首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Landslides are frequent natural disasters in mountainous regions, particularly in the Himalayas in India during the southwest monsoon season. Although scientific study of landslides has been in progress for years, no significant achievement has been made to preclude landsliding and allay disasters. This research was undertaken to understand the areal distribution of landslides based on geological formations and geomorphological processes, and to provide more precise information regarding slope instability and mechanisms of failure. After completing a landslide inventory, prepared through field investigation and satellite image analysis, 493 landslides, comprising 131 investigated in the field and 362 identified from satellite imagery, were identified and mapped. The areal distribution of these landslides shows that sites more prone to landsliding have moderate to steep slopes, the lithology of the Lesser Himalayan formations, and excavations for road corridors. Landslide susceptibility zones were delineated for the area using the weight-of-evidence method on the basis of the frequency and distribution of landslides. Weights of selected variables were computed on the basis of severity of triggering factors. The accuracy of landslide susceptibility zones, calculated statistically (R2 = .93), suggests high accuracy of the model for predicting landsliding in the area.  相似文献   

2.
Santiago Beguería   《Geomorphology》2006,74(1-4):196-206
The Pyrenees, like many other mountain areas in Europe, have experienced depopulation and land abandonment during the 20th century. This has encouraged vegetation recovery in formerly occupied areas, including reforestation to promote woodland. The objective of this study is to analyse the effects of these changes on shallow landsliding, a process responsible for erosion and land degradation in many mountain areas. A sequence of aerial images reveals a slight decrease in the landslide occurrence rate in the last half of the 20th century and a parallel increase in the landslide extinction rate, i.e. the rate at which evidence of landslide activity is removed by vegetation colonisation. A logistic regression routine was used to assess the influence of land use and vegetation recovery in the occurrence of shallow landslides. The result shows that the former arable fields on the valley slopes still facilitate landsliding, even after land abandonment and revegetation by shrubs or trees. A shift in the topographic location of landslides was also detected, pointing to an increased importance of water redistribution in the slopes after prolonged rainfall periods.  相似文献   

3.
武利  张万昌  张东  周杰 《地理科学》2004,24(4):458-464
文章介绍一种进行斜坡稳定性定量研究的分布式模型——SINMAP模型。该模型以水文学理论为基础,耦合稳定状态水文模型TOPMODEL与大范围斜坡稳定性模型,在充分考虑各种影响因素的基础上,对研究区域进行斜坡稳定性评价。选取汉江江口流域作为试验研究区,以DEM、遥感影象、各种专题图件及地面考察资料作为信息源,利用SINMAP方法获得可视化的研究区地表稳定性指数专题图。经实际资料检验表明,该模型可获取较高的预测精度,尤其在流域尺度上具有极大的应用价值。  相似文献   

4.
Carbon and nitrogen are crucial to semiarid woodlands, determining decomposition, production and redistribution of water and nutrients. Carbon and nitrogen are often greater beneath canopies than intercanopies. Upslope vs. downslope position and ephemeral channels might also cause variation in C and N. Yet, few studies have simultaneously evaluated spatial variation associated with canopy–intercanopy patches and topography. We estimated C and N upslope and downslope in an eroding piñon–juniper woodland for canopies beneath piñons (Pinus edulis) and junipers, (Juniperus monosperma), intercanopies, and ephemeral channels. Soil C and N in the surface and profile beneath canopies exceeded that of intercanopies and channels. Relative to intercanopies, channels had more profile C upslope but less downslope (profile N was not significant). Relative to upslope, profile C downslope for intercanopies was greater and for channels was less (profile N was not significant). Relative to profile, surface soil C and N exhibited less heterogeneity. Although some topographic heterogeneity was detected, results did not collectively support our redistribution hypotheses, and we are unable to distinguish if this heterogeneity is due to in situ or redistribution effects. Nonetheless, results highlight finer topographical spatial variation in addition to predominant canopy and intercanopy variation that is applicable for semiarid woodland management.  相似文献   

5.
Sanjit K. Deb  Aly I. El-Kadi   《Geomorphology》2009,108(3-4):219-233
The deterministic Stability INdex MAPping (SINMAP) model, which integrates a mechanistic infinite-slope stability model and a hydrological model, was applied to assess susceptibility of slopes in 32 shallow-landslide-prone watersheds of the eastern to southern areas of Oahu, Hawaii, USA. Input to the model includes a 10-m Digital Elevation Model (DEM), an inventory of storm-induced landslides that occurred from 1949 to 2006, and listings of soil-strength and hydrological parameters including transmissivity and steady-state recharge. The study area of ca. 384 km2 was divided into four calibration regions with different geotechnical and hydrological characteristics. All parameter values were separately calibrated using observed landslides as references. The study used a quasi-dynamic scenario of soil wetness resulting from extreme daily rainfall events with a return period of 50 years. The return period was based on almost-90-year-long (1919–2007) daily rainfall records from 26 raingauge stations in the study area. Output of the SINMAP model includes slope-stability-index-distribution maps, slope-versus-specific-catchment-area charts, and statistical summaries for each region.The SINMAP model assessed susceptibility at the locations of all 226 observed shallow landslides and classified these susceptible areas as unstable. About 55% of the study area was predicted as highly unstable, highlighting a critical island problem. The SINMAP predictions were compared to an existing debris-flow-hazard map. Areas classified as unstable in the current study were classified as low-to-moderate and moderate-to-high debris-flow hazard risks by the prior mapping. The slope-stability maps provided by this study will aid in explaining the causes of known landslides, making emergency decisions, and, ultimately mitigating future landslide risks. The maps may be further improved by incorporating heterogeneous and anisotropic soil properties and spatial and temporal variation of rainfalls as well as by improving the accuracy of the DEM and the locations of shallow landslide initiation.  相似文献   

6.
基于DEM的地形湿度指数及其应用研究进展   总被引:15,自引:4,他引:11  
地形湿度指数以数字高程模型(DEM)为基础,综合考虑了地形和土壤特性对土壤水分分布的影响,在流域土壤水分空间分布的研究中具有重要的理论与应用价值。根据对汇流面积时空变化的分析,地形湿度指数可分为静态、半动态和动态地形湿度指数等类型。在利用该指数评价土壤水分空间分布状况时,需要考虑计算方法与DEM网格单元大小的影响及其普遍适应性等问题。同时,针对黄土高原干旱半干旱区实际的水分循环过程和产流机制与现有地形湿度指数假设条件的差异,提出了地形湿度指数在黄土高原地区的研究设想与应用途径,以期为该区的水土保持和植被恢复研究提供理论和实践支持。  相似文献   

7.
Rainfall-triggered regolith landslides constitute a dominant erosional process in New Zealand hill country. Conversion of forest to pasture about 150 years ago decreased the size of event required to trigger slope failure resulting in greater landslide activity. Recent research indicates that shallow landslides then cause progressive regolith stripping with redeposition at the slope base. The exposed bedrock is less permeable than the pre-existing regolith cover and the redeposited soil has a higher unit weight. Hence, alterations in both hydrological and geotechnical conditions result, changing the triggering thresholds for further failure. In this paper three phases of regolith stripping are investigated using a process-based model, to define variations in both the triggering storms as well as the failure mechanisms under these altered hydrological and geotechnical conditions. Over time, as the regolith is stripped progressively upslope, the threshold for slope failure also changes such that the landscape becomes more stable. However, there is a varying sensitivity to storm type for each of the three phases, which adds complexity to the relationship between regolith stripping and slope failure. Model results suggest different hydrological conditions for slope instability, depending on the degree of stripping and redeposition, adding further complexity. Future advances in process-based modelling are required for detailed investigation of temporal changes in landscape susceptibility to slope failure, and uncertainty in both model parameterisation as well as process representation should be emphasised when applying such models to the long term.  相似文献   

8.
平缓地区地形湿度指数的计算方法   总被引:8,自引:3,他引:5  
地形湿度指数( topographic wetness index) 可定量模拟流域内土壤水分的干湿状况, 在流域 的土壤及分布式水文模型等研究中具有重要的意义。但现有的地形湿度指数计算方法在应用于 地形平缓地区时会得到明显不合理的结果, 即在河谷地区内, 地形湿度指数仅在狭窄的汇水线上 数值较高, 而在汇水线以外的位置则阶跃式地变为异常低的地形湿度指数值。本文针对此问题对 地形湿度指数的计算方法提出改进: 以多流向算法MFD- fg 计算汇水面积, 相应地以最大下坡计 算地形湿度指数, 再基于一个正态分布函数对河谷平原地区内的地形湿度指数进行插值处理。应 用结果表明, 所得地形湿度指数的空间分布不但能合理地反映平缓地区坡面上的水分分布状况, 并且在河谷地区内地形湿度指数值也都比较高, 其空间分布呈平滑过渡, 因而整个研究区域的水 分分布状况得到了比较合理的反映。  相似文献   

9.
Landslide hazard assessment, effected by means of geostatistical methods, is based on the analysis of the relationships between landslides and the spatial distributions of some instability factors. Frequently such analyses are based on landslide inventories in which each record represents the entire unstable area and is managed as a single instability landform. In this research, landslide susceptibility is evaluated through the study of a variety of instability landforms: landslides, scarps and areas uphill from crown. The instability factors selected were: bedrock lithology, steepness, topographic wetness index and stream power index. The instability landform densities computed for all the factors, which were arranged in Unique Condition Unit, allowed us to derive a total of three prediction images for each landslide typology. The role of the instability factors and the effects generated by the use of different landforms were analyzed by means of: a) bivariate analysis of the relationships between factors and landslide density; b) predictive power validations of the prediction images, based on a random partition strategy.The test area was the Iato River Basin (North-Western Sicily), whose slopes are moderately involved in flow and rotational slide landslides (219 and 28, respectively). The area is mainly made up of the following complexes: Numidian Flysch clays (19%, 1%), Terravecchia sandy clays (5%, 1%), Terravecchia clayey sands (3%, 0.3%) and San Cipirello marly clays (9%, 0%). The steepness parameter shows the highest landslide density in the [11–19°] class for both the typologies (8%, 1%), even if the density distributions for rotational slides are right-asymmetric and right-shifted. We obtained significant differences in shape when we used different instability landforms. Unlike scarps and areas uphill from crowns, landslide areas produce left-asymmetric and left-shifted density distributions for both the typologies. As far as the topographic wetness index is concerned, much more pronounced differences were detected among the instability landforms of rotational slides. In contrast, the flow landslides produce normal-like density distributions. The latter and the rotational slide landslide areas produce the highest density values in the class [5.5–6.7], despite an abrupt decreasing trend starting from the first class [3.2–4.4], which is generated by the density values of the rotational slide scarps and areas uphill from crowns. The stream power index at the foot of the slopes, which was automatically derived using a GIS-procedure, shows a positive correlation with the landslide densities marked by the maximum classes: [4.8–6.0] for flows, and [6.0–7.2] for rotational slides. The validation procedure results confirmed that the choice of instability landform influences the results of the susceptibility analysis. Furthermore, the validation procedure indicates that: a) the predictive models are generally satisfactory; b) scarps and zones uphill from crown areas are the most diagnostically unstable landforms, for flow and rotational slide landslides respectively.  相似文献   

10.
The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic–geologic–anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.  相似文献   

11.
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an  15,075 km2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing.Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors.The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps.On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility.Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively.The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.  相似文献   

12.
Landslides are common in steep mountainous areas of Puerto Rico where mean annual rainfall and the frequency of intense storms are high. Each year, landslides cause extensive damage to property and occasionally result in loss of life. Average population density is high, 422 people/km2, and is increasing. This increase in population density is accompanied by growing stress on the natural environment and physical infrastructure. As a result, human populations are more vulnerable to landslide hazards. The Blanco, Cibuco, and Coamo study areas range in surface area from 276 to 350 km2 and represent the climatologic, geographic, and geologic conditions that typify Puerto Rico. Maps of recent landslides developed from 1:20,000-scale aerial photographs, in combination with a computerized geographic information system, were used to evaluate the frequency and distribution of shallow landslides in these areas. Several types of landslides were documented—rainfall-triggered debris flows, shallow soil slips, and slumps were most abundant. Hillslopes in the study area that have been anthropogenically modified, exceed 12° in gradient, are greater than 300 m in elevation, and face the east-northeast, are most prone to landsliding. A set of simplified matrices representing geographic conditions in the three study areas was developed and provides a basis for the estimation of the spatial controls on the frequency of landslides in Puerto Rico. This approach is an example of an analysis of the frequency of landslides that is computationally simple, and therefore, may be easily transferable to other settings.  相似文献   

13.
Since European settlement 160 years ago, much of the indigenous forest in New Zealand hill country has been cleared for pastoral agriculture, resulting in increased erosion and sedimentation. To prioritise soil conservation work in the Manawatu–Wanganui region, we developed a model of landslide susceptibility. It assigns high susceptibility to steep land not protected by woody vegetation and low susceptibility everywhere else, following the commonly used approach for identifying inappropriate land use. A major storm on 15–16 February 2004 that produced many landslides was used to validate the model. The model predicted hills at risk to landsliding with moderate accuracy: 58% of erosion scars in the February storm occurred on hillsides considered to be susceptible. The model concept of slope thresholds, above which the probability of landsliding is high and below which the probability is low, is not adequate because below 30° the probability of landsliding is approximately linearly related to slope. Thus, reforestation of steep slopes will need to be combined with improved vegetation management for soil conservation on moderate slopes to significantly reduce future landsliding.  相似文献   

14.
The search for the optimal spatial scale for observing landforms to understand physical processes is a fundamental issue in geomorphology. Topographic attributes derived from Digital Terrain Models (DTMs) such as slope, curvature and drainage area provide a basis for topographic analyses. The slope–area relationship has been used to distinguish diffusive (hillslope) from linear (valley) processes, and to infer dominant sediment transport processes. In addition, curvature is also useful in distinguishing the dominant landform process. Recent topographic survey techniques such as LiDAR have permitted detailed topographic analysis by providing high-quality DTMs. This study uses LiDAR-derived DTMs with a spatial scale between 1 and 30 m in order to find the optimal scale for observation of dominant landform processes in a headwater basin in the eastern Italian Alps where shallow landsliding and debris flows are dominant. The analysis considered the scaling regimes of local slope versus drainage area, the spatial distribution of curvature, and field observations of channel head locations. The results indicate that: i) hillslope-to-valley transitions in slope–area diagrams become clearer as the DTM grid size decreases due to the better representation of hillslope morphology, and the topographic signature of valley incision by debris flows and landslides is also best displayed with finer DTMs; ii) regarding the channel head distribution in the slope–area diagrams, the scaling regimes of local slope versus drainage area obtained with grid sizes of 1, 3, and 5 m are more consistent with field data; and iii) the use of thresholds of standard deviation of curvature, particularly at the finest grid size, were proven as a useful and objective methodology for recognizing hollows and related channel heads.  相似文献   

15.
《Geomorphology》2003,49(1-2):71-88
Knowledge of long-term average rates of erosion is necessary if factors affecting sediment yields from catchments are to be understood. Without such information, it is not possible to assess the potential influence of extreme storms, and, therefore, to evaluate the relative importance of various components of a sediment budget. A study of the sediment budget for the Waipaoa catchment, North Island, New Zealand, included evaluation of long-term rates of landsliding for six landslide-prone land systems in the catchment. The number of landslides per unit area generated by each of several storms was counted on sequential aerial photographs and correlated with the magnitude of the corresponding storm. The resulting relationships were combined with magnitude–frequency relationships derived for storms from 70- to 100-year rainfall records in the area to estimate a long-term magnitude–frequency relationship for landsliding for each land system. The long-term average values of the areal landslide frequency (number of slides per unit area per unit time) were then calculated from these relationships. The volumes of a sample of landslide scars were measured in the field, and the proportion of slides that deliver sediment to channels was determined from aerial photographs. These measurements then allowed calculation of the long-term average rate of sediment production to streams from landslides for different land systems and types of vegetation. Results suggest that shallow landslides currently contribute about 15±5% of the suspended sediment load in the Waipaoa River above the Kanakanaia gauging station, and that 75% of the sediment production from the landslides occurs during storms with recurrence intervals of less than 27 years. Reforestation of 6.3% (93 km2) of the slide-prone lands in the catchment between 1990 and 1995 resulted in a calculated decrease in slide-derived sediment of 10%. Calculations suggest that reforestation of an additional 3% (66 km2) of the catchment in areas with the most sensitive combinations of land system and storm regime could decrease the total sediment inputs from landsliding by about 20%.  相似文献   

16.
In steep and rocky terrains, their rough surfaces make it difficult to create landslide inventories even with detailed maps/images produced from airborne LiDAR data. To provide objective clues in locating deep-seated landslides, the surface textures of a 5 km2 steepland area in Japan was investigated using the eigenvalue ratio and slope filters calculated from a very high resolution LiDAR-derived DEM. The range of filter values was determined for each of a number of surface features mapped in the field and these included: cracked bedrock outcrops, coarse colluvial deposits, gently undulating surfaces, and smooth surfaces. Recently active slides commonly contained patches of ground in which deposition and erosion occurred together near the erosion front, or where cracked bedrock outcrops and coarse colluvial deposits coexisted under a gently undulating surface. The characteristic eigenvalue and slope filter values representing this sliding process were applied to maps of the DEM derived filter values to extract potential sites of recent landslide activity. In addition, the relationships between the filter values of deep-seated landslides at various stages of evolution within the field mapped area were extended to the entire study area, to assess the contribution that landslide evolution makes to change in the landscape as a whole. While landslide components made up the steepest as well as the gentlest parts of the landscape depending on their evolutionary stage, landslides were constantly coarsened and steepened by progressive erosion, probably initiated by river bank erosion at the foot of slopes.  相似文献   

17.
Terrain analysis applications using remotely sensed Digital Elevation Models (DEMs), nowadays easily available, permit to quantify several river basin morphologic and hydrologic properties (e.g. slope, aspect, curvature, flow path lengths) and indirect hydrogeomorphic indices (e.g. specific upslope area, topographic wetness index) able to characterize the physical processes governing the landscape evolution (e.g. surface saturation, runoff, erosion, deposition). Such DEMs often contain artifacts and the automated hydrogeomorphic characterization of the watershed is influenced by terrain analysis procedures consisting in artificial depression (pit) and flat area treatment approaches combined with flow direction methods.In shallow landslide deterministic models, when applied using topographic dataset at medium scale (e.g. 30 m of resolution), the choice of the most suitable DEM-processing procedure is not trivial and can influence model results. This also affects the selection of most critical areas for further finer resolution studies or for the implementation of countermeasures aiming to landslide risk mitigation.In this paper such issue is investigated using as topographic input the ASTER DEMs and comparing two different combinations of DEM correction and flow routing schemes. The study areas comprise ten catchments in Italy for which hydrogeomorphic processes are significant. Aims of this paper are: 1) to introduce a parameter estimation procedure for the physically-based DEM correction method PEM4PIT (Physical Erosion Model for PIT removal); 2) to investigate the influence of different terrain analysis procedures on results of the slope stability model SHALSTAB (SHAllow Landsliding STABility) using remotely-sensed ASTER DEMs; 3) trying to assess which of terrain analysis methods is more appropriate for describing terrain instability.  相似文献   

18.
In this article a statistical multivariate method, i.e., rare events logistic regression, is evaluated for the creation of a landslide susceptibility map in a 200 km2 study area of the Flemish Ardennes (Belgium). The methodology is based on the hypothesis that future landslides will have the same causal factors as the landslides initiated in the past. The information on the past landslides comes from a landslide inventory map obtained by detailed field surveys and by the analysis of LIDAR (Light Detection and Ranging)-derived hillshade maps. Information on the causal factors (e.g., slope gradient, aspect, lithology, and soil drainage) was extracted from digital elevation models derived from LIDAR and from topographical, lithological and soil maps. In landslide-affected areas, however, we did not use the present-day hillslope gradient. In order to reflect the hillslope condition prior to landsliding, the pre-landslide hillslope was reconstructed and its gradient was used in the analysis. Because of their limited spatial occurrence, the landslides in the study area can be regarded as “rare events”. Rare events logistic regression differs from ordinary logistic regression because it takes into account the low proportion of 1s (landslides) to 0s (no landslides) in the study area by incorporating three correction measures: the endogenous stratified sampling of the dataset, the prior correction of the intercept and the correction of the probabilities to include the estimation uncertainty. For the study area, significant model results were obtained, with pre-landslide hillslope gradient and three different clayey lithologies being important predictor variables. Receiver Operating Characteristic (ROC) curves and the Kappa index were used to validate the model. Both show a good agreement between the observed and predicted values of the validation dataset. Based on a qualified judgement, the created landslide susceptibility map was classified into four classes, i.e., very high, high, moderate and low susceptibility. If interpreted correctly, this classified susceptibility map is an important tool for the delineation of zones where prevention measures are needed and human interference should be limited in order to avoid property damage due to landslides.  相似文献   

19.
Many studies have documented major landslide events in mountain areas following heavy rainfall amounts. In the Himalaya, landslides occur during every monsoon period, but the role of rainfall in triggering these failures is not clear. This paper reports the results of a three-year study (1991-1993) into landsliding in the Likhu Khola drainage basin, Middle Hills, Nepal. Considerable annual variability in numbers, types and sizes of landslides was noted. Some of this variability can be explained by fluctuations in rainfall amounts and intensities, but many landslides were explained more easily by other controlling factors. In situations where slopes are extensively terraced for agriculture, with some terraces being intensely irrigated and others not, relationships between landsliding and rainfall amounts are complex and no simple explanations can be made.  相似文献   

20.
Simulation of event-based landslides and debris flows at watershed level   总被引:2,自引:0,他引:2  
A coupled model has been developed to simulate, at watershed level, landslides and debris flows induced by a severe typhoon (tropical cyclone) in Taiwan. The model comprises a landslide susceptibility model to predict landslide occurrence, an empirical model to select debris-flow initiation points, and a debris flow model to simulate the transport and deposit of failed materials from the identified source areas. In raster format with a 10 m spatial resolution, the model output includes unstable cells, debris-flow initiation cells, debris-flow velocities, runout paths, and deposition zones. The model was first tested and calibrated in a small area, where the damage by landslides had been investigated and recorded. It was then applied to a watershed, and the simulation results were validated by comparing them with a landslide/debris-flow inventory map prepared from satellite images using a multiple change detection technique. Model test and validation results confirm the usefulness of the model in predicting the number and size of affected areas (landslides and runouts combined), runout path, and volume of runout deposits. It is a common practice in Taiwan to separate landslide and debris-flow inventories and to study debris flows only in select drainage basins. This study suggests that landslide and debris flow should be modeled as a sequential process for efficient watershed management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号