首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
2013年5月,在乌梁素海湿地的明水区、湖中芦苇(Phragmites australis)区、人工芦苇区(弃耕26 a)和弃耕芦苇区(弃耕3 a),采集0~40 cm深度的土壤(或沉积物)样品,研究土壤的有机碳组成[颗粒有机碳(POC)和矿质结合有机碳(MOC)]和碳储量。乌梁素海明水区的平均水深1~3 m,生长着沉水植物;湖中芦苇区水深约1 m,自然生长着野生芦苇,常年淹水;弃耕芦苇区为2011年农田退耕后形成的芦苇沼泽,季节性淹水;人工芦苇区的芦苇于1988年种植,季节性淹水。结果表明,明水区和湖中芦苇区表层土壤(0~10 cm深度)的总有机碳含量(15 g/kg)明显高于弃耕芦苇区[(2.60±0.33)g/kg]和人工芦苇区[(6.29±0.75)g/kg]。随着土壤深度的增加,人工芦苇区、明水区和湖中芦苇区土壤的总有机碳(TOC)含量都在减少。弃耕芦苇区各深度土壤的总有机碳和颗粒有机碳含量都相对最低。湖中芦苇区表层土壤的颗粒有机碳含量[(6.96±3.02)g/kg]最高,并且随着土壤深度的增加,其颗粒有机碳含量减少最快。除弃耕芦苇区外,其他采样区土壤(沉积物)的矿质结合有机碳含量都随着土壤深度的增加而减少,且在10~20 cm深度变化最明显,与颗粒有机碳含量垂直变化相似。明水区沉积物的颗粒有机碳含量占总有机碳含量的比例相对较低,表明其碳库最稳定。各采样区土壤(沉积物)不同组分有机碳含量与有机氮含量显著线性相关,TOC/TON、POC/PON和MOC/MON平均值分别为11.0、12.8和10.2。明水区沉积物总有机碳的储量最高(3.93 kg/m2),其次为湖中芦苇区(3.48 kg/m2)和人工芦苇区(3.18 kg/m2),弃耕芦苇区土壤总有机碳的储量仅为1.87 kg/m2。各采样区土壤(沉积物)的矿质结合有机碳储量都占较大比例,分别为80.2%(明水区)、67.9%(湖中芦苇区)、78.3%(人工芦苇区)和68.8%(弃耕芦苇区)。如果沼泽化导致明水区退化为芦苇沼泽,乌梁素海湿地的碳库损失将达到0.45 kg/m2。  相似文献   

2.
桂林会仙喀斯特湿地芦苇群落区土壤酶活性   总被引:1,自引:0,他引:1  
以桂林会仙喀斯特湿地典型植物群落——芦苇(Phragmites australis)群落区土壤为研究对象,于2014年3月20日、4月20日、6月20日、7月21日、9月20日、10月23日、12月20日和2015年1月20日,分别采集0~10cm、10~20 cm和20~30 cm深度土壤样品,分析土壤酶活性及其与土壤主要理化指标的关系。研究结果表明,随着土壤深度的增加,芦苇群落区的土壤含水量、有机碳含量、全氮含量、全磷含量和土壤酶活性都减小,其中2014年6月20日含水量最高;0~10 cm深度土壤有机碳含量和全氮含量在9月20日最大,分别为(24.52±0.52)g/kg和(3.04±0.06)g/kg,全磷含量在10月23日最大,为(0.56±0.02)g/kg,其都在2015年1月20日最低。在0~30 cm深度,土壤蔗糖酶和蛋白酶活性分别在2014年10月23日和9月20日最高,平均值分别为36.08 mg/g和24.95 mg/g,在2015年1月20日最低;土壤脲酶和多酚氧化酶活性分别在2014年4月20日和3月20日最高,平均值分别为1.64 mg/g和4.10 mL/g,在2014年12月20日最低;土壤酸性磷酸酶、过氧化氢酶、纤维素酶和淀粉酶活性都在2014年10月23日最高,平均值分别为7.96 mg/g、7.24 mL/g、0.37 mg/g和0.48 mg/g。不同土壤酶活性在不同月份略有差异,与月降水量、月平均气温和表层土壤温度的变化规律不完全一致,但都在冬季较低。会仙喀斯特湿地芦苇群落区土壤含水量、有机碳含量、全氮含量和全磷含量与土壤中各种酶的活性显著正相关(n=72,p0.05)。  相似文献   

3.
南矶湿地土壤碳、氮、磷化学计量比沿水位梯度的分布   总被引:2,自引:0,他引:2  
2013年11月,在鄱阳湖南矶湿地国家级自然保护区,沿水位梯度测定了岗地、天然堤、洲滩和水域7种植物群丛下的土壤有机碳、全氮和全磷含量,研究了土壤碳、氮、磷化学计量特征及其对水位梯度与植物群丛变化的响应,探讨了碳与养分比对土壤碳储量的指示作用。结果表明,0~30 cm深度土层的平均有机碳、全氮和全磷质量比分别为(16.27±4.18)mg/g、(1.28±0.24)mg/g和(0.77±0.14)mg/g;碳氮比、碳磷比和氮磷比的变化范围分别为4.35~30.86、3.61~52.19和0.52~4.31,其平均值分别为(12.60±5.40)、(19.73±13.28)和(1.58±0.90);随着水位梯度与群落类型的变化,土壤碳、氮、磷化学计量比发生显著变化,且土壤碳氮比和碳磷比的变化主要取决于有机碳含量,氮磷比的变化主要受控于全氮含量;岗地、天然堤、洲滩和水域0~30 cm深度土壤有机碳储量分别为4 103.57 g/m2、8 248.01 g/m2、5 143.58 g/m2和2 225.57 g/m2;随着碳氮比的增大,有机碳储量总体上呈增加趋势。  相似文献   

4.
土壤活性有机碳既是土壤微生物的活动能源,又是土壤养分循环的主要驱动力。2013年5~10月中旬,在吉林省辉南县孤山屯泥炭沼泽中,对瘤囊薹草(Carex schmidtii)—小叶章(Calamagrostis angustifolia)群落、薹草(Carex spp.)群落和薹草—柳叶绣线菊(Spiraea salicifolia)群落泥炭沼泽0~40 cm深度土壤微生物量碳和水中可溶性有机碳含量分布及其影响因素进行了研究。研究结果表明,各植物群落泥炭沼泽0~20 cm深度土层中的微生物量碳质量浓度在92.40~478.96 g/m~3范围内变化,瘤囊薹草—小叶章群落泥炭沼泽土壤中的微生物量碳含量最低;20~40 cm深度土层中的微生物量碳质量浓度在48.45~348.88 g/m~3范围内变化,在20~40 cm深度土层,各采样日都是薹草—柳叶绣线菊群落泥炭沼泽土壤的微生物量碳质量浓度相对最大,其它依次为薹草群落、瘤囊薹草—小叶章群落;各植物群落泥炭沼泽0~20 cm和20~40 cm深度水中的可溶性有机碳质量浓度的变化范围分别为28.99~53.69 mg/L和22.20~66.71 mg/L;6个采样日,薹草群落和薹草—柳叶绣线菊群落泥炭沼泽0~20 cm深度土层微生物量碳含量明显大于20~40 cm深度土层,而薹草群落泥炭沼泽20~40 cm深度水中的可溶性有机碳含量都高于上层;微生物量碳含量的对数与可溶性碳含量的对数为负相关关系;土壤微生物量碳含量的主要影响因素是土壤有机碳含量、全氮含量、全磷含量、氮磷比、硝态氮含量和水位,水中可溶性有机碳含量的主要影响因素是总氮含量、总磷含量和0 cm土壤温度。  相似文献   

5.
为了了解干旱区城市湿地公园不同植物生长区土壤的储碳能力,在宁夏回族自治区银川市鸣翠湖国家湿地公园中,在香蒲(Typha orientalis)、荷花(Nelumbo nucifera)、石菖蒲(Acorus tatarinowii)和芦苇(Phragmites australis)生长区,分别设置采样地,于2018年5月8日,采集0~10 cm、10~20 cm、20~40 cm和40~60 cm深度的土壤样品,测定土样的有机碳及其组分含量,分析土壤有机碳及其组分含量与土壤其它理化指标的关系。研究结果表明,香蒲、荷花、石菖蒲和芦苇生长区0~60 cm深度各土层的土壤有机碳质量比平均值分别为20.85 g/kg、16.35 g/kg、7.23 g/kg和4.48 g/kg,土壤易氧化碳质量比平均值分别为6.17 g/kg、4.53 g/kg、2.57 g/kg和1.16 g/kg;与其它植物生长区对应深度的土壤有机碳和易氧化碳含量相比,香蒲生长区0~10 cm、10~20 cm和20~40 cm深度土壤有机碳和易氧化碳含量显著偏高,荷花生长区40~60 cm深度土壤有机碳和易氧化碳含量显著偏高;与其它植物生长区对应深度的土壤颗粒有机碳含量相比,香蒲生长区0~10 cm、10~20 cm土壤颗粒有机碳含量显著偏高,荷花生长区20~40 cm和40~60 cm深度土壤颗粒有机碳含量显著偏高;荷花生长区各深度土壤可溶性有机碳含量显著高于其它植物生长区;各植物生长区土壤有机碳含量及其组分的含量与土壤砂粒含量、粉粒含量、全氮含量和pH显著相关。  相似文献   

6.
纳帕海湿地土壤有机碳和微生物量碳研究   总被引:3,自引:0,他引:3  
以纳帕海湿地天然沼泽、沼泽化草甸和草甸为研究对象,研究土壤有机碳和土壤微生物量碳含量的时空分布及其变化。结果表明,天然沼泽、沼泽化草甸和草甸0~40 cm深土层的平均有机碳含量在(18.02±0.24)~(258.44±3.37)g/kg之间变动;三者10~40 cm深土壤的各土层平均有机碳含量随着土壤深度增加在不断减小,且差异显著(p0.05);其土壤表层(0~10 cm)的平均微生物量碳含量都较高,分别为(446.23±98.72)mg/kg(沼泽化草甸)、(204.23±44.90)mg/kg(天然沼泽)和(158.64±65.24)mg/kg(草甸);三者0~40 cm深土层的微生物量碳含量差异明显,沼泽化草甸的微生物量碳含量最高,为940.00 mg/kg,天然沼泽次之,为472.23 mg/kg,草甸最低,为359.78 mg/kg;在垂直分布上,三者的土壤微生物量碳含量表现出与土壤有机碳含量一致的规律;土壤有机碳含量和土壤微生物量碳含量都与土壤含水量显著相关,表明纳帕海湿地土壤有机碳含量和土壤微生物量碳含量主要受土壤水分的影响,而人为疏干排水是导致土壤水分下降的诱因。  相似文献   

7.
2021年5月,在海南东寨港国家级自然保护区红树林中的9种群落区,采集表层(0~20 cm深度)的土壤样品,测定表层土壤样品中的有机碳及其活性组分的含量,分析其与土壤化学指标的关系。研究结果表明,东寨港国家级自然保护区红树林中9种群落区表层土壤中的总有机碳、微生物生物量碳、可溶性有机碳和易氧化有机碳质量比的平均值分别为34.45 g/kg、615.01 mg/kg、73.97 mg/kg和1.46 g/kg,其变异系数都大于60%;在9种群落区表层土壤的总有机碳含量中,易氧化有机碳含量所占比例(平均值为4.47%)最大,其次是微生物生物量碳含量所占比例(平均值为1.96%),可溶性有机碳含量所占比例(都小于1.00%)最小;表层土壤中的全氮含量、全钾含量和土壤pH是影响有机碳及其活性组分含量的主要因素。  相似文献   

8.
为了揭示安徽三汊河国家湿地公园不同土地利用方式下土壤有机碳及其活性组分含量的差异,于2017年7月16日,在该湿地公园内的天然沼泽——芦苇(Phragmites australis)+藨草(Scirpus triqueter)沼泽、由天然沼泽开垦的分别耕种了3 a和30 a的耕地、果园和林地中,采集表层(0~10 cm深度)土壤样品,测定土样中的有机碳、微生物量碳、可矿化碳和可溶性碳含量。研究结果表明,天然沼泽表层土壤中的有机碳、微生物量氮、可溶性有机碳和可矿化有机碳质量比分别为16.99 g/kg、124.42 mg/kg、119.44 mg/kg和0.55 g/kg,耕种了3 a的耕地表层土壤中的有机碳、微生物量氮、可溶性有机碳和可矿化有机碳质量比分别为6.31 g/kg、98.64 mg/kg、24.91 mg/kg和0.22 g/kg,耕种了30 a的耕地表层土壤中的有机碳、微生物量氮、可溶性有机碳和可矿化有机碳质量比分别为19.22 g/kg、173.40 mg/kg、84.78 mg/kg和0.40 g/kg,果园表层土壤中的有机碳、微生物量氮、可溶性有机碳和可矿化有机碳质量比分别为12.31 g/kg、93.28 mg/kg、55.08 mg/kg和0.20 g/kg,林地表层土壤中的有机碳、微生物量氮、可溶性有机碳和可矿化有机碳质量比分别为12.64 g/kg、109.00 mg/kg、53.96 mg/kg和0.14 g/kg;天然沼泽开垦为耕地耕种了3 a后,表层土壤中活性有机碳各组分含量显著降低,耕种了30 a后,表层土壤活性有机碳各组分含量有所增加。  相似文献   

9.
为阐明祁连山青海云杉(Picea crassifolia)林分布带对其土壤碳、氮含量的影响,以分布在祁连山东段和西段的典型青海云杉林为研究对象,通过野外取样和室内分析,论述了青海云杉林浅层土壤碳、氮含量特征及其相互关系。结果表明:(1)祁连山东、西段土壤剖面有机碳含量均随土壤深度的增加而减小,但不同土层差异显著性不同,0~40cm含量分别为73.57±17.17g·kg-1和45.85±11.93g·kg-1;东、西段土壤剖面有机碳储量没有明显的变化规律,0~40cm有机碳储量分别为205.51±39.44t·hm-2和134.93±25.80t·hm-2。(2)祁连山东、西段土壤全氮含量随土层深度变化和不同土层差异显著性变化规律同土壤有机碳含量,0~40cm全氮含量分别为4.56±0.88g·kg-1和2.81±0.66g·kg-1;东、西段土壤全氮储量亦同土壤有机碳储量变化规律,0~40cm储量分别为12.77±2.08t·hm-2和8.38±1.56t·hm-2。(3)祁连山东、西段土壤剖面不同土层C/N比差异显著性变化规律相同,其C/N值分别为15.92±1.24和16.10±2.07;C/N比值大小主要取决于有机碳含量;线性分析表明,土壤有机碳与全氮含之间呈极显著的正相关关系,可用乘幂曲线模型Y=aXb较好地描述(p0.01)。上述研究结果可为祁连山水源涵养林建群种青海云杉林的经营和管理提供理论依据和数据支撑。  相似文献   

10.
王涵  吴林  薛丹  刘雪飞  洪柳  牟利  李小玲 《湿地科学》2020,18(3):266-274
泥炭藓泥炭沼泽多分布于冷湿的寒温带地区;亚热带亚高山地区降水充足,气温相对较低,部分山间洼地也发育有泥炭藓泥炭沼泽,分布在亚热带的泥炭藓泥炭沼泽更为珍稀。2018年4月至2019年5月,对湖北省恩施市太山庙林场泥炭藓泥炭沼泽进行了野外调查,调查结果显示,该区域有22处泥炭藓泥炭沼泽,其泥炭层厚50~110 cm,呈斑块状分布在地势低洼处,总面积为39.59 hm2;在泥炭藓泥炭沼泽中,全年水位在-17.65~-0.34 cm之间波动;在泥炭藓泥炭沼泽中,0~50 cm深度土壤的pH为3.92~4.30,土壤的酸性较强。随着土壤深度的增加,土壤pH和容重增大,土壤含水量、有机碳含量、可溶性有机碳含量、全氮含量和碱解氮含量在减小;0~50 cm深度土壤的有机碳质量比为246.51~283.30 g/kg,可溶性有机碳质量浓度为33.97~77.64 mg/L,全氮质量比为8.19~12.71 g/kg,碱解氮质量比为436.22~741.35 mg/kg;在泥炭藓泥炭沼泽中,共有植物33科42属52种;优势植物主要为杜鹃花科、蔷薇科、禾本科、莎草科的植物;灌木层、草本植物层和苔藓层的植物盖度分别为(75±16)%、(46±18)%和(92±8)%;植物地上总生物量为1.83 kg/m2,灌木层、草本植物层和苔藓层的植物地上生物量分别为(0.42±0.13) kg/m2、(0.032±0.015) kg/m2和(1.38±0.42) kg/m2。  相似文献   

11.
2013年8月13日~10月2日,在大兴安岭冻土区,采集0~30 cm深度的土壤,通过室内模拟培养实验,分析了3种温度和添加白毛羊胡子草(Eriophorum vaginatum)根系条件下,土壤碳、氮含量和土壤酶活性。研究结果表明,在5℃条件下,培养50 d后,未添加根系的土壤样品溶解性有机碳含量、微生物量碳含量、铵态氮含量、硝态氮含量、蔗糖酶活性和脲酶活性分别为249~312μg/g、2 442~3 150μg/g、98.43~216μg/g、15.58~17.07μg/g、22.37~54.63 mg/(g·24 h)和1.94~2.32 mg/(g·24 h);在添加根系条件下,土壤溶解性有机碳、硝态氮、铵态氮含量都增大,土壤蔗糖酶活性增强。在10℃且未添加根系的培养条件下,其分别为396~425μg/g、1 831~2 686μg/g、107~342μg/g、18.33~20.05μg/g、23.96~50.34 mg/(g·24 h)和1.52~2.01 mg/(g·24 h);在添加根系条件下,土壤溶解性有机碳、微生物量碳含量都增大,土壤蔗糖酶和脲酶活性增强。在15℃且未添加根系的培养条件下,其分别为344~397μg/g、2 510~2 751μg/g、292~577μg/g、21.08~24.78μg/g、25.55~46.29mg/(g·24 h)和1.28~2.23 mg/(g·24 h);在添加根系条件下,土壤溶解性有机碳、硝态氮含量都增大,土壤蔗糖酶和脲酶活性都增强。  相似文献   

12.
在黄河三角洲潮间带盐沼采集土壤样品,研究了黄河三角洲潮间带盐沼土壤碳、氮含量和储量的分布特征,分析了碳、氮含量和储量与土壤理化因子的关系。结果表明,研究区0~40 cm土壤总碳和有机碳质量比为11.8~19.2 g/kg和0.5~5.2 g/kg,土壤全氮和有机氮质量比为0.08~0.15 g/kg和0.076~0.136 g/kg,其主要分布在0~20 cm深度土层,且有机氮、全氮和有机碳含量变化规律一致。除无机碳和无机氮外,采样带A的土壤碳、氮含量随着土壤深度增加而下降;在采样带B,各土层的碳、氮含量差异不明显。采样带A表层土壤(0~10 cm深度)的全氮和有机氮含量高于采样带B表层土壤。两采样带土壤无机氮含量主要以铵态氮含量为主,无机氮和铵态氮含量随着土壤深度增加先增加后减少,在10~20 cm土层累积;硝态氮含量随土壤深度增加而下降。在两采样带0~40 cm深度土壤中,全碳储量为9 489~12 239 g/m2,有机碳储量为4 321~8 738 g/m2,全氮储量为33~121 g/m2,除全碳储量外,有机碳和全氮储量主要分布在0~20 cm深度土层中。相关分析结果表明,土壤中全氮含量、硝态氮含量、全氮储量与有机碳含量显著相关(n=24,p0.05),土壤碳氮比与容重、p H、硝态氮含量、全碳含量、全氮含量和全氮储量显著相关(n=24,p0.05)。  相似文献   

13.
湿地土壤有机碳、氮和磷含量变化显著影响着湿地生态系统的生产力。为阐明吉林东部山地沼泽湿地土壤养分的空间分布特征,以吉林省敦化市4种典型山地沼泽湿地:落叶松-苔草湿地(T1)、莎草湿地(T2)、小叶章-甜茅湿地(T3)和沼泽化草甸湿地(T4)为研究对象,研究了土壤有机碳、全氮和全磷含量及其化学计量比的空间分布特征及影响因素。结果表明:4种山地沼泽湿地类型土壤有机碳、全氮、全磷含量均值分别为343.11 mg/g、28.03 mg/g和4.00 mg/g,变异系数为有机碳(9.26%)<全氮(16.52%)<全磷(48.64%)。在0~40 cm土层内, T1、T2和T3土壤有机碳、全氮、全磷含量随土壤深度的增加呈先增加后减少的趋势,在10~20 cm土层出现累积峰; T4土壤有机碳、全氮、全磷含量随土壤深度的增加而减少。土壤有机碳、全氮含量的变化趋势为T1相似文献   

14.
黑河中游湿地土壤有机碳分布特征及其影响因素   总被引:1,自引:0,他引:1  
以黑河中游湿地为研究对象,分析木本、高草、低草3种湿地植被类型土壤有机碳的分布特征及影响因素,结果表明,土壤有机碳含量的大小依次为高草>低草>木本植被类型,0~20 cm的差异均达到显著水平(p<0.05)。低草植被类型有机碳的空间变异最大,木本植被居中,高草植被最小。高草、低草和木本植被0~40 cm土壤有机碳密度分别为7.33、5.44和4.25 kg/m2。高草、低草植被以表层土壤(0~10 cm)有机碳含量更高,分别占0~40 cm的32%,31%,木本植被以亚表层(10~20 cm)最高,占33%。土壤有机碳含量与土壤含水量、磷素呈显著正相关(p<0.05),与土壤质量、pH值呈显著负相关(p<0.05)。  相似文献   

15.
2013年8月15~17日,以天津市七里海、北大港和大黄堡芦苇(Phragmites australis)沼泽为研究区,在3处芦苇沼泽中,分别采集0~25 cm、25~50 cm、50~75 cm和75~100 cm深度的底泥样品,测定其有机碳、全氮和全磷含量,分析其生态化学计量学特征及其环境影响因素。研究结果表明,芦苇沼泽(0~25 cm深度)底泥中的平均有机碳、全氮和全磷质量比分别为14.98 g/kg、1.60 g/kg和0.50 g/kg;平均碳氮比、碳磷比和氮磷比分别为9.47、29.59和3.13。七里海芦苇沼泽氮负荷高,其0~25 cm深度底泥全氮含量约为北大港沼泽和大黄堡沼泽的2倍,而25~100 cm深度底泥中的全氮含量与大黄堡沼泽差异不显著。3处芦苇沼泽底泥中的全氮含量是决定其碳氮比、碳磷比和氮磷比差异的关键因子;底泥盐度与碳氮比显著负相关;底泥p H与有机碳含量、全氮含量、碳磷比和氮磷比都显著负相关;底泥p H是影响天津市3处芦苇沼泽底泥有机碳和全氮含量变化的重要环境因子。与国内其它湿地相比,天津市3处芦苇沼泽0~25 cm深度底泥全氮含量较高,全磷含量较低,有机碳含量与其它湿地接近;此外,天津市3处芦苇沼泽碳氮比较低,氮磷比和碳磷比较高,表明天津市3处芦苇沼泽可能存在氮相对富足和磷相对较少的状况。  相似文献   

16.
于2015年8月,在敦煌阳关国家级自然保护区中的渥洼池湿地,设置了52块采样地,采用野外调查和室内实验方法,研究不同植物盖度下,优势植物芦苇(Phragmites australis)叶片碳、氮、磷生态化学计量特征及其影响因素。结果表明,芦苇叶片中的平均全碳、全氮和全磷质量比分别为215.20~453.65 mg/g、9.64~25.80 mg/g和1.19~2.98 mg/g,碳氮比、碳磷比和氮磷比分别为12.25~40.81、96.46~316.02和4.35~15.34。芦苇叶片全碳、全氮和全磷含量都在低盖度下最大,碳氮比在高盖度下最大,碳磷比和氮磷比在中盖度下最大。芦苇叶片全碳含量、全磷含量与所有土壤理化因子都不相关;全氮含量与0~20 cm深度土壤含水量、40~60 cm深度土壤全氮含量显著负相关(n=52,p0.05),与0~60 cm土壤含盐量显著正相关(n=52,p0.05);芦苇叶片碳氮比与0~20 cm、40~60 cm深度土壤含盐量和40~60 cm深度土壤全氮含量显著正相关(n=52,p0.05);芦苇叶片碳磷比和氮磷比与0~20 cm深度土壤有机碳含量显著正相关(n=52,p0.05)。氮元素是研究区中芦苇生长的主要限制性因子。  相似文献   

17.
于2018年4月,在辽河口天然芦苇(Phragmites australis)盐沼、油田区芦苇盐沼、退化芦苇盐沼、盐地碱蓬(Suaeda salsa)盐沼、滩涂和稻田中,设置采样点,采集0~10 cm、10~20 cm、20~30 cm和30~40 cm深度的土壤样品,测定土壤样品中的铁和锰元素含量,研究辽河口湿地土壤中铁和锰元素含量的分布特征。研究结果表明,辽河口天然芦苇盐沼、油田区芦苇盐沼、退化芦苇盐沼、盐地碱蓬盐沼、滩涂和稻田的24个采样点0~40 cm深度土壤中的铁元素和锰元素质量比的平均值分别为31.82 g/kg和624.5 mg/kg;油田区芦苇盐沼、天然芦苇盐沼和稻田0~40 cm深度土壤中的铁元素和锰元素含量较大,退化芦苇盐沼、盐地碱蓬盐沼和滩涂0~40 cm深度土壤中的铁元素和锰元素含量较小;辽河口湿地0~10 cm深度土壤中的铁元素含量主要受全磷含量的影响;10~20 cm深度土壤中的铁元素含量主要受总有机碳含量和电导率的影响;20~30 cm深度土壤中的铁元素含量主要受总有机碳含量、全氮含量、全磷含量和电导率的影响;30~40 cm深度土壤中的锰元素含量主要受全磷含量的影响。  相似文献   

18.
于2018年7月6~8日,在黄河三角洲芦苇(Phragmites anstralis)盐沼、盐地碱蓬(Suaeda salsa)盐沼、柽柳(Tamarix chinensis)盐沼和互花米草(Spartina alterniflora)盐沼中,分别采集了0~20 cm深度土柱,按2 cm一层,将采集的土柱分层,测定了不同深度土层的有机碳和可溶性有机碳含量;利用傅里叶变换红外光谱仪,分析了土样中可溶性有机碳的官能团结构特征。研究结果表明,芦苇盐沼、盐地碱蓬盐沼、柽柳盐沼和互花米草盐沼表层土壤中的有机碳和可溶性有机碳含量都在0~2 cm深度层最大,随着土壤深度的增加,二者都在逐渐减小,其陆源有机碳的贡献率分别为79.81%、42.73%、63.45%和34.91%,海源有机碳的贡献率分别为20.19%、57.27%、36.55%和65.09%;生长着4种植物群落的盐沼表层土壤中的可溶性有机碳的红外光谱特征类似,其官能团结构以醇酚类和芳烃类为主,还包括脂肪族、烯烃、卤代烃和仲酰胺类;在波数为1 580~1 660 cm~(-1)与2 800~3 010cm~(-1)处,芦苇盐沼、互花米草盐沼、柽柳盐沼和盐地碱蓬盐沼表层土壤中可溶性有机碳红外光谱的峰面积比分别为0.13、0.61、2.27和5.14,盐地碱蓬盐沼表层土壤可溶性有机碳中惰性碳含量最大。  相似文献   

19.
2013年9月11日和12日,在双台河口的天然碱蓬盐沼、退化碱蓬盐沼、光滩和海水养殖塘中,分层采集0~100 cm深度的土壤样品,测定其有机碳含量、可溶解有机碳含量、全氮含量、铵态氮含量、硝态氮含量和碳氮比,并分析这些指标的垂直分布特征。研究结果表明,在天然碱蓬盐沼中,不同深度的土壤有机碳含量都显著高于其它类型湿地土壤(p0.05);除养殖塘外,其它类型湿地土壤有机碳含量总体上随着土壤深度增加而减小,养殖塘不同深度土壤有机碳含量差异不明显;天然碱蓬盐沼不同深度土壤的全氮含量都显著高于退化碱蓬盐沼和光滩土壤(p0.05),总体上,随着土壤深度增加,天然碱蓬盐沼和退化碱蓬盐沼土壤的全氮含量减小,养殖塘土壤的全氮含量波动变化。在0~10 cm深度,光滩土壤的碳氮比最高;养殖塘不同深度土壤碳氮比都较低。随着土壤深度增加,天然碱蓬盐沼、光滩和养殖塘土壤中的可溶性有机碳含量波动变化,且无显著差异;退化碱蓬盐沼土壤可溶性有机碳含量波动减小。随着土壤深度增加,退化碱蓬盐沼土壤铵态氮含量减小,养殖塘土壤中的铵态氮含量呈单峰曲线变化,峰值出现在30~50 cm深度土层;光滩土壤铵态氮含量波动减小。在土壤垂直方向上,各类型湿地土壤硝态氮含量都波动变化;与其它湿地类型相比,养殖塘不同深度土壤硝态氮含量都最低。  相似文献   

20.
为了解胶州湾芦苇(Phragmites australis)潮滩不同植物群落下土壤生态化学计量学特征,于2011年11月,对该区域的土壤有机碳含量、全氮含量、全磷含量、pH、盐度和含水量等进行了测定与分析。结果表明,随着土壤深度的增加,芦苇潮滩土壤有机碳、全氮和全磷含量总体上在波动减小,其水平分布存在差异;0~60 cm深度土壤的有机碳、全氮和全磷质量比分别为5.73~15.07 g/kg、0.46~0.84 g/kg和0.03~0.39 g/kg,其平均值分别为8.93 g/kg、0.61 g/kg和0.15 g/kg;土壤碳与氮元素含量显著正相关(p=0.0190.05),土壤碳与磷元素含量显著正相关(p=0.0020.01),而土壤氮与磷元素含量不相关(p0.05);0~60 cm深度土壤的C/N、C/P和N/P分别为11.50~29.05、80.19~506.22和4.44~38.24,其平均值分别为17.10、182.60和11.60。土壤C/N相对稳定,而C/P和N/P变化较大;淹水频率影响土壤C/N、C/P和N/P剖面变异性,淹水频率越小,变异性也越小;芦苇潮滩土壤C/N表现为芦苇群落最高,芦苇杂草混合群落最低;而土壤C/P和N/P则同时表现为芦苇杂草混合群落最高,杂草群落最低;土壤盐度是芦苇潮滩土壤生态化学计量比最主要的影响因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号