首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT This paper investigates syn‐rift stratigraphic architecture and facies relationships along a 7 km long strike section towards the tip of a major, basin‐bounding normal fault segment (Thal Fault) in the Suez Rift, Egypt. In this location, the fault is composed of two precursor fault strands, Gushea and Abu Ideimat, linked by a jog or transfer fault. We document a Miocene syn‐rift succession, deposited more than c. 5.5 Myr after rift initiation, that is composed of a range of carbonate‐clastic facies associated with coarse‐grained deltaic, shoreface and offshore depositional systems. Key regionally correlatable stratal surfaces within this succession define time equivalent stratal units that exhibit variability in thickness and architecture, related to the interplay of both regional and local controls, in particular, the evolution of two, small‐scale (<6 km long) precursor fault strands (Gushea and Abu Ideimat). Integration of structural and stratigraphic data indicates that the boundary (relay ramp) between these two fault strands was a relative high during much of the rift event, with hard‐linkage and considerable displacement accumulation not occurring until at least c. 7.5 Myr after rift initiation. This is because: (i) the preserved stratigraphy is thinner in the hanging wall of the strand boundary; (ii) a eustatic sea‐level fall with an amplitude of 100 m generated more than 25 m of incision at the strand boundary, a region that has a final fault displacement of c. 600 m; and (iii) the fault strand boundary persisted as a footwall low and transport pathway for coarse‐grained deltas entering the basin. This study indicates that variability in stratal thickness and stratigraphic architecture towards the tip of the Thal Fault was related to the linkage history of two small‐scale (c. 6 km long) precursor fault segments. We suggest that similar, small‐scale stratal variability may occur repeatedly along the entire length of major basin‐bounding fault segments due to the process of fault growth by the linkage of smaller scale precursor strands.  相似文献   

2.
This paper investigates the tectono‐stratigraphic development of a major, segmented rift border fault (Thal Fault) during ca. 6 Myr of initial rifting in the Suez Rift, Egypt. The Thal Fault is interpreted to have evolved by the progressive linkage of at least four fault segments. We focus on two contrasting structural settings in its hangingwall: Gushea, towards the northern tip of the fault, and Musaba Salaama, ca. 20 km along‐strike to the south, towards the centre of the fault. The early syn‐rift stratigraphic succession passes upwards from continental facies, through a condensed marginal marine shell‐rich facies, into fully marine shoreface sandstone and offshore mudstone. Regionally correlatable stratal surfaces within this succession define time‐equivalent stratal units that exhibit considerable along‐strike variability in thickness and facies architecture. During the initial ca. 6 Myr of rifting, the thickest stratigraphy developed towards the centre of the array of fault segments that subsequently hard linked to form the Thal Fault. Thus, a displacement gradient existed between fault segments at the centre and tip of the fault array, suggesting that the fault segments interacted, and a fixed length was established for the fault array, at an early stage in rifting. Towards the centre of the Thal Fault the early syn‐rift succession shows pronounced thickening away from the fault and towards a series of intra‐block antithetic faults that were active for up to ca. 6 Myr. This indicates that a large proportion of fault‐controlled subsidence during the initial ca. 6 Myr of rifting occurred in the hangingwalls of antithetic intra‐block faults, and not the present‐day Thal Fault. The antithetic faults progressively switched off during rifting such that after ca. 6 Myr of rifting, fault‐activity had localised on the Thal Fault enabling it to accrue to the present‐day high level of displacement. Aspects of the development of the Thal Fault appear to be in contrast to many models of fault evolution that predict large‐displacement rift‐climax faults to have always had the greatest displacement during fault population evolution. This study has implications for tectono‐stratigraphic development during early rift basin evolution. In particular, we stress that caution must be taken when relating final rift‐climax fault structure to the early tectono‐stratigraphy, as these may differ considerably.  相似文献   

3.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

4.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

5.
Through the investigation of crustal heterogeneities, sedimentary basin architecture and seismic stratigraphy, we demonstrate how a crust‐scale anisotropy controls the initiation of rifting and the subsequent structural and sedimentological evolution of the Mesozoic Gamtoos Basin, southern South Africa. The results demonstrate that the >90‐km‐long Gamtoos Fault established its length very early in its syn‐rift phase (within ~5 Ma of rift initiation) before accruing over 6 s (two‐way‐travel time (TWT)), or >12 km, of displacement without any significant subsequent increase in length. In addition, there is no evidence at the resolution of the data of fault segmentation, isolated depocentres nor of intra‐basin faults progressively coalescing during the syn‐rift interval. The early establishment of length resulted in a rapid transition from a terrestrial depositional environment to anoxic, deep marine conditions. The Gamtoos Fault has a 90° bend in the fault trace that we propose is inherited from the underlying structure. Immediately adjacent to the bend the basin‐fill is significantly deformed and a high‐amplitude (>1.7s TWT) monoclinal fold is observed. Previous workers proposed that the fold was a consequence of a complex interplay between compression and extension. Through a restoration of the basin‐fill deformation we produce a model that suggests that the fold is a consequence of the accommodation of extension by the unusual plan‐view trace of the fault. The evolution of the basin does not conform to current fault growth models and it is proposed that its unusual and complex development can be attributed to the underlying crustal‐scale anisotropy, a fact that is likely to be important in other areas in which crustal stretching is superimposed on heterogeneous continental crust.  相似文献   

6.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

7.
Tectonic inversion models predict that stratigraphic thickening and local facies patterns adjacent to reactivated fault systems should record at least two phases of basin development: (1) initial extension‐related subsidence and (2) subsequent shortening‐induced uplift. In the central Peloncillo Mountains of southwestern New Mexico, thickness trends, distribution, and provenance of two major stratigraphic intervals on opposite sides of a northwest‐striking reverse fault preserve a record of Early Cretaceous normal displacement and latest Cretaceous–Paleogene reverse displacement along the fault. The Aptian–Albian Bisbee Group thickens by a factor of three from the footwall to the hanging‐wall block, and the Late Cretaceous?–Eocene Bobcat Hill Formation is preserved only in the footwall block. An initial episode of normal faulting resulted in thickening of upper Aptian–middle Albian, mixed siliciclastic and carbonate deposits and an up section change from coarse‐grained deltas to shallow‐marine depositional conditions. A second episode of normal faulting caused abrupt thickening of upper Albian, quartzose coastal‐plain deposits across the fault. These faulting episodes record two events of extension that affected the northern rift shoulder of the Bisbee basin. The third faulting episode was oblique‐slip, reverse reactivation of the fault and other related, former normal faults. Alluvial and pyroclastic deposits of the Bobcat Hill Formation record inversion of the Bisbee basin and development of an intermontane basin directly adjacent to the former rift basin. Inversion was coeval with latest Cretaceous–Paleogene shortening and magmatism. This offset history offers significant insight into extensional basin tectonics in the Early Cretaceous and permits rejection of models of long‐term Mesozoic shortening and orogen migration during the Cretaceous. This paper also illustrates how episodes of fault reactivation modify, in very short distances (<10 km), regional patterns of subsidence, the distribution of sediment‐source areas, and sedimentary depositional systems.  相似文献   

8.
Swath bathymetry, single‐channel seismic profiling, gravity and box coring, 210Pb down‐core radiochemical analyses and sequence stratigraphic analysis in the Gulf of Alkyonides yielded new data on the evolution of the easternmost part of the Gulf of Corinth. Three fault segments, the South Strava, West Alkyonides and East Alkyonides faults, dipping 45, 30 and 45°, respectively, northwards, form the southern tectonic boundary of the Alkyonides Basin. Two 45° southwards dipping segments, the Domvrena and Germeno Faults, form the northern tectonic margin. The Alkyonides Basin architecture is the result of a complex interaction between fault dynamics and the effects of changes in climate and sea/lake level. Chrono‐stratigraphic interpretation of the seismic stratigraphy through correlation of the successive seismic packages with lowstands and highstands of the Late Quaternary indicates that the evolution of the basin started 0.40–0.45 Ma BP and can be divided in two stages. Subsidence of the basin floor during the early stage was uniform across the basin and the mean sedimentation rate was 1.0 m kyear?1. Vertical slip acceleration on the southern tectonic margin since 0.13 Ma BP resulted in the present asymmetric character of the basin. Subsidence concentrated close to the southern margin and sedimentation rate increased to 1.4 m kyear?1 in the newly formed depocentre of the basin. Actual (last 100 year) sedimentation rates were calculated to >2 mm year?1, but are significantly influenced by the presence of episodic gravity flow deposits. Total vertical displacement of 1.1 km is estimated between the subsiding Alkyonides Basin floor and the uplifting Megara Basin since the onset of basin subsidence at a mean rate of 2.4–2.75 m kyear?1, recorded on the East Alkyonides Fault. Gravity coring in the Strava Graben and in the lower northern margin of Alkyonides Basin proved the presence of whitish to olive grey laminated mud below thin marine sediments. Aragonite crystals and absence of the marine coccolithophora Emiliania huxleyi indicate sedimentation in lacustrine environment during the last lowstand glacial interval.  相似文献   

9.
We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on‐shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low‐angle top‐to‐the‐west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse‐grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian‐early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike‐slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn‐depositional tectonic activity are marked by well‐exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene‐Quaternary times: (1) Serravallian low‐angle normal faulting; (2) middle Tortonian high‐angle syn‐sedimentary normal faulting; (3) Messinian‐Quaternary high‐angle normal faulting. Extensional tectonics controlled the exhumation of high‐P/low‐T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW‐ESE stretching direction (present‐day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DS1 show a post‐Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south‐eastward and rotated clockwise as a part of the Calabria‐Peloritani terrane.  相似文献   

10.
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units.  相似文献   

11.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

12.
The impact of a pre‐existing rift fabric on normal fault array evolution during a subsequent phase of lithospheric extension is investigated using 2‐D and 3‐D seismic reflection, and borehole data from the northern Horda Platform, Norwegian North Sea. Two fault populations are developed: (i) a population comprising relatively tall (>2 km), N‐S‐striking faults, which have >1.5 km of throw. These faults are up to 60 km long, penetrate down into crystalline basement and bound the eastern margins of 6–15 km wide half‐graben, which contain >3 km of pre‐Jurassic, likely Permo–Triassic, but possibly Devonian syn‐rift strata; and (ii) a population comprising vertically restricted (<1 km), NW‐SE‐striking faults, which are more closely spaced (0.5–5 km), have lower displacements (30–100 m) and not as long (2–10 km) as those in the N–S‐striking population. The NW‐SE‐striking population typically occurs between the N‐S‐striking population, and may terminate against or cross‐cut the larger structures. NW–SE‐striking faults do not bound pre‐Jurassic half‐graben and are largely restricted to the Jurassic‐to‐Cretaceous succession. Seismic‐stratigraphic observations, and the stratigraphic position of the fault tips in both fault populations, allow us to reconstruct the Late Jurassic‐to‐Early Cretaceous growth history of the northern Horda Platform fault array. We suggest the large, N‐S‐striking population was active during the Permo–Triassic and possibly earlier (Devonian?), before becoming inactive and buried during the Early and Middle Jurassic. After a period of relative tectonic quiescence, the N‐S‐striking, pre‐Jurassic fault population propagated through the Early‐Middle Jurassic cover and individual fault systems rapidly (within <10 Ma) established their maximum length in response to Late Jurassic extension. These fault systems became the dominant structures in the newly formed fault array and defined the locations of the main, Late Jurassic‐to‐Early Cretaceous, syn‐rift depocentres. Late Jurassic extension was also accommodated by broadly synchronous growth of the NW‐SE‐striking fault population; the eventual death of this population occurred in response to the localization of strain onto the N–S‐striking fault population. Our study demonstrates that the inheritance of a pre‐existing rift fabric can influence the geometry and growth of individual fault systems and the fault array as a whole. On the basis of observations made in this study, we present a conceptual model that highlights the influence of a pre‐existing rift fabric on fault array evolution in polyphase rifts.  相似文献   

13.
Through examination of the scaling relations of faults and the use of seismic stratigraphic techniques, we demonstrate how the temporal and spatial evolution of the fault population in a half-graben basin can be accurately reconstructed. The basin bounded by the ≫62-km-long Strathspey–Brent–Statfjord fault array is located on the western flank of the Late Jurassic northern North Sea rift basin. Along-strike displacement variations, transverse fault-displacement folds and palaeo-fault tips abandoned in the hangingwall all provide evidence that the fault system comprises a hierarchy of linked palaeo-segments. The displacement variations developed while the fault was in a prelinkage, multisegment stage of its growth have not been equilibrated following fault linkage. Using the stratal architecture of synrift sediments, we date the main phase of segment linkage as latest Callovian – middle Oxfordian (10–14 Myr after rift initiation). A dense subpopulation of faults is mapped in the hangingwall to the Strathspey–Brent–Statfjord fault array. The majority of these faults are short, of low displacement and became inactive within 3–4 Myr of the beginning of the extensional event. Subsequently, only the segments of the proto-Strathspey–Brent–Statfjord fault and a conjugate array of antithetic faults located 3.5 km basinward continued to grow to define a graben-like basin geometry. Faults of the antithetic array became inactive ∼11.5 Myr into the rift event, concentrating strain on the linked Strathspey–Brent–Statfjord fault; hence, the basin evolved into a half-graben. As the rift event progressed, strain was localized on a smaller number of active structures with increased rates of displacement. The results of this study suggest that a simple model for the linkage of 2–3 fault segments may not be applicable to a complex multisegment array.  相似文献   

14.
The Dead Sea is an extensional basin developing along a transform fault plate boundary. It is also a terminal salt basin. Without knowledge of precise stratigraphy, it is difficult to differentiate between the role of plate and salt tectonics on sedimentary accumulation and deformation patterns. While the environmental conditions responsible for sediment supply are reasonably constrained by previous studies on the lake margins, the current study focuses on deciphering the detailed stratigraphy across the entire northern Dead Sea basin as well as syn and post-depositional processes. The sedimentary architecture of the late Quaternary lacustrine succession was examined by integrating 851 km of seismic reflection data from three surveys with gamma ray and velocity logs and the stratigraphic division from an ICDP borehole cored in 2010. This allowed seismic interpretation to be anchored in time across the entire basin. Key surfaces were mapped based on borehole lithology and a newly constructed synthetic seismogram. Average interval velocities were used to calculate isopach maps and spatial and temporal sedimentation rates. Results show that the Amora Formation was deposited in a pre-existing graben bounded by two N-S trending longitudinal faults. Both faults remained active during deposition of the late Pleistocene Samra and Lisan Formations—the eastern fault continued to bound the basin while the western fault remained blind. On-going plate motion introduced a third longitudinal fault, increasing accommodation space westwards from the onset of deposition of the Samra Formation. During accumulation of these two formations, sedimentation rates were uniform over the lake and similar. High lake levels caused an increase in hydrostatic pressure. This led to salt withdrawal, which flowed to the south and southwest causing increased uplift of the Lisan and En Gedi diapirs and the formation of localized salt rim synclines. This induced local seismicity and slumping, resulting in an increased thickness of the Lisan succession within the lake relative to its margins. Sedimentation rates of the Holocene Ze'elim Fm were 4–5 times higher than before. The analysis presented here resolves central questions of spatial extent and timing of lithology, deposition rates and their variability across the basin, timing of faulting at and below the lake floor, and timing and extent of salt and plate tectonic phases and their effect on syn and post-depositional processes. Plate tectonics dictated the structure of the basin, while salt tectonics and sediment accumulation were primarily responsible for its fill architecture during the timeframe examined here.  相似文献   

15.
The base of the Late Devonian–Early Carboniferous Drummond Basin, a major backarc extensional feature in eastern Australia which formed in response to detachment faulting, is extensively exposed in central Queensland. Here a crystalline basin floor is overlain by the Silver Hills Volcanics, a synrift sequence of predominantly silicic ash flow tuffs and lavas ranging to over 2 km in thickness. Detailed mapping of faults and stratigraphic logging of thickness changes within the Silver Hills Volcanics have allowed the rift-phase structural architecture that accompanied initial subsidence near the basin margin to be resolved. A complex mosaic of block faults with throws of up to 1 km is indicated. Locally developed mosaics may conform to, or depart from, the configuration predicted by the detachment faulting model. Structural fabric of the basement was a critical determinant of the extensional geometry. Distributed shear along pre-existing penetrative planar fabrics is considered to have accommodated hangingwall extension at lower strain rates whereas the propagation of tension fractures and the development of block faults by failure on pre-existing, brittle, basement dislocations facilitated extension at higher strain rates. The detachment fault inferred to lie beneath the extended hangingwall carapace has not been mapped at the surface and is thought to dissipate into a broad zone of distributed shear within basement to the east of the basin. Volcanism coincided with the initiation of extensional movements at which time deep crustal repositories for evolved magma were tapped by extensional fractures. The main extensional faults cutting the basinal succession were not used as conduits for magmatic products which were sourced from the basin margin and from extended hinterland to the east.  相似文献   

16.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

17.
The Middle Devonian Kvamshesten Basin in western Norway is a late-orogenic basin situated in the hangingwall of the regional extensional Nordfjord–Sogn Detachment Zone. The basin is folded into a syncline with the axis subparallel to the ductile lineations in the detachment zone. The structural and stratigraphic development of the Kvamshesten Basin indicates that the basin history is more complex than hitherto recognized. The parallelism stated by previous workers between mylonitic lineation below the basin and intrabasinal fold axes is only partly reflected in the configuration of sedimentary units and in the time-relations between deposits on opposing basin margins. The basin shows a pronounced asymmetry in the organization and timing of sedimentary facies units. The present northern basin margin was characterized by bypass or erosion at the earliest stage of basin formation, but was subsequently onlapped and eventually overlain by fanglomerates and sandstones organized in well-defined coarsening-upwards successions. The oldest and thickest depositional units are situated along the present southern basin margin. This as well as onlap relations towards basement at low stratigraphic level indicates a significant component of southwards tilt of the basin floor during the earliest stages of deposition. The inferred south-eastwards tilt was most likely produced by north-westwards extension during early stages of basin formation. Synsedimentary intrabasinal faults show that at high stratigraphic levels, the basin was extending in an E–W as well as a N–S direction. Thus, the basin records an anticlockwise rotation of the syndepositional strain field. In addition, our observations indicate that shortening normal to the extension direction cannot have been both syndepositional and continuous, as suggested by previous authors. Through most of its history, the basin was controlled by a listric, ramp-flat low-angle fault that developed into a scoop shape or was flanked by transfer faults. The basin-controlling fault was rooted in the extensional mylonite zone. Sedimentation was accompanied by formation of a NE- to N-trending extensional rollover fold pair, evidenced by thickness variations in the marginal fan complexes, onlap relations towards basement and the fanning wedge geometry displayed by the Devonian strata. Further E–W extension was accompanied by N–S shortening, resulting in extension-parallel folds and thrusts that mainly post-date the preserved basin stratigraphy. During shortening, conjugate extensional faults were rotated to steeper dips on the flanks of a basin-wide syncline and re-activated as strike-slip faults. The present scoop-shaped, low-angle Dalsfjord fault cross-cut the folded basin and juxtaposed it against the extensional mylonites in the footwall of the Nordfjord–Sogn detachment. Much of this juxtaposition may post-date sedimentation in the preserved parts of the basin. Basinal asymmetry as well as variations in this asymmetry on a regional scale may be explained by the Kvamshesten and other Devonian basins in western Norway developing in a strain regime affected by large-scale sinistral strike-slip subparallel to the Caledonian orogen.  相似文献   

18.
The Porcupine Basin is a Mesozoic failed rift located in the North Atlantic margin, SW of Ireland, in which a postrift phase of extensional faulting and reactivation of synrift faults occurred during the Mid–Late Eocene. Fault zones are known to act as either conduits or barriers for fluid flow and to contribute to overpressure. Yet, little is known about the distribution of fluids and their relation to the tectono‐stratigraphic architecture of the Porcupine Basin. One way to tackle this aspect is by assessing seismic (Vp) and petrophysical (e.g., porosity) properties of the basin stratigraphy. Here, we use for the first time in the Porcupine Basin 10‐km‐long‐streamer data to perform traveltime tomography of first arrivals and retrieve the 2D Vp structure of the postrift sequence along a ~130‐km‐long EW profile across the northern Porcupine Basin. A new Vp–density relationship is derived from the exploration wells tied to the seismic line to estimate density and bulk porosity of the Cenozoic postrift sequence from the tomographic result. The Vp model covers the shallowest 4 km of the basin and reveals a steeper vertical velocity gradient in the centre of the basin than in the flanks. This variation together with a relatively thick Neogene and Quaternary sediment accumulation in the centre of the basin suggests higher overburden pressure and compaction compared to the margins, implying fluid flow towards the edges of the basin driven by differential compaction. The Vp model also reveals two prominent subvertical low‐velocity bodies on the western margin of the basin. The tomographic model in combination with the time‐migrated seismic section shows that whereas the first anomaly spatially coincides with the western basin‐bounding fault, the second body occurs within the hangingwall of the fault, where no major faulting is observed. Porosity estimates suggest that this latter anomaly indicates pore overpressure of sandier Early–Mid Eocene units. Lithological well control together with fault displacement analysis suggests that the western basin‐bounding fault can act as a hydraulic barrier for fluids migrating from the centre of the basin towards its flanks, favouring fluid compartmentalization and overpressure of sandier units of its hangingwall.  相似文献   

19.
Lower Cretaceous early syn‐rift facies along the eastern flank of the Eastern Cordillera of Colombia, their provenance, and structural context, reveal the complex interactions between Cretaceous extension, spatio‐temporal trends in associated sedimentation, and subsequent inversion of the Cretaceous Guatiquía paleo‐rift. South of 4°30′N lat, early syn‐rift alluvial sequences in former extensional footwall areas were contemporaneous with fan‐delta deposits in shallow marine environments in adjacent hanging‐wall areas. In general, footwall erosion was more pronounced in the southern part of the paleorift. In contrast, early syn‐rift sequences in former footwall areas in the northern rift sectors mainly comprise shallow marine supratidal sabkha to intertidal strata, whereas hanging‐wall units display rapid transitions to open‐sea shales. In comparison with the southern paleo‐rift sector, fan‐delta deposits in the north are scarce, and provenance suggests negligible footwall erosion. The southern graben segment had longer, and less numerous normal faults, whereas the northern graben segment was characterized by shorter, rectilinear faults. To the east, the graben system was bounded by major basin‐margin faults with protracted activity and greater throw as compared with intrabasinal faults to the west. Intrabasinal structures grew through segment linkage and probably interacted kinematically with basin‐margin faults. Basin‐margin faults constitute a coherent fault system that was conditioned by pre‐existing basement fabrics. Structural mapping, analysis of present‐day topography, and balanced cross sections indicate that positive inversion of extensional structures was focused along basin‐bounding faults, whereas intrabasinal faults remained unaffected and were passively transported by motion along the basin‐bounding faults. Thus, zones of maximum subsidence in extension accommodated maximum elevation in contraction, and former topographic highs remained as elevated areas. This documents the role of basin‐bounding faults as multiphased, long‐lived features conditioned by basement discontinuities. Inversion of basin‐bounding faults was more efficient in the southern than in the northern graben segment, possibly documenting the inheritance and pivotal role of fault‐displacement gradients. Our observations highlight similarities between inversion features in orogenic belts and intra‐plate basins, emphasizing the importance of the observed phenomena as predictive tools in the spatiotemporal analysis of inversion histories in orogens, as well as in hydrocarbon and mineral deposits exploration.  相似文献   

20.
Detailed structural cross‐sections, analysis of extensional structures and palaeotemperatures obtained from primary fluid inclusions in quartz and calcite veins from the extensional Cameros Basin (N Spain) allow an interpretation of its thermal evolution and its geometric reconstruction to be constrained. The Cameros Basin underwent an extensional stage during the Late Jurassic to Early Cretaceous, with a maximum preserved thickness of Mesozoic deposits of about 9000 m. During the Tertiary, the basin was inverted, allowing a large part of the sedimentary sequence to be exposed. Extensional deformation in individual beds created N120E‐striking tension gashes in the synrift sequence, parallel to the master normal faults limiting the basin and dipping perpendicular to bedding. The extensional strain calculated from tension gashes varies between 4 and 12%. The number and thickness of veins increases the lower their position in the stratigraphic section. Palaeotemperatures were obtained from samples along a stratigraphic section comprising a thickness of 4000 m synrift deposits. Homogenization temperatures range from 107 to 225 °C. Palaeothermometric data and geometric reconstruction give a geothermal gradient of 27–41 °C km?1 during the extensional stage and allow an eroded section of at least 1500 m to be inferred. Low‐grade metamorphic assemblages in lutitic rocks of the deepest part of the basin presently exposed at surface imply P–T conditions of 350–400 °C and less than 2 kbar, which implies a geothermal gradient of about 70 °C km?1. Since the metamorphic thermal peak is dated at 100 Ma, the P–T path indicates a heating event during the late Albian, probably linked to the reaching of thermal equilibrium of the continental crust after extension. The results obtained support the hypothesis of a synclinal basin geometry, with vertical superposition of Lower Cretaceous sedimentary units rather than a model of laterally juxtaposed bodies onlapping the prerift sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号