首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Recently, researchers have introduced deep learning methods such as convolutional neural networks (CNN) to model spatio-temporal data and achieved better results than those with conventional methods. However, these CNN-based models employ a grid map to represent spatial data, which is unsuitable for road-network-based data. To address this problem, we propose a deep spatio-temporal residual neural network for road-network-based data modeling (DSTR-RNet). The proposed model constructs locally-connected neural network layers (LCNR) to model road network topology and integrates residual learning to model the spatio-temporal dependency. We test the DSTR-RNet by predicting the traffic flow of Didi cab service, in an 8-km2 region with 2,616 road segments in Chengdu, China. The results demonstrate that the DSTR-RNet maintains the spatial precision and topology of the road network as well as improves the prediction accuracy. We discuss the prediction errors and compare the prediction results to those of grid-based CNN models. We also explore the sensitivity of the model to its parameters; this will aid the application of this model to network-based data modeling.  相似文献   

2.
ABSTRACT

Short-term traffic forecasting on large street networks is significant in transportation and urban management, such as real-time route guidance and congestion alleviation. Nevertheless, it is very challenging to obtain high prediction accuracy with reasonable computational cost due to the complex spatial dependency on the traffic network and the time-varying traffic patterns. To address these issues, this paper develops a residual graph convolution long short-term memory (RGC-LSTM) model for spatial-temporal data forecasting considering the network topology. This model integrates a new graph convolution operator for spatial modelling on networks and a residual LSTM structure for temporal modelling considering multiple periodicities. The proposed model has few parameters, low computational complexity, and a fast convergence rate. The framework is evaluated on both the 10-min traffic speed data from Shanghai, China and the 5-min Caltrans Performance Measurement System (PeMS) traffic flow data. Experiments show the advantages of the proposed approach over various state-of-the-art baselines, as well as consistent performance across different datasets.  相似文献   

3.
ABSTRACT

Recently developed urban air quality sensor networks are used to monitor air pollutant concentrations at a fine spatial and temporal resolution. The measurements are however limited to point support. To obtain areal coverage in space and time, interpolation is required. A spatio-temporal regression kriging approach was applied to predict nitrogen dioxide (NO2) concentrations at unobserved space-time locations in the city of Eindhoven, the Netherlands. Prediction maps were created at 25 m spatial resolution and hourly temporal resolution. In regression kriging, the trend is separately modelled from autocorrelation in the residuals. The trend part of the model, consisting of a set of spatial and temporal covariates, was able to explain 49.2% of the spatio-temporal variability in NO2 concentrations in Eindhoven in November 2016. Spatio-temporal autocorrelation in the residuals was modelled by fitting a sum-metric spatio-temporal variogram model, adding smoothness to the prediction maps. The accuracy of the predictions was assessed using leave-one-out cross-validation, resulting in a Root Mean Square Error of 9.91 μg m?3, a Mean Error of ?0.03 μg m?3 and a Mean Absolute Error of 7.29 μg m?3. The method allows for easy prediction and visualization of air pollutant concentrations and can be extended to a near real-time procedure.  相似文献   

4.
Municipal fire departments responded to approximately 53,000 intentionally-set fires annually from 2003 to 2007, according to National Fire Protection Association figures. A disproportionate amount of these fires occur in spatio-temporal clusters, making them predictable and, perhaps, preventable. The objective of this research is to evaluate how the aggregation of data across space and target types (residential, non-residential, vehicle, outdoor and other) affects daily arson forecast accuracy for several target types of arson, and the ability to leverage information quantifying the autoregressive nature of intentional firesetting. To do this, we estimate, for the city of Detroit, Michigan, competing statistical models that differ in their ability to recognize potential temporal autoregressivity in the daily count of arson fires. Spatial units vary from Census tracts, police precincts, to citywide. We find that (1) the out-of-sample performance of prospective hotspot models for arson cannot usefully exploit the autoregressive properties of arson at fine spatial scales, even though autoregression is significant in-sample, hinting at a possible bias-variance tradeoff; (2) aggregation of arson across reported targets can yield a model that differs from by-target models; (3) spatial aggregation of data tends to increase forecast accuracy of arson due partly to the ability to account for temporally dynamic firesetting; and (4) arson forecast models that recognize temporal autoregression can be used to forecast daily arson fire activity at the Citywide scale in Detroit. These results suggest a tradeoff between the collection of high resolution spatial data and the use of more sophisticated modeling techniques that explicitly account for temporal correlation.  相似文献   

5.
王钧  李广  聂志刚  刘强 《干旱区地理》2020,43(2):398-405
针对陇中黄土丘陵沟壑区土壤水蚀过程复杂且难以有效预测的问题,以定西市安家沟水土保持试验站2005—2016年1~12月人工草地径流场试验数据为主要来源,将流域月降雨量、月侵蚀性降雨量、月径流量、月降雨强度、径流场面积、径流场坡度、土壤砂粒含量、土壤粘粒含量8个因子作为输入因子,月土壤水蚀量作为输出,运用偏最小二乘法(Partial Least-Squares Regression,PLSR)和长短期记忆(Long Short-Term Memory,LSTM)循环神经网络建立人工草地土壤水蚀预测模型,并利用BP(Back Propagation)、RNN(Recurrent Neural Network)、LSTM常见神经网络模型,对模型的有效性进行评估。结果表明:PLSR将模型8个输入因子减少为4个,从而有效解决LSTM神经网络模型对样本数量要求过高的问题; PLSR和LSTM神经网络模型的结合可以有效提高模型对人工草地土壤水蚀过程的预测精度和收敛速度,预测结果的平均相对误差小于4%,相关系数高于其他3种神经网络模型,而迭代次数、均方根误差和平均绝对误差均低于其他3种模型;研究发现坡度对人工草地土壤水蚀过程影响较为明显,降雨量小于25 mm时,人工草地土壤水蚀量不会随坡度增加而明显增长,但当降雨量超过25 mm时,人工草地土壤水蚀量会随坡度明显增加。 PLSR LSTM神经网络土壤水蚀预测模型可以准确预测陇中黄土丘陵沟壑区人工草地土壤水蚀量,为该地区水土流失的准确预报提供新的思路和方法。  相似文献   

6.
ABSTRACT

An increasing number of social media users are becoming used to disseminate activities through geotagged posts. The massive available geotagged posts enable collections of users’ footprints over time and offer effective opportunities for mobility prediction. Using geotagged posts for spatio-temporal prediction of future location, however, is challenging. Previous studies either focus on next-place prediction or rely on dense data sources such as GPS data. Introduced in this article is a novel method for future location prediction of individuals based on geotagged social media data. This method employs the hierarchical density-based clustering algorithm with adaptive parameter selection to identify the regions frequently visited by a social media user. A multi-feature weighted Bayesian model is then developed to forecast users’ spatio-temporal locations by combining multiple factors affecting human mobility patterns. Further, an updating strategy is designed to efficiently adjust, over time, the proposed model to the dynamics in users’ mobility patterns. Based on two real-life datasets, the proposed approach outperforms a state-of-the-art method in prediction accuracy by up to 5.34% and 3.30%. Tests show prediction reliability is high with quality predictions, but low in the identification of erroneous locations.  相似文献   

7.
城市化进程提升促使城市环境污染加剧、能源消耗激增、人口密度过大等问题的深层次原因在于城市代谢失调。为精准预测北京市城市代谢变化趋势,论文通过能源消费量及人类活动时间指标测算了1980—2016年北京市体外能代谢率,表征城市代谢程度。据此运用长短期记忆神经网络模型(LSTM)预测了2017—2022年北京各部门体外能代谢率。结果表明:① 基于长短期记忆神经网络的城市代谢预测模型精度较高,能够对北京各部门体外能代谢率进行更为精准的预测;② 2017—2022年间,北京第一产业和总体外能代谢率呈下降趋势,其中第一产业在2017年达到峰值,第二、第三产业及生活部门体外能代谢率将呈现增长趋势。③ 除第一、第三产业和总体外能代谢率外,历史变化的时间扰动幅度先小后大。④ 对各部门体外能代谢率EMRT的影响贡献度最大的因子为第二产业体外能代谢率EMR2,最小的为第一产业体外能代谢率EMR1。论文研究结果可为政策制定者优化城市管理方案、提升城市综合实力提供理论依据和决策支持。  相似文献   

8.
论文基于2003—2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件下,LSTM模型在训练期和检验期的效率系数分别达到0.68和0.74;如再将流域前期面雨量和上游石泉站前期日径流量加入LSTM网络作为输入变量,安康站日径流量预测效果将更好,训练期和检验期的效率系数最高可达到0.83和0.84,均方根误差也有显著削减,且对主要洪峰流量的预测能力也有一定提高。此外,LSTM可以有效避免过拟合等问题,具有较好的泛化性能。但当预见期从1 d延长至2、3 d时,LSTM的预测精度显著降低。  相似文献   

9.
In this paper, we propose a method for predicting the distributions of people’s trajectories on the road network throughout a city. Specifically, we predict the number of people who will move from one area to another, their probable trajectories, and the corresponding likelihoods of those trajectories in the near future, such as within an hour. With this prediction, we will identify the hot road segments where potential traffic jams might occur and reveal the formation of those traffic jams. Accurate predictions of human trajectories at a city level in real time is challenging due to the uncertainty of people’s spatial and temporal mobility patterns, the complexity of a city level’s road network, and the scale of the data. To address these challenges, this paper proposes a method which includes several major components: (1) a model for predicting movements between neighboring areas, which combines both latent and explicit features that may influence the movements; (2) different methods to estimate corresponding flow trajectory distributions in the road network; (3) a MapReduce-based distributed algorithm to simulate large-scale trajectory distributions under real-time constraints. We conducted two case studies with taxi data collected from Beijing and New York City and systematically evaluated our method.  相似文献   

10.
Abstract

Representations historically used within GIS assume a world that exists only in the present. Information contained within a spatial database may be added-to or modified over time, but a sense of change or dynamics through time is not maintained. This limitation of current GIS capabilities has recently received substantial attention, given the increasingly urgent need to better understand geographical processes and the cause-and-effect interrelationships between human activities and the environment. Models proposed so-far for the representation of spatiotemporal data are extensions of traditional raster and vector representations that can be seen as location- or feature-based, respectively, and are therefore best organized for performing either location-based or feature-based queries. Neither form is as well-suited for analysing overall temporal relationships of events and patterns of events throughout a geographical area as a temporally-based representation.

In the current paper, a new spatio-temporal data model is proposed that is based on time as its organizational basis, and is thereby intended to facilitate analysis of temporal relationships and patterns of change through time. This model is named the Event-based Spatio Temporal Data Model (ESTDM). It is shown that temporally-based queries relating to locations can be implemented in an efficient and conceptually straightforward manner using ESTDM by describing algorithms for three fundamental temporally-based retrieval tasks based on this model: (1) retrieving location(s) that changed to a given value at a given time, (2) retrieving location(s) that changed to a given value over a given temporal interval, and (3) calculation of the total area that has changed to a given value over a given temporal interval. An empirical comparison of the space efficiency of ESTDM and compressed and uncompressed forms of the ‘snapshot’ model is also given, showing that ESTDM is also a compact representation of spatio-temporal information.  相似文献   

11.
Many physical and sociological processes are represented as discrete events in time and space. These spatio-temporal point processes are often sparse, meaning that they cannot be aggregated and treated with conventional regression models. Models based on the point process framework may be employed instead for prediction purposes. Evaluating the predictive performance of these models poses a unique challenge, as the same sparseness prevents the use of popular measures such as the root mean squared error. Statistical likelihood is a valid alternative, but this does not measure absolute performance and is therefore difficult for practitioners and researchers to interpret. Motivated by this limitation, we develop a practical toolkit of evaluation metrics for spatio-temporal point process predictions. The metrics are based around the concept of hotspots, which represent areas of high point density. In addition to measuring predictive accuracy, our evaluation toolkit considers broader aspects of predictive performance, including a characterisation of the spatial and temporal distributions of predicted hotspots and a comparison of the complementarity of different prediction methods. We demonstrate the application of our evaluation metrics using a case study of crime prediction, comparing four varied prediction methods using crime data from two different locations and multiple crime types. The results highlight a previously unseen interplay between predictive accuracy and spatio-temporal dispersion of predicted hotspots. The new evaluation framework may be applied to compare multiple prediction methods in a variety of scenarios, yielding valuable new insight into the predictive performance of point process-based prediction.  相似文献   

12.
Fine-grained prediction of urban population is of great practical significance in many domains that require temporally and spatially detailed population information. However, fine-grained population modeling has been challenging because the urban population is highly dynamic and its mobility pattern is complex in space and time. In this study, we propose a method to predict the population at a large spatiotemporal scale in a city. This method models the temporal dependency of population by estimating the future inflow population with the current inflow pattern and models the spatial correlation of population using an artificial neural network. With a large dataset of mobile phone locations, the model’s prediction error is low and only increases gradually as the temporal prediction granularity increases, and this model is adaptive to sudden changes in population caused by special events.  相似文献   

13.
ABSTRACT

Kernel Density Estimation (KDE) is an important approach to analyse spatial distribution of point features and linear features over 2-D planar space. Some network-based KDE methods have been developed in recent years, which focus on estimating density distribution of point events over 1-D network space. However, the existing KDE methods are not appropriate for analysing the distribution characteristics of certain kind of features or events, such as traffic jams, queue at intersections and taxi carrying passenger events. These events occur and distribute in 1-D road network space, and present a continuous linear distribution along network. This paper presents a novel Network Kernel Density Estimation method for Linear features (NKDE-L) to analyse the space–time distribution characteristics of linear features over 1-D network space. We first analyse the density distribution of each linear feature along networks, then estimate the density distribution for the whole network space in terms of the network distance and network topology. In the case study, we apply the NKDE-L to analyse the space–time dynamics of taxis’ pick-up events, with real road network and taxi trace data in Wuhan. Taxis’ pick-up events are defined and extracted as linear events (LE) in this paper. We first conduct a space–time statistics of pick-up LE in different temporal granularities. Then we analyse the space–time density distribution of the pick-up events in the road network using the NKDE-L, and uncover some dynamic patterns of people’s activities and traffic condition. In addition, we compare the NKDE-L with quadrat method and planar KDE. The comparison results prove the advantages of the NKDE-L in analysing spatial distribution patterns of linear features in network space.  相似文献   

14.
类比合成算法是一种多维模式搜索法,它具有适用范围广、对资料要求低等优点,可用于单变量及多变量时间序列的延拓预测。通过介绍类比合成算法,并把它应用于塔里木河源流叶尔羌河、和田河年、月径流量预报,其中重点分析了模式长度和合成预报的模式个数等因素对预报结果的影响。通过实测径流资料对预报结果的检验和分析表明,类比合成算法可以较好地挖掘径流序列中隐藏的信息,在中长期水文预报中是一种行之有效的计算方法。  相似文献   

15.
Research on forest phenology is an important parameter related to climate and environmental changes. An optical camera was used as a near-earth remote sensing satellite device to obtain forest images, and the data of Green excess index (GEI) in the images were calculated, which was fitted with the seasonal variation curve of GEI data by double Logistic method and normalization method. LSTM and GRU deep learning models were introduced to train and test the GEI data. Moreover, the rationality and performance evaluation of the deep learning model were verified, and finally the model predicted the trend of GEI data in the next 60 days. Results showed: In the aspects of forest phenology training and prediction, GRU and LSTM models were verified by histograms and autocorrelation graphs, indicating that the distribution of predicted data was consistent with the trend of real data, LSTM and GRU model data were feasible and the model was stable. The differences of MSE, RMSE, MAE and MAPE between LSTM model and GRU model were 0.0014, 0.013, 0.008 and 5.26%, respectively. GRU had higher performance than LSTM. The prediction of LSTM and GRU models about GEI data for the next 60 days both showed a trend chart consistent with the change trend of GEI data in the first half of the year. GRU and LSTM were used to predict GEI data by deep learning model, and the response of LSTM and GRU deep learning models in forest phenology prediction was realized, and the performance of GRU was better than that of LSTM model. It could further reveal the growth and climate change of forest phenology in the future, and provide a theoretical basis for the application of forest phenology prediction.  相似文献   

16.
ABSTRACT

One of the major challenges in conducting epidemiological studies of air pollution and health is the difficulty of estimating the degree of exposure accurately. Fine particulate matter (PM2.5) concentrations vary in space and time, which are difficult to estimate in rural, suburban and smaller urban areas due to the sparsity of the ground monitoring network. Satellite retrieved aerosol optical depth (AOD) has been increasingly used as a proxy of ground PM2.5 observations, although it suffers from non-trivial missing data problems. To address these issues, we developed a multi-stage statistical model in which daily PM2.5 concentrations can be obtained with complete spatial coverage. The model consists of three stages – an inverse probability weighting scheme to correct non-random missing patterns of AOD values, a spatio-temporal linear mixed effect model to account for the spatially and temporally varying PM2.5-AOD relationships, and a gap-filling model based on the integrated nested Laplace approximation-stochastic partial differential equations (INLA-SPDE). Good model performance was achieved from out-of-sample validation as shown in R2 of 0.93 and root mean square error of 9.64 μg/m3. The results indicated that the multi-stage PM2.5 prediction model proposed in the present study yielded highly accurate predictions, while gaining computational efficiency from the INLA-SPDE.  相似文献   

17.
We quantified the sediment volume transported by a major debris flow event in the Halltal, Austrian Alps, using a combination of terrestrial (TLS) and airborne laser scanning (ALS) which has rarely been carried out before. A digital terrain model (DTM) derived from ALS data (pre-event surface) was combined with a DTM derived from TLS data (post-event surface). Both datasets were aligned and compared in a cut and fill analysis estimating differential volumes.The main focus lay on the evaluation and accuracy assessment of the applied method. Tie-point based registration of both datasets proved to be insufficient; additional alignment by Multi Station Adjustment was necessary to minimise the averaged height error between both datasets, amounting for a volumetric error of less than 10% which is comparable to pure ALS-campaigns. Larger errors were estimated for complex terrain with low scanning resolutions. A particular problem in data processing was the low and dense shrub vegetation in the study area which required a specifically adapted filter algorithm. An insufficient ground representation was observed for the ALS-data overestimating ground heights for averaged 70 cm. Despite these limitations, the approach proved to be suitable for accurate extreme event quantification.The starting zones of the debris flows lie at the bedrock-debris interface where runoff is concentrated. Volumes of 5000 to 12,000 m3 were assessed. Volume estimation worked better for the erosional than for the depositional features; this is because the erosional gullies are relatively deep and the calculation is not affected by pre-event vegetation. While erosion and sedimentation are balanced for one of the three catchments investigated, the deposited volumes are higher than the detected eroded volumes for the other two. The reasons are not fully understood. The magnitude of the flows was determined by catchment size, topographical characteristics and deforestation by a major wildfire in 1946.  相似文献   

18.
ABSTRACT

Movement patterns of intra-urban goods/things and the ways they differ from human mobility and traffic flow patterns have seldom been explored due to data access and methodological limitations, especially from systemic and long timescale perspectives. However, urban logistics big data are increasingly available, enabling unprecedented spatial and temporal resolutions to this issue. This research proposes an analytical framework for exploring intra-urban goods movement patterns by integrating spatial analysis, network analysis and spatial interaction analysis. Using daily urban logistics big data (over 10 million orders) provided by the largest online logistics company in Hong Kong (GoGoVan) from 2014 to 2016, we analyzed two spatial characteristics (displacement and direction) of urban goods movement. Results showed that the distribution of goods displaceFower law or exponential distribution of human mobility trends. The origin–destination flows of goods were used to build a spatially embedded network, revealing that Hong Kong became increasingly connected through intra-urban freight movement. Finally, spatial interaction characteristics were revealed using a fitting gravity model. Distance lacked substantial influence on the spatial interaction of goods movement. These findings have policy implications to intra-urban logistics and urban transport planning.  相似文献   

19.
系列案犯罪地理目标模型优化   总被引:1,自引:1,他引:0  
方嘉良  李卫红 《地理科学》2018,38(8):1210-1217
针对犯罪地理目标模型(CGT模型)在系列案件嫌疑人落脚点预测中未考虑地理环境因素影响,预测精度不高的问题,提出了一种顾及地理环境因素的犯罪地理目标模型优化方法(GEO-CGT模型)。研究采用相关性分析与灰色关联分析,刻画嫌疑人落脚点的地理环境相关性;参考多分类器系统理论,将地理环境因素与CGT模型进行非线性组合优化,并从搜索距离、面积误差对预测结果进行精度评估。以清远和韶关两市系列财产犯罪案件为样例数据,对模型预测进行对比实验,结果表明,改进后模型的预测精度相比于CGT和GEO-CGT模型均有显著提高。研究拓展了系列案嫌疑人落脚点预测方法,有效地提高了预测精度,对于警方缩小搜索范围,增大成功抓捕犯罪嫌疑人概率具有重要应用意义。  相似文献   

20.
Human mobility patterns can provide valuable information in understanding the impact of human behavioral regularities in urban systems, usually with a specific focus on traffic prediction, public health or urban planning. While existing studies on human movement have placed huge emphasis on spatial location to predict where people go next, the time dimension component is usually being treated with oversimplification or even being neglected. Time dimension is crucial to understanding and detecting human activity changes, which play a negative role in prediction and thus may affect the predictive accuracy. This study aims to predict human movement from a spatio-temporal perspective by taking into account the impact of activity changes. We analyze and define changes of human activity and propose an algorithm to detect such changes, based on which a Markov chain model is used to predict human movement. The Microsoft GeoLife dataset is used to test our methodology, and the data of two selected users is used to evaluate the performance of the prediction. We compare the predictive accuracy (R2) derived from the data with and without implementing the activity change detection. The results show that the R2 is improved from 0.295 to 0.762 for the user with obvious activity changes and from 0.965 to 0.971 for the user without obvious activity changes. The method proposed by this study improves the accuracy in analyzing and predicting human movement and lays the foundation for related urban studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号