首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
北京密云水库甲烷排放通量时空特征及其影响因素研究   总被引:4,自引:0,他引:4  
库塘湿地的甲烷排放是发展绿色能源的争论焦点之一。于2009年6月、8月、10月和2010年1月、5月,对北京市密云水库的水域、水库消落带和周边非湿地区的CH4排放通量进行了估算和对比研究。结果表明,密云水库湿地区的CH4排放通量具有明显的季节变化,在6月和8月,水库消落带区和水域区的CH4排放通量显著高于其他观测月份(消落带区:n=6,p<0.05;水域区:n=9,p<0.05),其中,消落带区8月的CH4排放通量远远大于5月,水域区8月的CH4排放通量是1月的数倍,与消落带区和水域区相比,水库周边非湿地区各观测月的CH4排放通量变化很小;密云水库CH4排放通量具有明显的空间变化特征(p<0.01,df=80),消落带区的CH4排放通量较大,平均值为(5.780±8.683)mg/(m2.h),水域区为(0.298±0.313)mg/(m2.h),周边非湿地区为(0.002±0.178)mg/(m2.h)。水库消落带区和水域区的CH4排放通量都远大于周边非湿地区,说明修建水库明显提高了该区域的CH4排放通量;密云水库的CH。排放通量受表层水温、水深及植物生物量的影响,在非淹水环境下,CH4排放通量主要受植物生长的影响,植物生物量与CH4排放通量呈正相关关系(n=42,p<0.01),而在淹水环境下,表层水温与CH4排放通量呈正相关关系(n=39,p<0.01)。水域区采样点8月和10月的水深与CH4排放通量呈负相关关系(n=9,p<0.01;n=9,p<0.05),这表明水库越浅、消落带区越宽,水库的CH4排放通量越大。  相似文献   

2.
在中国科学院东北地理与农业生态研究所的科研温室中,进行了实验期为60 d的室内模拟实验,在-5 cm、0 cm和5 cm的模拟水位下,测定和计算出采集自洪河国家级自然保护区的2010年、2014年、2016年弃耕的退耕还湿地和天然小叶章沼泽表层(0~20 cm深度)土壤的CO_2、CH_4和N_2O排放通量。研究结果表明,随着水位的上升,2010年、2014年、2016年弃耕的退耕还湿地和天然小叶章沼泽表层土壤的CO_2和N_2O排放通量在减小;与-5 cm和5 cm的模拟水位下相比,0 cm水位下表层土壤的CH_4排放通量相对最大;随着实验天数的增加,2014年、2016年弃耕的退耕还湿地和天然小叶章沼泽表层土壤CH_4排放通量在波动增大;水位越高,其对退耕还湿地表层土壤CO_2、N_2O总排放量和温室气体的全球增温潜势的抑制作用越明显。  相似文献   

3.
水库温室气体排放及其影响因素研究进展   总被引:5,自引:0,他引:5  
二氧化碳、甲烷和氧化亚氮是3种重要的温室气体。水库是这些温室气体的重要排放源,排放途径多样,而且排放受诸多因素影响,其温室气体的排放量在时间和空间上存在差异。水库消落区是连接水陆生态系统能流、物流的枢纽,是温室气体产生的重要场所。通过分析国内外水库温室气体排放相关领域的研究成果,阐述了水库消落区、水库沉积物中温室气体的产生和排放特点;总结分析了水库温室气体的4个主要排放途径:水面自由扩散、气泡排放、水轮机和溢洪道、大坝下游河流排放;从季节变化、水面风速、水体pH、水温、水体含氧量、水位变化、水体中氮元素和磷元素浓度、库龄等角度,深入探讨了水库温室气体排放的影响因素;提出了未来在水库温室气体研究中需要加强的几方面内容。  相似文献   

4.
水库消落带研究进展   总被引:2,自引:0,他引:2  
水库消落带是因水库蓄水或泄洪而使土地周期性被水淹没或出露水面的特殊区域,消落带具有特殊的能量交换、物质循环和生态格局动态特征,从而成为对水库工程安全(如岸线稳定、地质灾害)和水生态环境演化(水质安全、水生态健康)具有重要作用的"生态交错区(ecotone)",是当前水库生态环境保护研究与可持续性管理实践的关注热点。对2008~2018年期间发表的有关水库消落带研究的论文内容进行了系统总结和分析,文献综述结果表明,2008~2018年有关水库消落带研究的论文发表数量快速增加,早期研究以水库岸线稳定、水库工程安全问题为侧重点,新的研究则注重于水库消落带生态系统功能和健康,水库消落带的变化机制受到广泛关注,水库消落带植被抗逆演替及格局动态、消落带物质循环的生物地球化学过程、消落带土壤(沉积物)的环境微生物作用、消落带生态格局与水库水质动态的互馈影响关系等问题成为研究前沿。未来,在水库消落带植被抗逆演替、干湿交替环境物质循环的微生物作用、消落带生态系统自组织完善、消落带与流域生态格局演化的协同发展等方面,还有待加强理论研究。  相似文献   

5.
以南极阿德雷岛苔原沼泽为研究区域,2016年12月至2017年1月南极夏季期间观测研究了温室气体CH_4、CO_2和N_2O通量的变化规律及其对环境因子的响应关系。结果表明:光照条件下干旱苔原沼泽表现为CH_4吸收,通量为(–5.4±4.3)μg CH_4·m~(–2)·h~(–1),半干旱苔原与淹水苔原沼泽表现为净排放;三个类型苔原沼泽观测点均表现为N_2O净吸收,最高吸收通量出现在淹水苔原,为(–2.6±2.4)μg N_2O·m~(–2)·h~(–1);黑暗条件下苔原沼泽一致表现为CH_4和N_2O净排放。光照与土壤水分减少增加了苔原CH_4有氧氧化吸收,同时促进了反硝化作用对N_2O的还原转化。观测期间所有观测点均表现为CO_2的汇,最高CO_2净交换量与光合作用强度都出现在淹水苔原区,分别为(–40.1±17.6)μg CO_2·m~(–2)·h~(–1)和(91.2±26.5) mg CO_2·m~(–2)·h~(–1);而最高苔原沼泽呼吸速率出现在干旱苔原观测点,为(73.1±17.6)μg CO_2·m~(–2)·h~(–1)。夏季适宜的温度、降水条件促进了苔原植被的光合作用,增加了苔原沼泽CO_2吸收量。CO_2、N_2O、CH_4通量随时间变化的相互关系规律不显著(P0.05),但在降水与温度波动下,N_2O与CH_4通量都随CO_2通量呈现相似的波动。三种温室气体与各种环境因子之间的响应关系值得进一步研究;不同光照条件对CH_4、N_2O排放量的估算有重要影响。  相似文献   

6.
利用静态箱—气相色谱法,在2009年9月15日至2010年8月15日期间,对胶州湾大沽河口芦苇(Phragmites australis)盐沼和芦苇—盐地碱蓬(Suaeda salsa)盐沼CH_4排放通量进行了观测,对两种湿地CH_4的日排放通量、不同月份观测日排放通量和不同季节观测日排放通量特征进行了研究。结果表明,两种湿地CH_4日排放通量变化规律相同,其在夏季变化最大,在春季和秋季的变化次之,在冬季变化最小。在春季和夏季观测日,芦苇盐沼CH_4排放通量白天高于夜间,在秋季和冬季采样日,夜间CH_4排放通量高于白天;芦苇—盐地碱蓬盐沼四季CH_4排放通量都为白天高于夜间,只有冬季夜间表现为微弱的吸收。芦苇盐沼和芦苇—盐地碱蓬盐沼CH_4排放通量的最小值出现在2月15日,分别为0.016[mg/(m~2·h)]和0.008[mg/(m~2·h)],最大值出现在7月15日,分别为5.736[mg/(m~2·h)]和1.880[mg/(m~2·h)],主要原因是温度和生物量的差异所致。两种湿地不同季节观测日排放通量都为夏季最高,冬季最小。芦苇盐沼在四季的CH4排放通量都大于芦苇—盐地碱蓬盐沼,主要原因是湿地的水文特征和植物种类不同所致。芦苇—盐地碱蓬盐沼CH_4排放通量与5 cm深度土壤温度、10 cm深度土壤温度、气温和箱温都显著相关(p0.01),而芦苇盐沼的相应因子则不相关,主要原因是芦苇盐沼CH_4排放除受温度影响外,潮汐周期性波动导致的水位和盐度等环境因子也影响CH_4的排放。  相似文献   

7.
金玉凤  胡智强  仝川 《湿地科学》2012,10(2):228-234
利用"静态箱-悬浮箱-气相色谱法",分别在小潮日(2010年4月4~5日和9月2~3日)和大潮日(2010年4月14~15日和9月9~10日),在闽江口鳝鱼滩湿地的中高潮滩过渡区短叶茳芏(Cyperus malaccensis)+芦苇(Phragmites australis)沼泽中,取样并测定了该沼泽24h的甲烷排放通量,并同步对潮水水位、温度等环境因子进行了观测。研究结果表明,不论大、小潮日,总体上,沼泽是甲烷排放源,白天的甲烷排放通量大于夜间;4月、9月的2个小潮日的甲烷排放通量分别为4.43mg/(m2·h)和8.13mg/(m2·h),2个大潮日的甲烷排放通量分别为1.39mg/(m2·h)和3.25mg/(m2·h),小潮日甲烷排放通量明显大于大潮日;大潮日,涨落潮阶段的沼泽水-气界面甲烷排放通量低于非涨落潮阶段;温度和潮水水位是控制甲烷排放通量日变化的重要环境因子。  相似文献   

8.
为了探究盐水入侵及外源有机碳输入对河口潮汐淡水沼泽湿地生态系统甲烷(CH_4)和氧化亚氮(N_2O)通量的影响,运用中型实验生态系模拟法,通过添加人造海水和醋酸盐,结合气相色谱测定,对闽江河口短叶茳芏(Cyperus malaccensis)潮汐淡水沼泽湿地生态系统CH_4和N_2O通量进行测定与分析。结果表明:1)盐分输入在短时内(24 h)显著抑制湿地CH_4排放通量(P0.05),有机碳输入显著促进CH_4排放通量(P0.05),盐水入侵耦合有机碳输入对CH_4排放无显著影响。2)盐分输入、有机碳输入及两者的耦合作用在短时内(24h)对湿地N_2O通量无显著影响。3)4种处理形式综合作用下,湿地CH_4排放通量与土壤电导率显著负相关(P0.05),N_2O通量与土壤pH表现为显著正相关(P0.05),与土壤Eh显著负相关(P0.05)。4)短时内各添加处理对CH_4和N_2O综合增温潜势无显著影响。  相似文献   

9.
三峡水库消落带土壤团聚体微结构变化特征   总被引:1,自引:0,他引:1  
三峡水库落差30 m的反季节水文节律使消落带的地形、植被和土壤发生了巨大变化,特别是土壤团聚体微结构对干湿交替作用极为敏感。为了明确三峡水库消落带水位周期性涨落对土壤团聚体微结构的影响,采集消落带145~155 m、155~165 m、165~175 m的表层土壤,以未淹水高程180 m的土壤为对照,采用同步辐射显微CT及图像处理技术,对土壤团聚体微结构变化特征进行分析。结果表明:(1)团聚体孔隙度随水位高程的降低而显著降低,与180 m的孔隙度相比,165~175 m、155~165 m和145~155 m的孔隙度依次降低了21.80%、47.68%和59.58%;孔隙数量和孔隙节点数量随水位高程的降低显著减少,最大降幅分别为56.64%和91.18%;孔隙分形维数随水位高程降低而降低,欧拉值则随水位高程的降低而增大;(2)团聚体孔隙度以100μm的通气孔隙度为主,随着水位高程的降低,通气孔隙度逐渐降低,而30μm的贮存孔隙度和30~100μm的毛管孔隙度先增加后降低;(3)团聚体孔隙形状以瘦长型孔隙为主,随着水位高程的降低,瘦长型孔隙占孔隙度的百分比显著降低,而规则孔隙和不规则孔隙占孔隙度的百分比显著增加。三峡水库消落带水位周期性涨落对团聚体孔隙数量、大小分布、形状特征等影响显著,团聚体孔隙特征参数随水位高程的变化,主要受淹水时间、淹水深度和干湿交替等因素的影响。研究结果可为三峡水库消落带土壤抗蚀能力及岸坡稳定性评价提供依据。  相似文献   

10.
太湖湖滨带秋、冬季CH4排放特征及其影响因素初步研究   总被引:1,自引:2,他引:1  
2003年9月至2004年2月期间,在太湖北部的梅梁湾湖区,采用原位静态暗箱方法,沿水体至陆地方向对两种典型湖滨带进行了CH4的近地(水)表面浓度体积分数和CH4排放通量研究。研究结果表明,观测期间的富营养化湖泊湖滨带是CH4的排放源,其近地(水)表面的CH4体积分数变化范围为1.889×10-6~14.151×10-6,高于大气背景的CH4体积分数(1.745×10-6)。研究区中,有植被的水向辐射区CH4体积分数最高,为(13.208±1.333)×10-6。观测期间,研究区的CH4排放通量变化在-179~83344μg/(m2·h)之间,秋、冬季CH4排放通量的平均值分别为(10530±22030)μg/(m2·h)和(106±354)μg/(m2·h)。在有植被的湖滨带,CH4排放通量具有明显的空间梯度变化,CH4排放通量从水体向陆地方向先升高,至水向辐射区达到最高,然后随地表土壤层水分含量的降低而降低,并且有植被的水向辐射区与其它各区的CH4排放通量存在显著性差异,有植被的水向辐射区是湖滨带的CH4高排放区,因此在进行水体CH4排放评估时必须单独考虑有植被的水向辐射区。  相似文献   

11.
为了探究盐水入侵对辽河口芦苇(Phragmites australis)沼泽土壤CH_4排放通量的影响,在辽河口芦苇沼泽采集土壤样品,配制盐度为0.7‰、1.5‰、3‰和6‰的4种盐水,采用原状土芯模拟和静态箱-气相色谱法,分别测定4种盐度盐水入侵下,土壤CH_4排放通量、植物地上生物量、土壤溶解性有机碳和微生物量碳含量。研究结果表明,整个实验期间,在4种盐度盐水入侵下,土壤CH_4排放通量平均值分别为9.01 mg/(m~2·h)、6.80 mg/(m~2·h)、6.77 mg/(m~2·h)和5.34 mg/(m~2·h);实验结束后,土壤溶解性有机碳质量比分别为754.8 mg/kg、602.2 mg/kg、579.5mg/kg和288.3 mg/kg,土壤微生物量碳质量比分别为1 797.1 mg/kg、967.5 mg/kg、895.3 mg/kg和480.8 mg/kg;盐水的盐度升高显著降低了土壤CH_4排放通量、土壤溶解性有机碳含量和微生物量碳含量;土壤CH_4排放通量分别与土壤溶解性有机碳、微生物量碳含量显著正相关,与芦苇地上生物量不相关;在盐水入侵条件下,生源有效碳含量可能是限制芦苇沼泽土壤CH_4排放通量的关键因子。  相似文献   

12.
研究裸斑对青藏高原多年冻土区高寒草甸生态系统呼吸和甲烷通量的影响,对准确评估多年冻土区小流域和区域尺度碳交换具有重要意义。本文以青藏高原风火山高寒草甸中裸斑和高植被覆盖斑块为研究对象,通过对比不同地形条件下(不同坡向和海拔)二者生态系统呼吸和甲烷通量的差异来研究裸斑对高寒草甸生态系统呼吸和甲烷通量的影响。结果表明:(1)裸斑显著减少了高寒草甸的生态系统呼吸,裸斑和高植被覆盖斑块生长季生态系统呼吸的平均速率分别为2.26和6.17 g CO_(2 )m~(-2) d~(-1),这主要是二者微生物量碳和蔗糖酶活性差异造成的;(2)裸斑和高植被覆盖斑块在生长季内均表现为甲烷的汇,二者生长季甲烷吸收的平均速率分别为25.4和6.61μg CH_(4 )m~(-2) h~(-1);在坡中和坡顶,裸斑的甲烷吸收速率显著大于高植被覆盖斑块,而在坡底,二者的甲烷吸收速率相近;土壤湿度是调控高寒草甸甲烷吸收空间变异的主要因素。研究结果深化了裸斑对青藏高原多年冻土区高寒草甸碳交换影响的认识,可为小流域以及区域尺度碳交换的准确评估提供科学依据。  相似文献   

13.
土壤温室气体排放是土壤与大气之间的温室气体交换的重要途径,但对土壤温室气体排放动态变化的理解和收支水平的估算仍存在较大的不确定性。基于动态箱原位监测的高频、连续土壤温室气体通量数据,本研究初步检验了生物地球化学模型(Forest-DNDC)对长白山阔叶红松林(CBF)土壤CH_4、CO_2和N_2O温室气体通量的模拟效果。结果显示,当前版本的Forest-DNDC可以反演得到土壤温度、土壤湿度和积雪等主要环境要素的总体变化趋势,但是对于环境要素季节变化的准确模拟尚存在较明显偏差,特别是在非生长季节。模拟得到的土壤CH_4通量与监测结果相当接近,并且受到了土壤温度和积雪变化的显著调控。受温度变化的影响,模拟CO_2通量的季节变化与测定值相似,均在夏季达到高峰,但模拟的土壤CO_2排放量明显小于实际测定结果。与监测的土壤N_2O通量在春季冻融期间出现排放高峰的变化显著不同的是,模拟土壤N_2O通量主要受温度变化的影响,其最大值出现在夏季。因此,有必要结合更长时段的土壤温室气体监测数据,进一步优化模型参数与过程,特别是土壤水热传导和温室气体的产生过程等,为模拟改进和生态系统碳氮收支评估,以及从站点到区域的扩展提供支撑。  相似文献   

14.
2013年11月至2014年10月期间,在海南东寨港红树林中的天然海莲(Bruguiera sexangula)群落和人工无瓣海桑(Sonneratia apetala)群落区,采用静态箱—气相色谱法和LI-8100A土壤碳通量测定系统,每月6~11日,在6块采样地,分别采集气样和土样,测定了土壤理化指标,测量和估算了土壤CO_2和CH_4排放通量。在研究中,对采样点的土壤进行了4种处理,分别为去除土壤中的植物根系、去除土壤中的凋落物、去除土壤中的植物根系+凋落物、保持土壤原状,对比了4种处理下土壤CO_2和CH_4排放通量,分析影响天然海莲群落和人工无瓣海桑群落区土壤CO_2和CH_4排放通量的主要因素。研究结果显示,天然海莲群落和人工无瓣海桑群落区土壤的平均CO_2排放通量为(420.0±26.1)mg/(m~2·h),平均CH_4平均排放通量为(29.9±1.4)mg/(m~2·h),人工无瓣海桑群落区土壤的CO_2和CH_4排放通量显著大于天然海莲群落区;植物群落类型,尤其是植物根系,能明显影响土壤CO_2和CH_4排放通量,土壤表面凋落物覆盖、土壤养分含量、土壤含水量、气温和降水量都能影响土壤CO_2和CH_4排放通量。  相似文献   

15.
长春地区稻田甲烷排放量的估算研究   总被引:7,自引:3,他引:4  
1995~ 1997年 3年的实验研究中 ,用静态箱法和气相色谱仪对长春地区不同水管理方式稻田的甲烷排放进行了采样和测量工作 ,1996年和 1997年逢晴天还同步进行了地面实验基地的卫星遥感数据 (TM和NOAA—AVHRR数据 )的接收工作。根据测算的稻田甲烷排放通量和用遥感数据提取的水稻种植面积 ,估算出区域尺度的稻田甲烷排放总量。 3年来的研究结果显示 ,长春地区水稻种植面积为 17.72 12× 10 4 hm2 ,稻田甲烷平均排放通量为 2 .984mg/(m2 ·h) ,长春地区稻田甲烷总排放量为 0 .0 2 0 3Tg/a。用灰关联方法分析了稻田甲烷排放的影响因子 ,建立了以水稻植被指数为参数的淹灌稻田的甲烷排放通量估算模型  相似文献   

16.
苏北盐沼DMS、CS_2和CH_4排放通量沿高程梯度的变化   总被引:2,自引:0,他引:2  
在中国东部海岸带盐沼沿环境梯度采用静态箱技术原位测定CH4、DMS和CS2气体的通量.结果表明,苏北海岸带盐沼整体上表现为CH4、DMS和CS2气体的源,其中,互花米草带(Spartina alternflora)排放率最高.CH4、DMS和CS2排放率之间的正相关关系支持DMS是甲烷生产底物的推断.高等植物地上部分是CH4、DMS和CS2气体的重要源,但植物排放这些气体的机制还不清楚.盐沼CH4、DMS和CS2气体的净排放可能与盐沼丰富的有机质含量有关,有机质为土壤微生物提供充足的碳源和能量.  相似文献   

17.
闽江河口潮汐湿地甲烷排放通量温度敏感性特征   总被引:7,自引:1,他引:6  
选择2007年11个月的中潮日,在闽江河口鳝鱼滩潮汐湿地,同步观测了芦苇(Phragmites australis)沼泽、短叶茳芏(又称成草)(Cyoerus malaccensis)沼泽、藨草(Scirpus triqueter)沼泽和光滩涨潮前、落潮后的甲烷排放通量以及气温和土温,计算了甲烷排放通量温度敏感性(Q10值),并分析了湿地甲烷排放通量Q10值与温度的关系.研究结果表明,4种湿地的甲烷排放通量与土温、气温都有显著的指数相关关系(n=20,p<0.01),低温时比高温时相关程度更高;4种湿地甲烷排放通量平均土温敏感性(Qs10值)和气温敏感性(Qa10值)分别为5.41和3.95,芦苇沼泽、咸草沼泽、藨草沼泽和光滩的甲烷排放通量Qs10值分别为3.22、5.23、4.79和11.10,它们的甲烷排放通量Qa10值分别为2.89、3.96、3.84和7.78,光滩甲烷排放通量温度敏感性最强;涨潮前4种湿地甲烷排放通量平均Qs10值和平均Qa10值分别为4.82和3.53,落潮后则分别为6.15和4.39,但涨潮前与落潮后湿地甲烷排放通量Q10值的差异不显著(p>0.05);湿地植物主要生长季,潮汐湿地甲烷排放通量Q10值低于其他时间.  相似文献   

18.
曹镓玺  李罡  周延  雷光春 《湿地科学》2020,18(2):251-256
利用以往研究中三峡库区的24个监测点的甲烷排放通量实测数据及其年平均气温和降水量数据,对温室气体排放风险评估模型(greenhouse gas risk assessment tool,GHG-RA)的系数进行了修正;利用修正的GHG-RA模型,估算了三峡库区24个监测点的甲烷排放通量;对2018~2117年期间三峡库区的平均甲烷排放风险进行了评价。研究结果表明,利用修正的GHG-RA模型估算的24个监测点的甲烷排放通量的平均值为0.222 mg/(m2·h),与实测值的均方根误差和平均偏差分别为0.12 mg/(m2·h)和0.32 mg/(m2·h);估算的2018~2117年期间三峡库区的平均甲烷排放通量为0.255 mg/(m2·h),甲烷排放风险为中等排放风险。  相似文献   

19.
三峡水库2006年10月底蓄水至156m水位后,已形成大面积消落带。为了解水位变动情况下,水库消落带植物群落的生态学特征,于2008年7~9月选择位于三峡水库腹心的澎溪河支流白夹溪,对145~156m高程消落带进行了调查。从植物群落的物种组成、生活型和结构特征等方面进行分析,并运用TWINSPAN法对消落带植物群落进行数量分类。结果表明,澎溪河支流白夹溪消落带植物群落物种较丰富,共有高等植物96种,分属36科73属,植物区系地理成分简单;植物群落生活型以一年生植物为主;植物种类构成以湿生、水生植物为主,占总种数的76.04%。TWINSPAN数量分类将调查的68个样方分为10个植物群落类型,其中最具代表性的群落有苍耳(Xanthum mongolicum)+狗牙根(Cynodon dactylon)群落、苍耳群落、双穗雀稗(Paspalum paspaeoides)群落、双穗雀稗(Paspalum distichum)+空心莲子草(Alternanthera philoxeroides)群落和白茅(Imperata cylindrica)群落,群落特征明显表现出对水位涨落及小生境差异的适应。  相似文献   

20.
湿地生态系统碳通量研究进展   总被引:8,自引:1,他引:7  
湿地碳循环在全球气候变化中起着重要作用,而湿地碳通量研究是湿地碳循环研究的关键问题。由于湿地独特的土壤、植被以及水文过程,使得湿地碳通量有别于其他类型的生态系统。湿地温室气体特别是CO2和CH2的释放水平具有明显的时空变化特征,其通量变化与许多外部因素相关,包括土壤状况、水文条件、植被类型、外源氮等。对近年来湿地生态系统碳汇功能变化以及影响碳通量相关因子的研究成果进行了系统的分析和综述。现有的研究表明,土壤状况对湿地碳通量影响较复杂,在一定范围内,表层土壤温度与气体排放密切相关,甚至呈正相关关系;土地利用/覆盖也影响湿地碳通量变化,导致湿地温室气体排放增加;水文条件特别是水位高度对湿地CO2和CH2排放的影响不同,高水位不利于CO2排出,CH2则与之相反;植被对湿地碳排放也起到正、负两方面作用,并且物种各异。还讨论了湿地碳通量研究进展的瓶颈问题,特别对植被演替较快的潮滩湿地碳通量研究做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号