the period from August to September 2000. The result shows that 14×106 m3 of meltwater and 2×106 m3 of rainwater entered the basin, while 26×106 m3 of water drained from the basin through proglacial streams. Thus, about ?9×106 m3 of water storage reduction occurred in the basin. Vertical displacements of the glacier surface showed that the volume change due to contraction of subglacial cavities was nearly 20% of the total storage change. The remaining fraction of water storage during the period is thought to be stored in englacial and supraglacial locations. The estimate of water balance components in the early ablation season in 2000 indicates that meltwater was already stored within the glacier before the spring, even during the previous year, and that the stored water drained through the ablation season.  相似文献   

18.
This study was performed at three eutrophic rivers in Southeast China aiming to determine the magnitude and patterns of dissolved N2O concentrations and fluxes over a seasonal (in 2009) and diurnal (24 h) temporal scale.The results showed that N2O concentrations varied from 0.28 to 0.38 (mean 0.32±0.04),0.29 to 0.46 (mean 0.37±0.07),and 2.07 to 3.47 (mean 2.84±0.63) μg N-N2O L-1 in the Fengle,Hangbu and Nanfei rivers,respectively,in the diurnal study performed during the summer of 2008.The study found that mean N2O concentration and estimated N2O flux (67.89 ± 6.71 μg N-N2O m-2 h-1) measured from the Nanfei River with serious urban wastewater pollution was significantly higher than those from the Fengle and the Hangbu Rivers with agricultural runoff.In addition,the seasonal study during June and December of 2009 also showed that the mean N2O concentration (10.59±14.67 μg N-N2O L-1) and flux (236.87±449.74 μg N-N2O m-2 h-1) observed from the Nanfei River were significantly higher than those from the other two rivers.Our study demonstrated both N2O concentrations and fluxes exhibited seasonal and diurnal fluctuations.Over three consecutive days during the summer of 2008,N2O accumulation rates varied within the range of 3.91-7.21,2.76-15.71,and 3.23-30.03 μg N-N2O m-2 h-1 for the Fengle,Hangbu and Nanfei Rivers,respectively,and exponentially decreased with time.  相似文献   

19.
A sediment core section from Längsee, a small meromictic lake in the southern Alpine lowland (Carinthia, Austria) close to the Würmian ice margin, was investigated by means of diatoms and pollen. The main aims of the study were to reconstruct water temperature as a signal of climate change during the last glacial termination, compare the aquatic and terrestrial response to the changing climate, and place our findings into a climatic frame on the northern hemispheric scale. A calibration data set (ALPS06) of 116 lakes was constructed using data from newly studied lakes and from two previously published data sets and we established a transfer function for predicting summer epilimnetic water temperatures (SEWT). A locally weighted weighted average regression and calibration model (R jack 2  = 0.89; RSMEP = 1.82°C) was applied to the fossil diatom assemblages in order to reconstruct SEWT. Three major sections were distinguished in the time window of approximately 19–13 cal ka BP, which fitted well with the oxygen isotope curve and the isotope-event stratigraphy from the Greenland ice-core GRIP. The first section was a warming period (SEWT range from 11.6 to 18.0°C; average 15.8°C = ca. 6°C below present) called the Längsee oscillation, which probably correlates with the warmer sub-section (GS-2b) of the Greenland Stadial 2. The subsequent section represents a climate cooling, called the Längsee cold period (SEWT range between 10.6 and 15.9°C; average 12.9°C), which probably corresponds with the sub-section GS-2a of the Greenland Stadial 2, the Heinrich 1 cold event of the North Atlantic, and partially the Gschnitz Stadial in the Alps. The Längsee cold period shows a tri-partition: Two colder phases are separated by a warmer inter-phase. The passive ordination of the core sample scores along maximum water depth indicated that the Längsee cold period was drier than the Längsee oscillation. Strong short-term fluctuations during the Längsee oscillation and the Längsee cold period indicate climate instability. The third section represented climate warming during the Längsee late glacial interstadial (=Greenland Interstadial 1, GI-1) with an average SEWT of 17.5°C. From the minor climatic fluctuations during this interstadial, mainly indicated by pollen, the fluctuation most likely related to the Gerzensee oscillation showed a SEWT decline. During the early immigration and expansion period of shrubs and trees, aquatic and terrestrial records showed distinct discrepancies that might have arose because of time lags in response and differences in sensitivity.  相似文献   

20.
Estuarine wetlands serve as a natural barrier to remove the land-generated pollut-ants and attenuate the pollutant load from the land to the sea. As one of the most important estuarine wetlands, the Yangtze estuarine wetlands have attracted particular interests in the biogeochemical studies of nutrients. The objectives of this study were to characterize the seasonal and spatial distribution of dissolved inorganic nitrogen (DIN) fluxes across the sediment-water interface; to calculate the total DIN fluxes in a year and different seasons; and to evaluate the DIN removing capability of the sediment in the tidal wetlands of the Yangtze Estuary. The spatial distribution of DIN fluxes shows complicated seasonal variations and spatial differences. The annual DIN fluxes range from -22.22 mmol N m-2 h-1 to 19.54 mmolN m-2 h-1, with an average of -1.48±1.34 mmol N m-2 h-1. The tidal wetlands in the Yangtze Estuary behave as a source of water DIN in spring when DIN is released from sediment into overlying water, and the released amount of DIN is 1.33×104 tons of nitrogen (T N). In sum-mer, autumn and winter, the sediment absorbs the DIN from the overlying water, and the absorbed amounts of DIN are 4.36×104 T N, 6.81×104 T N and 2.24×104 T N, respectively. The average amount of DIN in overlying water of the Yangtze Estuary is 52.6×104 T N yr-1, and the perennial average amount of DIN absorbed from the overlying water by the sediment is 12.1×104 T N yr-1. The annual DIN elimination rate of the tidal wetlands was 23.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号