首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
关于长江正源的确定问題   总被引:1,自引:1,他引:0  
石铭鼎 《地理研究》1983,2(1):23-34
江源水系诸河,地处青藏高原腹地,因人迹罕至,对那条河是长江正源,历史上并没有一个统一的认识可以遵循。通过考察后,在江源诸河中,论长度,沱沱河(包括源头冰川)最长,当曲稍次;论河道上下游的一致性,尕尔曲最顺,沱沱河其次;而论水量,当曲最丰,沱沱河其次。综合以上因素,我们认为沱沱河长度既长,方向又顺,应为长江正源。综合上述观点,我们算得:由沱沱河源至四川省宜宾,长3474公里;宜宾至长江口约为2806公里。由于长江中下游下流主泓经常摆动,入海口段已有相当延长,故长江全长约为6300公里。  相似文献   

2.
长江正源考辩   总被引:1,自引:1,他引:0  
自1976年以来,相继有一些论述长江正源的文章发表,基本上认为:沱沱河是长江的正源,源于唐古拉山脉主峰——各拉丹冬西南侧的两大雪山群。之后,随着电视系列片《话说长江》的播出和接踵而来的“漂流长江”活动,似乎已把这种看法当做定论。我们是1969~1976年实施长江诸源实地勘测的组织者、参加者和知情者,并对长江诸源的有关资料进行了全面研究。我们认为:当曲较沱沱河长8.2公里,水量也大于沱沱河,长江的正源应是当曲。  相似文献   

3.
钱塘江河源的确定   总被引:1,自引:0,他引:1  
毛发新 《地理研究》1987,6(1):21-30
纵观确定河源标准的基础上,根据1983年钱塘江河源河口考察实际资料,重新确定钱塘江源头为六股尖。  相似文献   

4.
长江河源地区河流水文特性分析   总被引:3,自引:0,他引:3  
本文简要介绍了青藏高原长江河源地区冰川,冻土和地质构造对水系发育和河况的影响,初步分析了该地区河流的经流、洪水、枯水、水温和冰情的变化规律.文中着重阐明河流洪水形成的基本特征,并据观测资料和洪水调查资料,探讨了百年一遇洪峰流量的分布规律,该成果可供长江河源地区铁路,公路桥涵设计参照使用.  相似文献   

5.
《地理教学》2010,(22):64-64,57
由中央电视台主持人曲向东率领的民间考察队,分别于2009年和2010年对长江、黄河和澜沧江源头的三江源地区考察。日前公布考察照片,在与长江正源姜根迪如冰川30年前照片对比发现,冰川萎缩的情况令人震惊;黄河源星宿海湖底干涸,一片荒芜的戈壁。  相似文献   

6.
《地理教学》2009,(10):48-48,F0003
按照国际上河流正源确定的三个标准,即“河源唯长”、“流量唯大”、“与主流方向一致”的标准,同时考虑流域面积、河流发育期、历史习惯  相似文献   

7.
《地理教学》2009,(10):48-48
按照国际上河流正源确定的三个标准,即“河源唯长”、“流量唯大”、“与主流方向一致”的标准,同时考虑流域面积、河流发育期、历史习惯  相似文献   

8.
本文探讨湘教版八年级下册教科书(2002年第1版)第四章《黄河万里行》的一些问题,供备课参考。 一、卡日曲的那扎陇查河源头应为黄河源头 课本82页指出:“黄河的正源是约古宗列曲”。教师教学用书135页也有同样说法。  相似文献   

9.
<正>三江源区是青藏高原的腹地和主体,是长江、黄河、澜 沧江的发源地。世界上很难找到这样一个地方,汇聚了如此 众多的名山大川;世界上也很难再找到三条同样的大河,它 们的源头竟是如此血脉相连。现在长江总水量的25%、黄河 总水量的49%、澜沧江总水量的15%都源于此,人们将它誉 为“中华水塔”和“亚洲水塔”,并称之为地球“第三极”。 三江源是世界上湿地类型最丰富、分布最集中的保护  相似文献   

10.
再论黄河河源问题   总被引:3,自引:0,他引:3  
作者在科学通报1955年6月号看到李元星先生的“黄河正源知识的年代上限问题”,李先生根据一张来源很容易清楚的明代杨子器图,认为此图关于黄河河源知识,“达到了在基本轮廓上接近於今天这种的知识”。这张图在星宿海的下面是拖有两条很  相似文献   

11.
This study presents findings of the first systematic analysis of aquatic biotic assemblages in the source region of the Yellow and Yangtze Rivers. It provides an initial basis with which to select representative organisms as indicators to assess the aquatic ecological status of rivers in this region. Macroinvertebrates are considered to be good indicators of long-term environmental changes due to their restricted range and persistence over time. Field investigations of macroinvertebrates were conducted in August 2009 in the source region of the Yellow River, and in July 2010 in the source region of the Yangtze River. Altogether 68 taxa of macroinvertebrates belonging to 29 families and 59 genera were identified. Among them were 8 annelids, 5 mollusks, 54 arthropods and 1 other animal. In the source region of the Yellow River, taxa number, density and biomass of macroinvertebrates were 50, 329 individuals m2 and 0.3966 g dry weight m2, respectively. Equivalent figures for the source region of the Yangtze River were 29, 59 individuals m2 and 0.0307 g dry weight m-2. The lower benthic animal resources in the source region of the Yangtze River are ascribed to higher altitude, higher sediment concentration and wetland degradation. Preliminary findings of this exploratory study indicate that hydroelectric power stations had a weak impact on benthic dwellers but wetland degradation caused by a series of human activities had a catastrophic impact on survival of macroinvertebrates. Ecological protection measures such as conservative grazing and vegetation management are required to minimize grassland degradation and desertification, and reduce soil erosion rate and river sediment discharge.  相似文献   

12.
长江黄河源区生态环境脆弱性评价初探   总被引:5,自引:1,他引:4  
杨建平  丁永建  陈仁升 《中国沙漠》2007,27(6):1012-1017
基于综合性原则、主导因子原则和可操作性原则, 确定了长江黄河源区生态环境脆弱性的评价指标。依据县一级行政单位将长江黄河源区分为八大地区, 使用主成分分析法对各地区的生态环境进行综合评价, 基本可把源区的生态环境脆弱度分为五级: 极脆弱型、强脆弱型、中脆弱型、轻脆弱型和微脆弱型。 黄河源区的达日和玛沁县脆弱程度最高, 为极脆弱地区; 称多县为强脆弱地区; 玛多和杂多县脆弱程度中等, 为中脆弱地区; 治多和曲麻莱县属于轻脆弱地区, 长江源区西南部的唐古拉山乡脆弱度最小, 属于微脆弱地区。  相似文献   

13.
三江源地区植被指数下降趋势的空间特征 及其地理背景   总被引:21,自引:3,他引:18  
利用8km分辨率的Pathfinder NOAA/AVHRR-NDVI数据,结合1km分辨率的DEM,1 ∶ 250000道路、居民点、水系数据以及野外调查数据,分析了植被指数变化总体态势、植被指数变化与海拔及与距道路、水源和居民点距离之间的关系,探讨了三江源区1981~2001年间植被指数变化趋势和空间分异特征。结果表明:①三江源地区植被指数变化以下降趋势为主,下降区域占源区总面积的18.92%,增加区域占13.99%;②不同植被和冻土类型下的植被指数下降特征:灌丛区和森林区下降率最高,下降率与各类型区的居民点密度、生计方式有关;植被指数下降程度与冻土类型关系不明显;③植被指数下降的区域差异明显:下降率各区域分别为长江源区13.56%、黄河源区32.51%和澜沧江源区18.1%;④植被指数下降率随着距道路、河流的距离增加而逐渐减小;下降率在距居民点18~24km的缓冲带上达到最高后随着距离增大而下降;植被指数下降率随着海拔高程的升高呈"低-高-低-高"态势,下降率与居民点的分布高度相关。  相似文献   

14.
生态保护工程和气候变化对长江源区植被变化的影响量化   总被引:4,自引:1,他引:4  
唐见  曹慧群  陈进 《地理学报》2019,74(1):76-86
分析长江源区生态保护工程和气候变化对植被变化的影响程度,对于长江源区生态工程的生态效益评估,以及区域植被适应性生态管理政策的制定具有重要意义。因此,本文基于1982-2015年的归一化植被指数数据(Normalized Difference Vegetation Index, NDVI)和气象数据,分析长江源区植被NDVI的时空变化规律,构建预测植被NDVI对气候因子响应的人工神经网络模型,在此基础上,在年和季节尺度上量化气候变化和生态保护工程对长江源区植被变化的影响程度。结果表明:① 在长江源区气候条件变化和生态保护工程影响下,长江源区植被退化得到遏制,植被生长呈好转趋势;② 海拔相对较低的通天河附近植被NDVI增加幅度较大,高海拔的沱沱河和当曲流域的植被NDVI增加幅度相对较小;③ 长江源区植被NDVI对气候因子响应存在1~2月的滞后性。构建的人工神经网络模型的拟合优度参数人工神经网模型具有较高的预测精度,可以用来模拟植被NDVI对气候因子的响应;④ 年尺度的植被NDVI增加受到生态保护工程的影响程度(58.5%)大于气候变化的影响程度(41.5%)。生长季生态保护工程对NDVI的影响程度(63.3%)大于气候变化对NDVI的影响程度(36.7%),而非生长季气候变化是影响长江源区植被生长的关键要素(52.8%)。研究结果有助于为长江源区植被生态系统恢复、管理和利用战略的科学制定提供决策依据。  相似文献   

15.
长江源区沙漠化土地遥感调查及分析   总被引:3,自引:2,他引:1  
利用2000年的ETM+影像,在遥感(RS)和地理信息系统(GIS)技术的支持下,对长江源区的沙漠化现状进行了调查。调查结果显示,长江源区沙漠化土地面积为28 982 km2,占整个源区面积的20.43%,其中,极重度沙漠化土地面积为4 241.12 km2,重度沙漠化土地面积为3 996.75 km2,中度沙漠化土地面积为12 716.66 km2,轻度沙漠化土地面积为8 027.16 km2,潜在沙漠化土地面积为92.46 km2。通过坡度分析发现,0°~2°的平地是长江源区的主要坡度类型,也是沙漠化土地主要的分布区域。  相似文献   

16.
利用遥感和GIS空间信息分析技术,以长江源地区的4期遥感数据为主要信息源,将荒漠分为高寒荒漠、裸岩石砾地、戈壁、沙地、裸土地、盐碱地,通过目视解译提取了长江源区4期荒漠信息,在此基础上进行荒漠动态变化及驱动力分析。结果表明,长江源区荒漠分布范围较广,荒漠面积占源区总面积的28%左右,荒漠中以高寒荒漠、裸岩石砾地、戈壁、沙地为主,其次是裸土地和盐碱地。近30 a来的变化趋势是20世纪70年代中期到1990年荒漠化发展较快,荒漠面积增加了43 935.00 hm2,1990年到2000年荒漠面积减少了32 821.28 hm2,2000年到2005年荒漠面积增加了29 611.30 hm2。  相似文献   

17.
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×104 km2. Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×104 km2. Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River.  相似文献   

18.
江河源区NDVI时空变化及其与气候因子的关系(英文)   总被引:5,自引:3,他引:2  
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer.  相似文献   

19.
人类活动对长江上游近期输沙变化的影响   总被引:4,自引:0,他引:4  
利用1956-2007年径流—输沙序列,分期定量研究了长江上游近期主要干支流输沙变化及其原因,结果显示:①长江上游1994-2002年输沙量减少1.43亿t/a,人为减沙占91.2%,主要来自嘉陵江措施减沙;2003-2007年减沙4.50亿t/a,径流减沙占14.1%,前期持续的人类活动减沙占39.8%,三峡水库蓄水拦沙、金沙江措施减沙等新增人为减沙占46.2%。②金沙江1983-2000年输沙量增加0.48亿t/a,人为增沙占74.7%,主要是工程增沙;2001-2007年输沙量减小1.183亿t/a,全部为人为减沙,包括二滩等各型水库拦沙、水保减沙和工程增沙减少。③嘉陵江1985-1993年输沙减少0.827亿t/a,人为减沙占81.4%,主要人为减沙包括农村社会经济因素变化导致的土壤减蚀和水库拦沙;1994-2007年输沙量减少1.285亿t/a,其中自然径流减沙占29.6%,前期持续人类活动减沙占42.1%,宝珠寺等新增水库拦沙和水保减沙占23.4%,另有4.9%的人为减水减沙。  相似文献   

20.
江河源区生态环境范围的探讨   总被引:8,自引:0,他引:8  
The Tibetan Plateau, as the origin of the Yangtze and Yellow rivers, is the region of climate variation and is very sensitive to climate change in China (Feng etal., 1998). The runoff in the upper reaches of the Yellow River has been decreasing at a rate of 9.8 m3/s per decade due to rapid climate warming in the Tibetan Plateau since the mid- and late 1980s (Zhang etal., 2000). Eco-environmental change is also extremely substantial in the source regions of the Yangtze and Yellow rivers. T…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号