首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary. An inversion of ISC travel-time data from selected earthquakes in the distance range 30°-90° to 53 stations in Central Europe has been used to model velocity down to 600 km depth. The model explains 0.1–0.2s of the residuals, as for other array studies, leaving 0.5 s unexplained as noise. The uppermost 100 km of the mantle and crust contains inhomogeneities that correlate remarkably well with the geology. This may be due to deep-seated thermal anomalies or, in some areas, to delays introduced by passage of the rays through sedimentary cover. The deeper anomalies are smaller and unrelated to those in the lithosphere, which suggests that the asthenosphere is decoupled from the rigid lithosphere. The structure at 600 km depth is again quite inhomogeneous and might be due to undulations of the 650 km discontinuity. The models show some suggestion of a high velocity slab trending from east to west beneath the Alps.  相似文献   

2.
Global mapping of 410 and 660 km discontinuity topography and transition zone thickness has proven to be a powerful tool for constraining mantle chemistry, dynamics and mineralogy. Numerous seismic and mineral physics studies suggest that the 410 km discontinuity results from the phase change of olivine to wadsleyite and the 660 km discontinuity results from the phase change of ringwoodite to perovskite and magnesiowustite. Underside reflections of the 410 and 660 km discontinuities arrive as precursors to SS . With the recent development of a semi-automated method of determining SS arrivals, we have more than tripled the Flanagan and Shearer (1998a) data set of handpicked SS waveforms. We are able to increase resolution by stacking waveforms in 5° rather than 10° radius bins as well as increasing data coverage significantly in the southern hemisphere. The resulting SS-S410S and SS-S660S times are heavily influenced by upper-mantle velocity structure. We perform a joint inversion for discontinuity topography and velocity heterogeneity as well as performing a simple velocity correction to the precursor differential times and find little difference between the two methods. The 660 km discontinuity topography and transition zone thickness are correlated with velocities in the transition zone whereas the 410 km discontinuity topography is not. In addition, the 410 km discontinuity topography is not correlated with the 660 km discontinuity topography, rather anticorrelated, as expected due to the opposite signs of the Clapeyron slopes of their respective phase changes. These results suggest that, whereas the topography of 660 km discontinuity could be dominated by thermal effects, the topography of the 410 km discontinuity is likely dominated by compositional effects. In addition, unlike previous studies which find less topography on the 410 km discontinuity than on the 660 km discontinuity, our 410 and 660 km topography have similar amplitudes.  相似文献   

3.
Global mapping of upper mantle reflectors from long-period SS precursors   总被引:1,自引:0,他引:1  
Long-period precursors to SS resulting from underside reflections off upper mantle discontinuities ( SdS where d is the discontinuity depth) can be used to map the global distribution and depth of these reflectors. We analyse 5,884 long-period seismograms from the Global Digital Seismograph Network (1976-1987, shallow sources, transverse component) in order to identify SdS arrivals. Corrections for velocity dispersion, topography and crustal thickness at the SS bounce point, and lateral variation in mantle velocity are critical for obtaining accurate estimates of discontinuity depths. The 410 and 660 km discontinuities are observed at average depths of 413 and 653 km, and exhibit large-scale coherent patterns of topography with depth variations up to 40 km. These patterns are roughly correlated with recent tomographic models, with fast anomalies in the transition zone associated with highs in the 410 km discontinuity and lows in the 660 km discontinuity, a result consistent with laboratory measurements of Clapeyron slopes for the appropriate phase changes. The best resolved feature in these maps is a trough in the 660 km discontinuity in the northwest Pacific, which appears to be associated with the subduction zones in this region. Amplitude variations in SdS arrivals are not correlated with discontinuity depths and probably result from focusing and defocusing effects along the ray paths. The SdS arrivals suggest the presence of regional reflectors in the upper mantle above 400 km. However, only the strongest of these features are above probable noise levels due to sampling inadequacies.  相似文献   

4.
A lower mantle S-wave triplication and the shear velocity structure of D"   总被引:6,自引:0,他引:6  
Summary. A lower mantle S-wave triplication detected with short- and long-period WWSSN and CSN recordings indicates a substantial shear velocity discontinuity near 280 km above the core–mantle boundary. The triplication can be observed in rotated SH seismograms from intermediate and deep focus events throughout the distance range from 70° to 95°. Three distinct source region–receiver array combinations that have been investigated in detail demonstrate consistent travel time and relative amplitude behaviour of the triplication, with slight systematic shifts in the triplication indicating up to 40 km variations in the depth of the discontinuity. Modelling of the observations with synthetic seismograms produced with the Cagniard de Hoop and reflectivity methods constrains the shear velocity increase to be 235 ± 0.25 per cent, comparable to upper mantle discontinuities. Short-period observations indicate that the velocity increase may be a sharp first-order discontinuity, or may extend over a transition zone no more than 50 km thick. The shear velocity gradient below the discontinuity, within the D" layer, is not well-constrained by the SH data, but slightly positive or near zero velocity gradients are consistent with the long-period amplitude ratios of ScSH/SH .  相似文献   

5.
Summary. We present evidence for a seismic discontinuity near 200km depth (the Lehmann Discontinuity) under the passive continental margin of northwest Australia, where continental lithosphere merges into oceanic lithosphere. The velocity contrast across the discontinuity is 0.2–0.3 km s-1, and is similar to the contrast across discontinuities at similar depths in seismic models for purely continental paths to the east under central Australia. The discontinuity has been shown to be present under continents, oceans and now at continental margins, and is probably a worldwide feature.  相似文献   

6.
Summary Recordings from a crustal seismic experiment, which was conducted in the Yellowknife area in 1966, were used for calibration of the Yellow-knife seismic array. In the immediate vicinity of the array the crust is found to be very uniform. A superficial layer with an intercept time of 0–172 ± 0–012s and unknown velocity is underlain by a crust with a P wave velocity of 6.04 ± 0–01 km s-1 near the top: assuming this velocity constant throughout the second layer, the total thickness of the crust is about 34 ± 2 km. The Mohorovicic discontinuity is horizontal under the array within the resolution of this experiment and the apparent Pn velocity is 8.15 km s-1. At a distance of a few tens of kilometres the crustal uniformity breaks down. The distances are such that, for most teleseismic signals, the effect of these in homogeneities should be negligible.  相似文献   

7.
We present velocity constraints for the upper-mantle transition zones beneath Central Siberia based on observations of the 1982 RIFT Deep Seismic Sounding (DSS) profile. The data consist of seismic recordings of a nuclear explosion in north-western Siberia along a 2600 km long seismic profile extending from the Yamal Peninsula to Lake Baikal. We invert seismic data from the mantle transition zones using a non-linear inversion scheme using a genetic algorithm for optimization and the WKBJ method to compute the synthetic seismograms. A statistical error analysis using a graph-binning technique was performed to provide uncertainty values in the velocity models.
Our best model for the upper-mantle velocity discontinuity near 410 km depth has a two-stage velocity-gradient structure, with velocities increasing from 8.70–9.25 km s−1 over a depth range of 400–415 km, a gradient of 0.0433 s−1, and from 9.25–9.60 km s−1 over a depth range of 415–435 km, a gradient of 0.0175 s−1. This derived model is consistent with other seismological observations and mineral-physics models. The model for the velocity discontinuity near 660 km depth is simple, sharp and includes velocities increasing from 10.15 km s−1 at 655 km depth to 10.70 km s−1 at 660 km depth, a gradient of 0.055 s−1.  相似文献   

8.
Small-scale elastic heterogeneities (<5  km) are found in the upper lithosphere underneath the Gräfenberg array, southeast Germany. The results are based on the analysis of broadband recordings of 17 intermediate-depth (201–272  km) events from the Hindu Kush region. The wavefront of the first P arrival and the following 40  s coda are separated into coherent and incoherent (scattered) parts in the frequency range from 0.05 to 5  Hz. The frequency-dependent intensities of the mean and fluctuation wavefields are used to describe the scattering characteristics of the lithosphere underneath the receivers. It is possible to discriminate a weak-fluctuation regime of the wavefield in the frequency range below approximately 1.5–2.5  Hz and a strong-fluctuation regime starting at 2.0–2.5  Hz and continuing to higher frequencies. In order to explain the observed wavefield fluctuations, an approach with seismic scattering at random media-type structures is proposed. The preferred model contains heterogeneities with 3–7 per cent perturbations in seismic velocity and correlation lengths of 0.6–4.8  km in the crust. This is compatible with models from active seismic experiments. Scattering in the lithospheric mantle is not required, but cannot be excluded at weak velocity contrasts (<3 per cent).  相似文献   

9.
b
A two ship refraction profile was undertaken on the Australian continental shelf during the Banda Sea geophysical program, carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. S waves originating close to the sea bottom were observed to distances of up to 1150 km at an array of stations in northern Australia.
These observations are interpreted as implying S mantle velocities of 4.60 km s-1 from a depth of 45 km to a depth of 76 km and 4.72 km s-1 below a depth of 76 km.
Ratios of the P and S travel times (Vp/Vs) have been determined to be 1.74 in the crust rising to a value of greater than 1.79 below a velocity discontinuity at a depth of 200 km. It is inferred that this high value arises because the effect of temperature is greater for S than for P .
Using the data from this and other studies in the shield region of Northern Australia it has been found that the S travel times are significantly less than predicted by the Jeffreys—Bullen tables.  相似文献   

10.
Signature of remnant slabs in the North Pacific from P-wave tomography   总被引:1,自引:0,他引:1  
A 3-D ray-tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth's mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm.
A subhorizontal high-velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high-velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high-velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.  相似文献   

11.
Summary. Nine portable seismic stations deployed across the Western Plains of New South Wales recorded signals in the distance range 250–1000 km from large timed explosions at both ends of the line. A velocity—depth model derived from the travel-time data has the following features: a two-layer crust with a thickness of 35 km; a sub-Moho velocity of 7.98 km/s; an abrupt increase to 8.36 km/s at 100 km depth; a further step to 8.72 km/s at 190 km depth, with a low-velocity channel immediately above the discontinuity. The model has several features in common with others derived from long-range profiles in Australia and elsewhere. The data, however, provide the first suggestion of a low P -velocity channel in Eastern Australia.  相似文献   

12.
COCORP: new perspectives on the deep crust   总被引:7,自引:0,他引:7  
Summary. Relict sutures from colliding continents, regions characterized by a "young" Mono, layering and faulting throughout the crust, mid-crustal magma traps, and seismic "bright spots" which suggest deep crustal fluids are among recent COCORP findings. In addition, new studies of signal penetration, noise mitigation, recording geometry, and coherency filtering have yielded better understanding of, and substantial improvements in, data quality. Amplitude anomalies, or "bright spots", in the Basin and Range may be due to magma at mid-crustal levels; in one case, a normal fault appears to link the deep magma with young surface volcanics. Another bright spot. 15 km deep in southeastern Georgia, has a flat geometry that suggests a gas/liquid interface, perhaps within fluids underthrust along an Appalachian suture. The Mono continues to appear relatively undisturbed in many regions of past deformation, suggesting that its formation post-dates these major tectonic episodes. The diversity of reflection patterns from the U.S. Cordillera casts further doubt on the generality of the common model of a reflective, layered lower crust underlying a transparent upper crust.  相似文献   

13.
b
Long-period data of the Global Digital Seismograph Network (GDSN) recorded over the three-year period from 1984 to 1986 were studied for the occurrence of S-P and P-S conversions from the upper mantle transition zone that appear as precursors to teleseismic S arrivals. Conversions of this type were identified on a large number of single-station records. Simple stacking of many records enhanced the appearance of converted phases and demonstrated that no major lateral variations in the nature of the transition zone exist between various tectonic regions. S-P and P-S conversions from the 400 km discontinuity were best observed at distances between 70 and 85 while conversions from the 670 km discontinuity showed up best at distances beyond 87. The analysis of published source mechanisms and comparison with synthetic seismograms suggests that the appearance of converted phases is primarily governed by the earthquake radiation pattern. Phases that have undergone S-P conversions beneath the receiver are best observed from dip-slip events that radiate strong SV - and weak P -waves towards the station. P-S conversions beneath the source area, on the other hand, are frequently observed from events that radiate strong P and little SV energy towards the station, and also from some strike-slip events. Comparison of observed with synthetic seismograms suggests that the PREM model of Dziewonski & Anderson (1981) explains most of the observations. Observed S-P and P-S conversions from the 670 km discontinuity, however, often have larger amplitudes than in the synthetics. Constructive interference of converted waves with the P -wave coda, source radiation effects and a velocity contrast across the 670 km discontinuity which is higher than in PREM may all contribute to the discrepancy.  相似文献   

14.
Summary Turbulent boundary layers at the surface of the Earth limit the detection of infrasonic waves with periods greater than 1 s. Pipe arrays designed to improve the signal-to-noise ratios of infrasonic waves usually assume that the background noise due to this turbulent boundary layer is incoherent between the array inlets. The power at various points on a surface was measured; coherences between these points were determined and they were found to be significant in the period range 1–100 s. Such coherent noise must be considered when pipe arrays are designed.  相似文献   

15.
A detailed and extensive record section constructed from recordings at the NORSAR array of presumed explosions in continental Russia exhibits two distinct ( T , Δ) triplications. The reliable identification of these upper mantle travel-time branches is possible because of the dense areal sampling of the NORSAR configuration. A simple upper mantle P- velocity model which can account adequately for the data involves velocity discontinuities at depths of 420 km and 690 km, and fairly uniform velocity gradients elsewhere. For this model, the first arrival branch for Δ≤ 21° extends as a second arrival to a distance of about 33°, at which distance it is terminated by the 420-km discontinuity. Rays bottoming between depths of 420 and 690 km span the distance range 16°≤Δ≤ 28°, and give first arrivals in the range 21°≤, Δ, 24°. Rays which penetrate the 690-km discontinuity give rise to secondary arrivals in the range 19°≤Δ≤ 25°, and first arrivals for distances Δ≤ 25°.  相似文献   

16.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

17.
We invert differential SdS-SS traveltime residuals measured from stacked waveforms and finite-frequency sensitivity kernels for topography on the 410- and 660-km discontinuities. This approach yields higher resolution images of transition zone thickness than previous stacking methods, which simply average/smooth over topographic features. Apparent structure measured using simple stacking is highly dependent upon the bin size of each stack. By inverting for discontinuity topography with a variety of bin sizes, we can more accurately calculate the true structure. The inverted transition zone model is similar to simple stack models with an average thickness of 242 km, but the lateral variations in thickness are larger in amplitude and smaller in scale. Fast seismic velocities in 3-D mantle models such as SB4L18 correlate with areas of thicker transition zone. The elongated curvilinear regions of thickened transition zone that occur near subduction zones are narrow and high amplitude, which suggests relatively little lateral spreading and warming of subducted lithosphere within the transition zone. The anomalously thin transition zone regions are laterally narrow, and not broadly continuous. If these variations in transition zone thickness are interpreted as thermal in nature, then this model suggests significant temperature variations on small lateral scales.  相似文献   

18.
It has been demonstrated both theoretically and experimentally that the Green's function between two receivers can be retrieved from the cross-correlation of isotropic noise records. Since surface waves dominate noise records in geophysics, tomographic inversion using noise correlation techniques have been performed from Rayleigh waves so far. However, very few numerical studies implying surface waves have been conducted to confirm the extraction of the true dispersion curves from noise correlation in a complicated soil structure. In this paper, synthetic noise has been generated in a small-scale (<1 km) numerical realistic environment and classical processing techniques are applied to retrieve the phase velocity dispersion curves, first step toward an inversion. We compare results obtained from spatial autocorrelation method (SPAC), high-resolution frequency-wavenumber method (HRFK) and noise correlation slantstack techniques on a 10-sensor array. Two cases are presented in the (1–20 Hz) frequency band that corresponds to an isotropic or a directional noise wavefield. Results show that noise correlation slantstack provides very accurate phase velocity estimates of Rayleigh waves within a wider frequency band than classical techniques and is also suitable for accurately retrieving Love waves dispersion curves.  相似文献   

19.
When using hyphenated methods in analytical chemistry,the data obtained for each sample are given asa matrix.When a regression equation is set up between an unknown sample (a matrix) and a calibrationset (a stack of matrices),the residual is a matrix R.The regression equation is usually solved by minimizing the sum of squares of R.If the sample containssome constituent not calibrated for,this approach is not valid.In this paper an algorithm is presentedwhich partitions R into one matrix of low rank corresponding to the unknown constituents,and onerandom noise matrix to which the least squares restrictions are applied.Properties and possibleapplications of the algorithm are also discussed.In Part 2 of this work an example from HPLC with diode array detection is presented and the resultsare compared with generalized rank annihilation factor analysis (GRAFA).  相似文献   

20.
For two decades leading to the late 1980s, the prevailing view from studies of glacial isostatic adjustment (GIA) data was that the viscosity of the Earth's mantle increased moderately, if at all, from the base of the lithosphere to the core–mantle boundary. This view was first questioned by Nakada & Lambeck , who argued that differential sea-level (DSL) highstands between pairs of sites in the Australian region preferred an increase of approximately two orders of magnitude from the mean viscosity of the upper to the lower mantle, in accord with independent inferences from observables related to mantle convection. We use non-linear Bayesian inference to provide the first formal resolving power analysis of the Australian DSL data set. We identify three radial regions, two within the upper mantle (110–270 km and 320–570 km depth) and one in the lower mantle (1225–2265 km depth), over which the average of viscosity is well constrained by the data. We conclude that: (1) the DSL data provide a resolution in the inference of upper mantle viscosity that is better than implied by forward analyses based on isoviscous regions above and below the 670 km depth discontinuity and (2) the data do not strongly constrain viscosity at either the base or top of the lower mantle. Finally, our inversions also quantify the significant bias that may be introduced in inversions of the DSL highstands that do not simultaneously estimate the thickness of the elastic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号