首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Studies in the middle Basento river basin supported by reliable chronological data (tephra layers and a number of absolute datings) have allowed the reconstruction of Late Pleistocene–Holocene geomorphological evolution of the middle to low Fossa Bradanica area (Basilicata, southern Italy). The original Upper Pleistocene hillslope has been dissected by deep gullies leaving relict slope pediments. Holocene filling of the Basento river valley and gullies occurred as a succession of downcut and fill episodes. A first phase of accumulation occurred in the Late Neolithic, which was followed by a downcutting between 4500 and 3700 cal. yr BP. A second deposition phase took place in the Greek–Roman period between 2800 and 1620 cal. yr BP, which was interrupted at around 2500 cal. yr BP. Another downcutting phase took place between 1620 and 1500 cal. yr BP, followed by a deposition phase between 1440 and 1000 cal. yr BP. After 1000 cal. yr BP a deep downcutting took place. Evidence collected with this study, coupled with climate data recorded in other Italian and European locations, suggests that filling and downcutting episodes in Fossa Bradanica were predominantly climate-driven. Anthropogenic impact only intensified or weakened these processes.  相似文献   

2.
Lacustrine records from the northern margin of the East Asian monsoon generate a conflicting picture of Holocene monsoonal precipitation change. To seek an integrated view of East Asian monsoon variability during the Holocene, an 8.5-m-long sediment core recovered in the depocenter of Dali Lake in central-eastern Inner Mongolia was analyzed at 1-cm intervals for total organic and inorganic carbon concentrations. The data indicate that Dali Lake reached its highest level during the early Holocene (11,500–7,600 cal yr BP). The middle Holocene (7,600–3,450 cal yr BP) was characterized by dramatic fluctuations in the lake level with three intervals of lower lake stands occurring 6,600–5,850, 5,100–4,850 and 4,450–3,750 cal yr BP, respectively. During the late Holocene (3,450 cal yr BP to present), the lake displayed a general shrinking trend with the lowest levels at three episodes of 3,150–2,650, 1,650–1,150 and 550–200 cal yr BP. We infer that the expansion of the lake during the early Holocene would have resulted from the input of the snow/ice melt, rather than the monsoonal precipitation, in response to the increase in summer solar radiation in the Northern Hemisphere. We also interpret the rise in the lake level since ca. 7,600 cal yr BP as closely related to increased monsoonal precipitation over the lake region resulting from increased temperature and size of the Western Pacific Warm Pool and a westward shifted and strengthened Kuroshio Current in the western Pacific. Moreover, high variability of the East Asian monsoon climate since 7,600 cal yr BP, marked by large fluctuations in the lake level, might have been directly associated with variations in the intensity and frequency of the El Niño-Southern Oscillation (ENSO) events.  相似文献   

3.
Two cores from Trout Lake, northern Yukon, yielded quantitative estimates of summer air temperatures using fossil midge larvae. Warming began around 14,400?cal?yr BP, with inferred mean July air temperatures reaching values warmer than present by 12,800?cal?yr BP. A 1?°C cooling from 12,200 to 11,200?cal?yr BP closely corresponds with the Younger Dryas chronozone. A broad temperature maximum occurred between 10,800 and 9,800?cal?yr BP, with mean July air temperature about 2.2?°C warmer than present. This represents an early Holocene thermal maximum and coincides with increased organic content of the sediment. Both the shallow- and deep-water cores show similar temperature trends for their overlapping periods. The inferred rise in mean July air temperature at 14,200?cal?yr BP coincides with a shift in vegetation from an herb- to shrub-dominated landscape. In contrast, the increase in Alnus pollen at 6,400?cal?yr BP does not coincide with a change in temperature, but may be a response to a rise in precipitation.  相似文献   

4.
《自然地理学》2013,34(5):438-456
Few long-term records of the fire history of Rocky Mountain National Park exist. Data from a lake sediment core was used to reconstruct changes in vegetation and fire frequencies over the last 7000 cal yr. Bear Lake is a high-elevation lake surrounded by subalpine vegetation in Rocky Mountain National Park, Colorado. Pollen data indicate that a warm and dry climate prevailed between ca. 7000 and 5000 cal yr BP. Temperatures increased until shortly before ca. 3500 cal yr BP when evidence for a marked decline is seen. Cooler-than-present conditions were maintained until ca. 1700 cal yr BP, when conditions transitioned to more like those of the present-day climate. Based on macroscopic charcoal analyses, fire frequency had varied between two and five episodes per 1000 years. The largest peak in charcoal was at ca. 590 cal yr BP. The fire return interval has varied with climate over time; however, we calculate a fire return interval of 325 years over the past 7000 years. Given these results, fire activity is likely to increase under current Intergovernmental Panel on Climate Change climate projections of an increase in annual temperatures.  相似文献   

5.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

6.
Neolithic culture series in the Yishu River Basin developed in the order of Beixin culture-Dawenkou culture-Longshan culture-Yueshi culture. During the early and middle stage of Longshan culture (4600-4300 cal. yr BP), the climate in the Yishu River Basin was warm and wet. Paddy-oriented agriculture planted paddy was very developed. The society was flourishing with great amount of archaeological sites. The cooling starting in 4200 cal. yr BP made the paddies shortfall in output or even no seeds were gathered. This situation intensified the discrepancy between population and resource. The scarcity in natural resource led to substantial decrease in population and subsequent drop in archaeological sites. About 4000 cal. yr BP Longshan culture was displaced by Yueshi culture which was relatively un- derdeveloped, simple and unsophisticated.  相似文献   

7.
Neolithic culture series in the Yishu River Basin developed in the order of Beixin culture-Dawenkou culture-Longshan culture-Yueshi culture. During the early and middle stage of Longshan culture (4600-4300 cal. yr BP),the climate in the Yishu River Basin was warm and wet. Paddy-oriented agriculture planted paddy was very developed. The society was flourishing with great amount of archaeological sites. The cooling starting in 4200 cal. yr BP made the paddies shortfall in output or even no seeds were gathered. This situation in-tensified the discrepancy between population and resource. The scarcity in natural resource led to substantial decrease in population and subsequent drop in archaeological sites. About 4000 cal. yr BP Longshan culture was displaced by Yueshi culture which was relatively un-derdeveloped,simple and unsophisticated.  相似文献   

8.
A multi-proxy analysis of two sediment cores from Rantin Lake are used to reconstruct past lake-level changes and to make inferences about millennial-scale variations in precipitation/evaporation (P/E) balance in the southern Yukon, Canada between 10,900 and 3,100?cal?yr BP. Analyses of calcium carbonate and organic matter concentration, magnetic susceptibility, titanium content, dry bulk density, and macrofossils are used to reconstruct water-level changes. The development of sand layers and deformed sediments at the deep-water core site (i.e. Core A-06) prior to ~10,900?cal?yr BP suggest that lake level was lower at this time. Fine-grained organic sediment deposited from 10,600 to 9,500?cal?yr BP indicates a rise in lake level. The formation of an unconformity at the shallow cores site (Core C-06) and the deposition of shallow-water calcium carbonate-rich facies at the Core A-06 site between ~9,500 and ~8,500?cal?yr BP suggest lower lake levels at this time. Shallow-water facies gradually transition into a sand layer that likely represents shoreline reworking during an extreme lowstand that occurred at ~8,400?cal?yr BP. Following this low water level, fine-grained organic-rich sediment formed by ~8,200?cal?yr BP, suggesting deeper water conditions at core site A-06. Calcium carbonate concentrations are relatively low in sediment deposited from ~6,300 to 3,100?cal?yr BP in Core A-06, indicating that lake level was comparatively higher during the middle and late Holocene. In general, results from this study suggest that the early Holocene was characterized by high P/E from ~10,500 to 9,500?cal?yr BP, low P/E from ~9,500 to 8,400?cal?yr BP, and return to higher P/E from ~8,200 to 3,100?cal?yr BP.  相似文献   

9.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

10.
Serpent River Bog lies north of North Channel, 10 m above Lake Huron and 15 m below the Nipissing Great Lake level. A 2.3 m Holocene sequence contains distinct alternating beds of inorganic clastic clay and organic peat that are interpreted as evidence of successive inundation and isolation by highstands and lowstands of the large Huron-Basin lake. Lowstand phases are confirmed by the presence of shallow-water pollen and plant macrofossil remains in peat units. Twelve 14C dates on peat, wood and plant macrofossils combined with previously published 14C ages of lake-level indicators confirm much of the known early Holocene lake-level history with one notable exception. A new Late Mattawa highstand (8,390 [9,400 cal]–8,220 [9,200 cal] BP) evidenced by a sticky blue-grey clay bed is tied to outburst floods of glacial Lake Minong during erosion of the Nadoway drift barrier in the eastern Lake Superior basin. A subsequent Late Mattawa highstand (8,110 [9,040 cal]–8,060 [8,970 cal] BP) is attributed to enhanced meltwater inflows that first had deposited thick varves throughout Superior Basin. Inundation by the Nadoway floods and possibly the last Mattawa flood were likely responsible for termination of the Olson Forest (southern Lake Michigan). A pollen diagram supports the recognized progression of Holocene vegetation, and defines a subzone implying a very dry, cool climate about 7.8–7.5 (8.6–8.3 cal) ka BP based on the Alnus crispa profile during the Late Stanley lowstand. A new date of 9,470 ± 25 (10,680–10,750 cal) BP on basal peat over lacustrine clay at Espanola West Bog supports the previous interpretation of the Early Mattawa highstand at ca. 9,500 (10,740 cal) BP. The organic and clastic sediment units at these two bogs are correlated with other records showing coherent evidence of Holocene repeated inundation and isolation around northern Lake Huron. Taken together the previous and new lake-level data suggest that the Huron and Georgian basin lakes were mainly closed lowstands throughout early Holocene time except for short-lived highstands. Three of the lowstands were exceptionally low, and likely caused three episodes of offshore sediment erosion which had been previously identified as seismo-stratigraphic sequence boundaries.  相似文献   

11.
Changes in the diatom assemblages preserved in a sediment core taken from a small lake located north of arctic treeline on the western Taimyr Peninsula, Russia, were examined in order to investigate late Holocene (i.e., ca 5000 cal yr BP to present) climatic and environmental changes within the region. Early diatom assemblages were dominated by benthic Fragilaria taxa and indicate a transitional phase in the lake history, most likely reflecting lake development and environmental change associated with treeline retreat to the south of the study site. Concurrent with pollen and macrofossil evidence of a vegetation shift to shrub tundra in the catchment basin at ca 4200 cal yr BP, an increase in cold-water taxa, followed by little change in diatom assemblages until ca 2800 cal yr BP, suggests that conditions were relatively cool and stable at this time. The last 2000 years of the Middendorf Lake record have been marked by fluctuating limnological conditions, characterized by striking successional shifts between Fragilaria pinnata and Aulacoseira distans var. humilis. Recent conditions in Middendorf Lake indicate an increase in diatom taxa previously rare in the record, possibly associated with twentieth-century climatic warming. The Middendorf Lake record indicates that significant limnological change may occur in the absence of catchment vegetation shifts, suggesting late-Holocene decoupling of aquatic and terrestrial responses to climatic and hydrological change. Our study results represent one of the few paleoecological records currently available from northern Russia, and highlight the need for further development of calibration data sets from this region.  相似文献   

12.
Neolithic culture series in the Yishu River Basin developed in the order of Beixin culture–Dawenkou culture–Longshan culture–Yueshi culture. During the early and middle stage of Longshan culture (4600–4300 cal. yr BP), the climate in the Yishu River Basin was warm and wet. Paddy-oriented agriculture planted paddy was very developed. The society was flourishing with great amount of archaeological sites. The cooling starting in 4200 cal. yr BP made the paddies shortfall in output or even no seeds were gathered. This situation in-tensified the discrepancy between population and resource. The scarcity in natural resource led to substantial decrease in population and subsequent drop in archaeological sites. About 4000 cal. yr BP Longshan culture was displaced by Yueshi culture which was relatively un-derdeveloped, simple and unsophisticated.  相似文献   

13.
An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades.The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.  相似文献   

14.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

15.
Piston cores from deep-water bottom deposits in Lake Ontario contain shallow-water sediments such as, shell-rich sand and silt, marl, gyttja, and formerly exposed shore deposits including woody detritus, peat, sand and gravel, that are indicative of past periods of significantly lower water levels. These and other water-level indicators such as changes in rates of sedimentation, mollusc shells, pollen, and plant macrofossils were integrated to derive a new water-level history for Lake Ontario basin using an empirical model of isostatic adjustment for the Great Lakes basin to restore dated remnants of former lake levels to their original elevations. The earliest dated low-level feature is the Grimsby-Oakville bar which was constructed in the western end of the lake during a near stillstand at 11–10.4 (12.9–12.3 cal) ka BP when Early Lake Ontario was confluent with the Champlain Sea. Rising Lake Ontario basin outlet sills, a consequence of differential isostatic rebound, severed the connection with Champlain Sea and, in combination with the switch of inflowing Lake Algonquin drainage northward to Ottawa River valley via outlets near North Bay and an early Holocene dry climate with enhanced evaporation, forced Lake Ontario into a basin-wide lowstand between 10.4 and 7.5 (12.3 and 8.3 cal) ka BP. During this time, Lake Ontario operated as a closed basin with no outlets, and sites such as Hamilton Harbour, Bay of Quinte, Henderson Harbor, and a site near Amherst Island existed as small isolated basins above the main lake characterized by shallow-water, lagoonal or marsh deposits and fossils indicative of littoral habitats and newly exposed mudflats. Rising lake levels resulting from increased atmospheric water supply brought Lake Ontario above the outlet sills into an open, overflowing state ending the closed phase of the lake by ~7.5 (8.3 cal) ka BP. Lake levels continued to rise steadily above the Thousand Islands sill through mid-to-late Holocene time culminating at the level of modern Lake Ontario. The early and middle Holocene lake-level changes are supported by temperature and precipitation trends derived from pollen-climate transfer functions applied to Roblin Lake on the north side of Lake Ontario.  相似文献   

16.
东南极拉斯曼丘陵地区莫愁湖(69°22.3’ S,76°22.0’ E)沉积柱中的有机生物标志物记录了全新世中晚期该地区气候演变过程。不饱和长链烯酮在沉积柱111-76 cm (6450-5100 cal. yr. BP)和36-30 cm(3700-3500 cal. yr. BP)深度有检出,76 cm深度以上基本消失,表明该地区在5100 cal. yr. BP前后气候开始由冷转暖,冰川消融,陆壳抬升,相对海平面下降,同时大量的冰融水使湖泊逐渐淡化。沉积柱底部长链烯酮的检出阶段与东南极相对海平面较高时期相一致,而沉积柱36-30 cm(3700-3500 cal. yr. BP)深度不饱和长链烯酮的痕量检出则揭示了一个短暂的气候干冷,湖泊盐度升高的时期。沉积物中正构烷烃反映的当地气候变化所控制的湖生植物群落演变过程与上述过程基本一致。  相似文献   

17.
Paleolimnological data are presented on trophic development, climatic change and sea level variations in Rocha Lagoon, a 72 km2 coastal lagoon in southern Uruguay. Using a sediment core that extended from 7000 to about 3700 yr BP, analyses of organic matter, carbonate, diatoms and chrysophyte cysts were used to track the early Holocene paleolimnological conditions of Rocha Lagoon. Opal phytoliths were also counted and identified, both temperature and humidity indices were calculated, and Opal Phytolith Association Zones (OPAZ) were identified by performing Principal Coordinates Analysis (PCO). Diatom Association Zones (DAZ) corresponding to marine/brackish and brackish/freshwater episodes were closely related to changes in trophic state. Those DAZ representing marine/brackish stages exhibited a lower trophic state than those DAZ dominated by brackish and freshwater diatoms. This highlights that during the first Holocene marine transgression, Rocha Lagoon did not continuously exhibit marine/brackish conditions as reported in previous papers. Instead, three brackish/freshwater episodes related to sea level variation and changes in humidity were identified. The first episode, by ~6000 yr BP, was related to sea level change as no significant changes in either temperature or humidity indices were observed. The second episode, between 5000 and 4400 yr BP, was related to both a sea level decrease and an increase in humidity, as a transition from humid to very humid climate was inferred. Concomitant decreases in salinity and increases in trophic state were also observed. The third episode, after ~4000 yr BP, was related to the end of the first Holocene regressive phase when sea level was slightly below present levels. Further decreases in salinity and increases in trophic state were detected. The paleoclimatic trends inferred in this study were in close agreement with other regional studies on climatic change, as cool temperatures were inferred. However, major changes in humidity were also detected. A humid to very humid climate was inferred for ~7000–4500 yr BP, but the occurrence of a semiarid/arid climate was inferred for ~4500–3700 yr BP. Our data suggest that during transgressive and regressive events there might be higher frequency and lower amplitude sea level oscillations that might lead to changes in salinity and trophic state of coastal aquatic systems. Such oscillations could only be tracked by high resolution analyses of sedimentary records and could be best interpreted with complementary data on paleoclimate. In addition, microfossils such as diatoms and opal phytoliths were shown to be very sensitive to such paleoenvironmental changes.  相似文献   

18.
A 95-cm-thick peat sequence obtained from Daping Swamp in the western Nanling Mountains provides evidence for climate variability in the past ~3,000 year. Multi-proxy records (including organic carbon isotopes, humification degree, organic matter content, and dry bulk density) revealed three intensified Asian summer monsoon (ASM) intervals (i.e.~2900–2700, 2500–1700 and 1000–600 cal. yr BP) and three weakened ASM intervals (i.e.~2800–2500, 1700–1000 and 600–200 cal. yr BP). Our δ13C record shows a possible correlation with the sunspot number and residual atmospheric 14C records on multi-centennial scale, especially for the period between 2960 and 2200 cal. yr BP. A spectral analysis of δ13C record reveals three significant cycles (i.e., 396, 110 and 102 yr) and all these cycles could be related to solar activity, suggesting that solar output may have influenced the late Holocene climate variability in the study region.  相似文献   

19.
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.7′ E, 51°39.3′ N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.  相似文献   

20.
Analyses of lithology, organic-matter content, magnetic susceptibility, and pollen in a sediment core from Okpilak Lake, located in the northeastern Brooks Range, provide new insights into the history of climate, landscape processes, and vegetation in northern Alaska since 14,500?cal?year BP. The late-glacial interval (>11,600?cal?year BP) featured sparse vegetation cover and the erosion of minerogenic sediment into the lake from nearby hillslopes, as evidenced by Cyperaceae-dominated pollen assemblages and high magnetic susceptibility (MS) values. Betula expanded in the early Holocene (11,600?C8,500?cal?year BP), reducing mass wasting on the landscape, as reflected by lower MS. Holocene sediments contain a series of silt- and clay-dominated layers, and given their physical characteristics and the topographic setting of the lake on the braided outwash plain of the Okpilak River, the inorganic layers are interpreted as rapidly deposited fluvial sediments, likely associated with intervals of river aggradation, changes in channel planform, and periodic overbank flow via a channel that connects the river and lake. The episodes of fluvial dynamics and aggradation appear to have been related to regional environmental variability, including a period of glacial retreat during the early Holocene, as well as glacial advances in the middle Holocene (5,500?C5,200?cal?year BP) and during the Little Ice Age (500?C400?cal?year BP). The rapid deposition of multiple inorganic layers during the early Holocene, including thick layers at 10,900?C10,000 and 9,400?C9,200?cal?year BP, suggests that it was a particularly dynamic interval of fluvial activity and landscape change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号