首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
锂作为最轻的碱金属元素,广泛应用于国民经济的各个领域。近年来锂产品需求量日益增加,锂资源的有效开发和提取对于促进新能源发展、保障我国能源安全具有重要意义。青海柴达木地区盐湖卤水锂资源储量丰富,但高镁锂质量比增加了盐湖提锂的技术难度,并成为制约我国盐湖锂资源可持续发展的“卡脖子”关键问题。对目前国内外盐湖卤水提锂技术进行综述,介绍了卤水提锂方法最新研究进展,对于实现我国高镁锂比盐湖卤水锂资源绿色低碳高效开发利用具有重要意义。  相似文献   

2.
随着锂电产业发展,盐湖锂的需求日渐增长,战略地位日趋提升。从知识产权视角对我国高镁锂比盐湖卤水提锂产业的发展进行分析。简述了盐湖提锂专利申请数量的年代变化趋势和专利类型,认识技术发展的趋势和侧重点,同时对不同省市、不同机构属性的专利申请数量做了对比,以反映领域内研发力量的构成和分布情况。通过包括相转化、萃取、膜分离及吸附在内的四种主流镁锂分离方法,对技术衍变趋势和高被引关键专利进行讨论,研究了各类技术发展的脉络与现状。最后,展望了高镁锂比盐湖卤水镁锂分离技术未来的发展趋势。  相似文献   

3.
《盐湖研究》2007,15(4):31-31
近期,以中国科学院青海盐湖研究所为技术支撑的“青海盐湖提锂及资源综合利用”国家级产业化项目提锂新技术取得了成功,这标志着高镁锂比盐湖卤水提锂工业化生产技术实现了重大突破。  相似文献   

4.
<正>由中国五矿-五矿盐湖有限公司与中国科学院青海盐湖研究所联合开发的"一里坪盐湖卤水锂硼镁综合利用"项目,配合引进德国多级锂离子浓缩高镁锂比提锂技术,针对一里坪盐湖卤水进行提锂工艺技术二次研发。目前已经完成了一里坪盐湖晶间卤水的盐田蒸发试验工作,确定了卤水的蒸发析盐规律,获取了相关的盐田工艺技术参数;通过卤水改性、优化盐田工艺,解决了盐田老卤镁锂比值高的技术难题;研发出了一种新型、高效、清洁、节能的镁锂分离工艺,最终得到的富锂卤水镁锂比值在1∶1以下,成功进行了扩大试验,申请了相关专利,确定了适合一里坪盐湖资源特点的先进提锂工艺,用于该盐湖综合开发利用建设项目,为全面开发一里坪盐湖资源提供了技术保  相似文献   

5.
我国盐湖资源丰富,对盐湖中的锂镁资源进行深度开发已经成为开发盐湖资源的研究热点之一。基于ISI WoK Thomson Innovation专利数据库(TI),利用TDA分析工具对盐湖锂镁分离提取技术领域专利文献进行分析,系统揭示盐湖锂镁分离提取技术的研发现状、热点以及技术分布与格局,最后根据分析结果对盐湖锂镁分离提取技术发展提出对策建议。  相似文献   

6.
《盐湖研究》2001,9(1):29
12月 6日 ,由中国科学院青海盐湖研究所承担的“东台盐湖锂矿年产 50吨碳酸锂试验”科技攻关项目 ,在西宁通过了由青海省科技厅组织的专家委员会的评审验收。高镁锂比盐湖锂资源的提取是世界性的难题。多年来 ,国际上许多国家投入巨资对高镁锂比盐湖卤水提锂进行了长期研究 ,均未能取得突破 ,主要问题是工艺过程操作性不强、产品成本高 ,无法参与市场竞争。目前国内外尚无高镁锂比盐湖卤水提锂工业化成功的先例。由马培华研究员领导的青年科技攻关小组经过刻苦攻关 ,终于攻克了这个世界性技术难题。评审专家们认为 ,中国科学院青海盐湖研究…  相似文献   

7.
锂作为当今一种重要的能源金属,已经与国民经济以及人们的日常生活变得密不可分。从液态锂资源(盐湖卤水、海水及锂矿酸性浸取液)中提锂是今后的发展大势。锂印迹技术是一种极具潜力的液相锂萃取分离技术,有望从复杂液态锂环境中选择性提锂,在简化工序的同时降低提锂成本。分析了目前用于提锂的捕获单元(冠醚、杯芳烃及离子筛)以及当前锂印迹聚合物的相关研究,可为研发新型锂印迹材料、搭建实用型锂萃取分离体系提供借鉴,推动表面离子印迹技术在液态锂资源萃取领域的发展。  相似文献   

8.
青海盐湖卤水锂资源储量丰富,高镁锂比卤水存在镁锂分离难的问题。基于非平衡动态降温过程中不同盐组分结晶行为存在差异的原理,开展了强制分离高镁锂比卤水的研究,考察了卤水镁锂比、降温速率、流体状态和卤水温度对镁锂分离效果的影响,并分析了结晶过程中镁锂分离的介稳性特点。结果表明,通过非平衡动态降温结晶析出MgCl2·6H2O,可以实现卤水脱镁和镁锂分离,当降温速率为-1.25℃/min、卤水温度在70℃至50℃范围内,镁锂比在10∶1~80∶1时,镁锂分离因子最高可达到1.876,结晶的MgCl2·6H2O纯度最高为99.42%。非平衡动态降温结晶工艺相较于经典的盐田工艺,最多可将锂损失率从模拟盐田工艺的38.39%降至7.56%。该工艺为盐湖卤水镁锂分离提供了一条新的思路,也为后续高纯锂盐的制备奠定了基础。  相似文献   

9.
青海盐湖资源丰富,在盐湖提锂过程中副产了大量含锂Mg(OH)_2镁渣,由于利用条件和工艺的限制,其大部分被企业堆置放弃,造成资源的严重浪费和生态环境的破坏,因此提锂副产镁渣的高值化利用具有重要的意义。本研究仅采用盐湖提锂副产镁渣和可溶性铝盐作为原料,采用水热法成功制备了SO~(2-)和CO~(2+)_3插层的镁基层状复合金属氢氧化物(LDHs)。并通过XRD、FT-IR、Raman、TG-DTG等手段对产物的结构、形貌等进行了表征。制备过程中不需要加入其他碱作为沉淀剂,不产生钠盐或铵盐等副产物,产物只需少量水洗涤即可,是一种绿色、经济的制备工艺。此外,在反应过程中可将镁渣中90%的锂进行回收,不仅实现了副产镁渣的高值化利用,还回收了夹带的锂,对盐湖镁锂资源综合高效利用提供了一种有效途径。  相似文献   

10.
锂及其化合物是重要的化工原料,因其优越和独特的性能,需求量逐年增加。锂矿床类型主要有锂辉石、锂云母、透锂长石等固体型和盐湖型等液体矿。固体锂矿经过多年开发,采富弃贫,品质已临近经济下限,开发利用盐湖卤水和油田卤水中的锂资源日益受到重视。中国盐湖资源丰富,主要分布在青藏高原地区。盐湖中蕴藏着大量的锂资源,广泛应用于能源、化工、高科技等工业生产及居民生活领域,为保障资源供给和能源安全,分离盐湖中的锂资源十分迫切和必要。锂分离技术有吸附法、膜法、化学沉淀法、萃取法、结晶法、浮选法等,这些方法各有优势和不足,而吸附法适用于低品位、高浓盐、高镁锂比盐湖卤水中锂的分离。为此,总结了有关吸附法(电吸附)分离盐湖卤水中锂的原理、进展和优缺点,并总结和提出其发展方向。  相似文献   

11.
锂是战略新兴产业的“关键原料”,已入国家战略新兴产业矿产。当前和可预见的未来,新能源、人工智能、航空航天等都离不开锂原料。有机构预测全球锂需求量将从2017年24万吨增加到2025年的83万吨LCE(碳酸锂当量)。青海柴达木盆地是我国锂资源富集地,为探讨青海盐湖锂资源的合理开发规模,分析了锂盐开发的矿床特性、钾肥规模、开采方式、盐田精制浓缩工艺等影响因素,以察尔汗盐湖为例计算其开发规模,提出“先锂后钾”重点研发低含量卤水提锂技术、全流程工艺优化、构建锂资源产业集群等建议,将有利于科学规划青海盐湖锂资源开发,促进我国盐湖锂产业可持续发展。  相似文献   

12.
青海盐湖锂盐开发与环境   总被引:21,自引:4,他引:17       下载免费PDF全文
高世扬 《盐湖研究》2000,8(1):17-23
锂和锂盐到 2 1世纪在能源和新材料方面具有重要的意义 ,过去锂盐生产主要来自锂矿石 ,今后将主要来自盐湖卤水 ,我国矿石锂盐生产已面临严峻局面。青海盐湖锂、钾、镁和硼含量高 ,储量大 ,为迎接新能源和新材料时代的到来 ,发展西部少数民族地区经济 ,建议把“青海盐湖锂盐开发与环境”列为国家重点研究规划项目。  相似文献   

13.
盐湖卤水是一种宝贵的无机盐资源,其中除富含钾、钠、镁、硼外,一些高价值的稀有元素锂、铷、铯、碘也有较大的储量,稀有元素的开发利用对于盐湖资源的综合利用和可持续发展具有重要意义。本文主要针对近年来盐湖资源中锂、铷、铯、碘等稀有元素吸附分离材料和相关技术的研究进行分析总结,资料以卤水中或以在卤水中的应用为目的的研究为主,对吸附材料制备、吸附机理及存在问题等情况进行归纳,以期为盐湖稀有元素分离提供参考,为盐湖资源的综合利用提供指导。  相似文献   

14.
全球锂资源综合评述   总被引:3,自引:1,他引:3       下载免费PDF全文
苏彤  郭敏  刘忠  李权 《盐湖研究》2019,27(3):104-111
发展高效清洁能源是解决能源和环境问题的有效途径,交通电力化和能源储存使全球对锂产品的需求持续快速增加,导致全球对锂资源越来越关注。然而,不同文献报道和不同信息来源的全球锂资源量差别较大,我们在对各种最新报道和公开的信息进行系统分析的基础上,对全球锂资源进行了综合评述。全球卤水锂和矿石锂资源总量为3 190~5 190万吨(以金属锂计),卤水锂和矿石锂分别约占62.6%和37.4%,全球70%以上的卤水锂资源在智利、阿根廷、玻利维亚锂三角地区。以卤水为原料生产锂盐能耗低、成本低,对卤水锂资源会越来越关注,卤水提锂将成为未来锂资源提取的重要方向。  相似文献   

15.
青藏高原盐湖Li地球化学   总被引:4,自引:9,他引:4       下载免费PDF全文
韩凤清 《盐湖研究》2001,9(1):55-61
青藏高原是我国富 L i盐湖的主要分布区域 ,这些富 L i盐湖主要分布在柴达木盆地中部和西藏的中、西部地区。北部柴达木盆地盐湖 L i的储量大、Mg/ L i比值高、卤水 L i含量较高 ,南部西藏盐湖 L i的储量较大、Mg/L i比值低 ,L i含量很高。青藏高原富 L i盐湖主要分布在氯化物型—硫酸盐型过渡区内 ,其 L i含量在 12 0~ 2 6 0 m g/L之间 ;西藏富 L i盐湖主要分布在碳酸盐型—硫酸盐型过渡区内 ,其 L i含量在 2 5 0~ 6 6 0 m g/ L之间。在西藏各类盐湖中碳酸盐型盐湖含 L i较低 ,这很可能与其参加到早期沉淀的碳酸盐矿物晶格中有关。盐湖卤水中 L i的空间分布与其水源补给方向和蒸发环境紧密相关。Mg/ L i比值研究表明 ,盐湖中 Mg和 L i的含量成反比关系 ,即高 Mg环境不利于 L i的富集  相似文献   

16.
从高镁锂比盐湖提锂生产尾液中回收锂,可实现锂资源高效回收利用,对企业经济效益的提高具有重要意义。以东台吉乃尔盐湖提锂尾液为原料,系统性研究了铝系层状锂吸附剂JW-LAHS对提锂尾液中锂的静态、动态吸附和解吸过程。结果表明,吸附剂的静态吸附容量为7.3 mg/g,镁锂分离因子为27.98;最佳动态吸附条件为床层高度24.8 cm,进料流速3.5 mL/min,此时穿透时间为22.0 min,Li+ 吸附率大于95%,饱和时间为210 min,饱和吸附容量达到5.5 mg/g,表明锂吸附剂适合从高镁锂比提锂尾液中回收锂。BDST模型能够准确预测床层穿透时间,误差小于8.61%。使用去离子水进行解吸,增大解吸流速能够加速Li+脱出,但对Mg2+ 的解吸无明显影响。解吸流速为4.6 mL/min,解吸360 min时,Li+ 解吸率为83.25%,总解吸液的镁锂比值为0.7,仅为提锂尾液(80)的0.88%。循环20次后吸附容量仍能保持原来的82%以上,表明锂吸附剂循环稳定性良好。  相似文献   

17.
Li brines are the primary resources for Li salt industries. Evaporation is necessary to concentrate Li due to its low level of concentration in raw brines. The salt sequences during the evaporation of Li brines,especially the behavior of Li salts,represent key data for solar technologies. However,chemists cannot use any phase diagram to estimate Li salt sequences during evaporation at 25℃ . The thermodynamic model proposed by us in2003 represents the only tool for the prediction of equilibrium conditions during the evaporation of solutions containing Li~+,Na~+,K~+,Mg~(2+)/Cl~-,SO_4~(2-),and-H_2 O components at 25℃ . In this paper,the predicted salt sequences of 20 brines are reported. The results indicate that( 1) the first crystallized Li salt during evaporation of Li brine varies in brine composition;( 2) lithium sulfate is crystallized in many cases initially for brines of magnesium sulfate subtype,while Db4( Li_2 SO_4·K_2 SO_4) or Db3( 2 Li_2 SO_4·Na_2 SO_4·K_2 SO_4) appears first for sodium sulfate and magnesium sulfatesubtypes with lower Mg/Li composition,and the final eutectic point is H ~+ LiC ~+ Lc ~+ Ls ~+ Car;( 3) the final eutectic point is H ~+ LiC ~+ Lc ~+ Car for brines of chloride type; and( 4) Li content corresponding to the first crystallized Li salt is in the range of 0. 43%-1%. These findings enhance our knowledge of Li chemistry and provide insights into solar pond technology of the Li-brine process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号