首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
雅鲁藏布江米林宽谷段爬升沙丘粒度分异特征研究   总被引:3,自引:0,他引:3  
雅鲁藏布江米林宽谷段爬升沙丘分布广泛。选择卧龙镇西侧雅鲁藏布江右岸典型爬升沙丘,根据沙丘爬升高度和叠置沙丘地貌部位对其表面沉积物进行了系统采样。作为河谷风沙地貌的重要组成部分,相应采集了河漫滩、阶地沙丘沙样品。粒度分析表明,爬升沙丘对河漫滩沙丘、阶地沙丘在物源和形成过程方面具有继承性,其表面沉积物以细沙和极细沙为主(2.07~3.71Φ),分选中等或较好(0.20~1.41Φ),细偏,多峰。由坡脚向丘顶的沉积物粒径变细,分选变好,偏度和峰度降低。爬升沙丘表面叠置沙丘的粒度向丘顶变粗、分选变好。细沙、极细沙等粒级组分与高度相关,反映颗粒爬升能力不同。叠置条带状沙丘脊部和槽部的粒度存在分异。  相似文献   

2.
毛乌素沙地现代沙丘沙的粒度特征及其意义   总被引:5,自引:5,他引:0  
对毛乌素沙地不同类型41个现代沙丘的沙粒度分析结果表明,流动沙丘沙主要由细沙和中沙组成,平均粒径为2.17 Φ;固定-半固定沙丘沙的主要粒级是细沙和极细沙,平均粒径为3.09 Φ。流动沙丘沙平均粒径整体自西北到东南减小,而分选性总体表现为中等-较好,无明显空间变化规律。概率累计曲线和粒度特征参数散点图表明,毛乌素沙地沙丘沙以跃移搬运方式为主,存在着就地起沙和就地堆积的可能。平均粒径和分选性空间变化规律的差异,是在频繁强烈的风沙活动环境下物源和大气环流共同作用的结果。  相似文献   

3.
库姆塔格沙漠北部三垄沙地区风成沉积物粒度特征   总被引:4,自引:3,他引:1  
对位于库姆塔格沙漠北部的三垄沙地区,迄今尚未开展详细的风沙地貌研究。对该区域地表沉积物样品进行粒度分析,旨在探讨不同区域、不同沙丘类型以及沙丘不同地貌部位的沉积物特征差异。结果表明:三垄沙地区地表沉积物以中沙和细沙为主,二者平均含量之和为63.20%,平均粒径为0.95~1.89Φ,分选系数为0.55~1.55,粗于库姆塔格沙漠和塔克拉玛干沙漠,与世界其他沙海沙物质相比属于偏粗粒径。三垄沙地区的主要沙丘类型为新月形沙丘或沙丘链,其北部发育有线形沙丘;这两种沙丘表层沉积物平均粒径均属于中沙范围,且从沙丘底部到丘顶平均粒径变大、分选变好,最粗的沙粒出现在沙丘顶部,平均粒径分别为1.64Φ和0.71Φ,不同于其他地区沙丘顶部沉积物最细的分布模式。从概率累积曲线来看,流动沙丘多为二段或三段式,风成沙砾浪和剥蚀残丘多为三段或四段式,表明后者经历的分选过程较短。本区地表沉积物的平均粒径沿主导风向有变小的趋势,其中,新月形沙丘和线形沙丘的这一特征最为明显。  相似文献   

4.
为探讨黄河源区玛多盆地风沙沉积物分异特征,采集玛多盆地不同沙漠化程度、不同地貌部位、不同动力条件的沉积物样品进行粒度分析。结果表明:(1)玛多盆地沉积物随沙漠化程度增加,平均粒径增大,粗颗粒组分增多,分选性变好,偏度向负偏靠拢,峰态逐渐转向平坦,频率分布曲线也由双峰态转变为单峰态。(2)流动沙丘以中沙和细沙组分为主,分选性好,偏度近对称,峰度为中等尖锐。各个沙丘不同地貌部位沉积物粒度参数分异受风向改变的影响,变化规律不明显。流动沙丘沉积物相较于流动沙地沉积物的粒径更粗,分选性更好,可能是沙丘形成过程中风对沉积物颗粒的再次分选所致。(3)河流阶地剖面沉积物的主要粒级为中沙和细沙,分选中等偏差,偏度为正偏,峰尖锐,河流阶地沉积物的粒度组成与周围风成作用形成的流动沙丘(地)的粒度组成高度相似,极有可能是当地风沙活动的主要物源。  相似文献   

5.
西藏定结地区爬坡沙丘粒度特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对西藏定结地区典型爬坡沙丘表层沉积物的形态参数、粒度组成和粒度参数等进行分析,揭示其粒度特征。结果表明:(1)爬坡沙丘表层沉积物以细砂和中砂为主,极细砂含量较少,同时含有少量粉砂和粗砂,不含粘土成分。(2)沙丘平均粒径范围1.98~2.41 Ф,分选系数变化范围为0.45~0.75,属中等分选,偏度变化范围为0.01~0.12,呈近对称至正偏分布,峰度变化范围为0.94~1.01,呈中等尖锐峰态。(3)从样品PPSQ1~PPSQ6,随着高度和距离的增加,沙丘表层沉积物平均粒径先变细后变粗,分选不断变好。(4)爬坡沙丘表层沉积物主要来源于河漫滩。(5)与雅鲁藏布江、东昆仑山地区爬坡沙丘对比可知,定结地区的沙丘粒径较粗,分选较好,主要是物源及风力分选作用的共同结果。  相似文献   

6.
沉积物粒度特征对于研究物源、衡量搬运能量具有重要意义。分析了腾格里沙漠45个沙丘顶部样品的粒度特征,并计算了30 a输沙势。结果表明:(1)沙丘沙以细沙(71%)和中沙(20%)为主,平均粒径2.38 Φ,分选系数0.40 Φ;平均粒径与分选系数、偏度呈良好的线性关系。(2)分选为“极好”和“好”的样品整体分布在沙漠中部和西南部,前者概率累计曲线趋于近对称、中等峰态,为二段式,后者趋于正偏、中等或尖窄峰态,为三段式;而沙漠边缘分选较差,概率累计曲线为多段式。(3)盛行起沙风为西北风。西北和东北部属中风能环境,风况属单峰型和复杂型;南部和东南部分别属低、中风能环境,均双峰型风况。研究区沙丘沙源应以下伏河湖相沉积物就地起沙为主。沙漠边缘河湖相沉积物应该为中部区沙丘沙提供了物源,西南部沙丘沙可能源自石羊河下游的冲洪积物,风力分选作用较长,边缘沙丘沙则应来源于该区河湖相沉积物就地起沙,风力分选不充分。粒度参数空间分布特征与沙丘类型和规模之间存在一定的耦合关系。  相似文献   

7.
分析了青藏高原拉萨河谷爬坡沙丘表层及不同深度沉积物的粒度和地球化学元素特征。结果表明:(1)爬坡沙丘表层沉积物以细沙为主,平均粒径为2.51Φ(细沙),分选中等,粒度分布曲线为正偏、窄峰。随海拔升高,表层沉积物逐渐变细;随深度增加,沉积物粒径逐渐变细。(2)爬坡沙丘沉积物常量元素中SiO2含量最高,微量元素中Ba含量最高。常量元素含量多随深度增加而减少,且在0—10 cm深度内变化幅度最大。与上部陆壳平均化学组成相比,除Na2O、MnO、Cr、Co、Mo、SiO2外,其余元素均处于亏损状态。拉萨河谷爬坡沙丘经历了中等的化学风化,处于大陆风化的早期阶段。  相似文献   

8.
塔克拉玛干沙漠腹地沙粒胶结体的粒度特征   总被引:1,自引:1,他引:0  
对塔克拉玛干沙漠腹地沙粒胶结体进行溶蚀分散获取组成沙粒,采用激光粒度仪分析粒度成分,并与区域内沙丘沙、垄间平地沙和风沙流输沙的粒度特征进行对比,分析沙粒胶结体的粒度特征。结果表明:(1)沙粒胶结体中沙粒粒径呈多峰态分布,垄间平地沙呈双峰态分布,而沙丘沙和风沙流输沙呈单峰态分布;(2)沙粒胶结体内沙粒分选性较差,偏度属正偏,平均粒径(3.17 Φ)介于沙丘沙(3.10 Φ)和垄间地沙(3.28 Φ)、风沙流输沙(3.67 Φ)之间;(3)沙粒胶结体中沙物质主要组分为细沙和极细沙,与沙丘沙、垄间平沙地沙一致,而与风沙流输沙(极细沙和粉沙)不一致。与沙丘沙、垄间平地沙以及风沙流输沙相比,沙粒胶结体中粉沙、黏土和中沙相对富集,是现代地表物质的混合物;(4)与沙丘沙、垄间平地沙和风沙流输沙相比,沙粒胶结体内沙粒的蠕移-跃移、跃移-悬移截点粒径均偏细,蠕移组分所占比重很高。从组成颗粒的粒度组成来看,沙粒胶结体的形成受局地沙源和风动力的共同影响,是特殊环境条件下现代地表过程的产物。  相似文献   

9.
哈勒腾河流域位于柴达木盆地东北部,是一个近似封闭的内陆盆地。该地区风成沉积物来源相对单一,沙丘类型简单且发育时间短,是研究高原内陆盆地物质迁移规律和风沙地貌发育的理想场所。对115个不同类型、不同地貌部位沉积物粒度进行分析。结果表明:哈勒腾河流域地表沉积类型包括沙丘沙、丘间地沉积、河流沉积和戈壁沉积,主要由细沙组成,平均含量达51.6%。沙丘沙平均粒径1.01~2.90 Φ,分选性较差至极好(0.28~1.74 Φ),频率曲线呈近对称和中等峰态。该流域发育有独特的穹状沙丘,属于新月形沙丘演化的初期阶段,平均粒径1.55~2.54 Φ,分选中等至较好;尽管表现出从迎风坡和背风坡中部到沙丘顶部颗粒变粗、分选变差的特征,但相对同一地区的新月形沙丘而言分选过程较弱。从区域上来看,在W-E走向的断面上,新月形沙丘从西向东颗粒变粗,分选变差;在NW-SE走向的断面上,新月形沙丘由西北至东南颗粒变粗,分选性无明显变化。这表明,该流域风成沉积物的可能物源包括哈勒腾河流冲积物和山前风化剥蚀产物。  相似文献   

10.
库姆塔格沙漠典型线形沙丘粒度特征   总被引:5,自引:2,他引:3  
对库姆塔格沙漠不同区域典型线形沙丘不同地貌部位的表层沉积物进行了粒度分析。结果表明:线形沙丘沙物质组成的优势粒级为中沙、细沙和极细沙,所占比重分别为28.85%、30.92%和25.98%。根据沙丘剖面形态和粒度特征,该沙漠的线形沙丘可分为两大类,第一类剖面形态不对称,沙物质由沙丘两翼底部向脊部逐渐细化、分选变好,分布于沙漠的东北部、中部、南部和西部;第二类剖面形态较为对称,沙物质在两翼中部最细,脊部最粗,坡脚次之,分选性无明显变化规律,分布于沙漠的东部。对这两类线形沙丘粒度特征的形成原因做了探讨,初步认为第一类是沙物质经风选的结果,而第二类则是风选、物源风化等综合影响的结果。  相似文献   

11.
沙丘表层沉积物的理化特征是风沙地貌研究的重要内容。选取了河西走廊沙漠中部戈壁地表发育的新月形沙丘、灌丛沙丘及附近的湖相沉积物和戈壁表层沉积物的38个样品,对其物理性质(平均粒径、分选程度、峰度、偏度)和化学性质(常量元素和微量元素)进行分析。结果表明:河西走廊新月形沙丘表层沉积物粒度以中沙为主(21.65%~57.39%),其次是细沙(23.22%~52.96%);平均粒径为0.27~0.43 mm,大于其他沙漠。分选性以中等较好为主,粒度曲线近对称,峰度中等。常量元素以CaO和SiO2为主,分别为5.55%和66.12%;微量元素含量在同一沙丘具有相似性,但不同的沙丘之间的含量有所差异。  相似文献   

12.
毛里塔尼亚努瓦克肖特地区位于撒哈拉沙漠西部,基本被沙漠包围且常年遭受沙漠侵蚀,进行该地区沙漠粒度特征的研究,将对判别沙漠物质来源和沉积过程等具有重要参考意义。对努瓦克肖特周边纵向沙丘不同部位采集的50个沙样粒度进行分析。结果表明:沙丘沉积物的粒度以细沙和极细沙为主,两者所占比例超过60%;总体粒度要细于国内典型沙漠线性沙丘。沙丘东南坡、丘顶和西北坡整体上以细沙为主,其次为极细沙,二者含量依次递减,粉沙含量依次增加。沙丘沙粒径最细者为西北坡(5.13 φ),最粗者为东南坡(3.07 φ),分选性随粒径增加而变好。3个部位峰态存在明显差异,东南坡以中等和尖窄峰态为主,丘顶以尖窄峰态为主,西北坡为以宽平峰态为主,但三者均以正偏偏态为主。丘间地粒级级配趋势一致性最好,均以细沙为主,平均粒径大于沙丘各部位,平均粒径为2.76 φ,分选性优于沙丘,全为近对称中等峰态。该地区地表沙粒沉积环境和成因复杂,超过70%的沙样为风成沉积造成,其余为沿岸沉积造成。  相似文献   

13.
对艾比湖流域抛物线沙丘表层沉积物样品的实验分析结果表明:沙丘表层沉积物粒径分布在0.4~2116.5 μm。沙丘表层沉积物主要成分为沙,且含有一定量的细砾和黏土成分;平均粒径从两翼间地至丘顶逐渐变粗,丘顶至背风坡脚逐渐变细;沉积物分选性整体较差,平均粒径愈小,分选性愈好;粒径频率曲线为正偏、基本对称、负偏和极负偏混合存在。沙丘表层沉积物的平均粒径与分选系数存在不显著的负相关性,与峰态呈现显著负相关,分选系数与峰态呈现显著正相关性。沙丘不同地貌部位沉积物的粒级、平均粒径、分选系数呈现出有规律的变化,系风沙流、沙丘形态、植被和沉积物综合作用的结果。艾比湖流流域内抛物线沙丘的物质来源为两个或两个以上的沉积物混合形成的多源供应物。  相似文献   

14.
巴丹吉林沙漠地表沉积物粒度特征及区域差异   总被引:14,自引:6,他引:8  
对巴丹吉林沙漠不同区域、不同类型沙丘、不同地貌部位的223个地表沉积物样品进行粒度分析表明,该沙漠的流动沙丘主要由细沙组成,其含量可达49.5%~66.1%;沙丘沙的平均粒径介于2.104~2.706 Φ之间,粗于塔克拉玛干沙漠和腾格里沙漠,与世界其他沙海中沙物质粒径相比处于中等粗细。粒径最细者为灌丛沙丘表面沙粒,最粗者为横向沙山迎风坡;分选度好至极好,均为正偏中等峰态。丘间地物质粗于沙丘沙,平均粒径为1.409 Φ,分选较好,正偏窄峰态。从频率曲线来看,沙丘沙为单峰,丘间地多为双峰或三峰。在典型横向沙山剖面上,自迎风坡坡脚至沙丘顶部平均粒径变细而分选性变好,最粗的沙粒出现在靠近迎风坡坡脚的丘间地,而最细和分选最好的沙粒出现在紧邻沙丘顶部的背风坡。尽管横向沙山与新月形沙丘和沙丘链的尺度不同,但二者同属横向沙丘系统,具有相似的沙丘动力机制,因而粒度参数之间关系的表现趋同。从区域上来看,在平行于主导风向的3条NW—SE向断面上,沙漠中北部高大沙山之间低矮“通道”上的沙粒平均粒径存在微弱的变细趋势,而高大沙山区则不存在明显的变化规律;在平行于雅布赖山的3条SW—NE向断面上,粒度参数沿断面方向无明显的变化规律,但断面越靠近雅布赖山平均粒径越粗。一般认为巴丹吉林沙漠是中国重要的沙尘源区之一,然而粒度分析结果表明,沙漠中北部几乎不含粉沙黏土(<0.0625 mm)组分,而东南部的横向沙山区含量则相对较高,这就需要进一步推断巴丹吉林沙漠具体的沙尘源区和沙尘释放过程。以上变化规律说明,除了物源和主导风向等宏观因素外,引起局地气流改变进而影响沙粒跃移过程的地形起伏、植被覆盖等微观因素也对沙粒分选过程起着重要的控制作用;宏观和微观因素共同作用,最终形成的粒度参数规律性在沙丘尺度上要好于区域尺度上。该粒度分析结果,对于分析巴丹吉林沙漠沙物质来源和形成演变过程、反演高大沙山形成机理、估算地表沙尘释放量等均具有重要参考意义。  相似文献   

15.
以吉兰泰盐湖北部流沙区铺设8 a的不同规格聚乳酸(PLA)沙障内沉积物为研究对象,利用激光衍射技术分析了沙丘表层0~3 cm沉积物粒度组成,计算并分析平均粒径、标准偏差等粒度参数,探讨了影响障内沉积物相对粗细的关键组分,分析PLA沙障的防沙效益。结果表明:PLA沙障内沉积物以细沙、中沙、极细沙为主。中沙、极细沙、细沙是障内沉积物的关键组分。PLA沙障的阻滞作用使得中沙、粗沙含量百分比升高,细颗粒含量百分比降低,障内沙粒分选性逐渐变差,峰态偏离正态分布,向负偏方向发展,频率分布曲线分布范围变宽,累积频率曲线变缓,表层颗粒组成趋于粗化。1 m×1 m规格PLA沙障内均以积沙为主;沙丘迎风坡和背风坡的2 m×2 m、3 m×3 m沙障内均为积沙状态,丘顶则为风蚀状态。综合考虑沙障铺设成本和防护效果,得出研究区域内2 m×2 m规格PLA沙障整体防沙效益最佳。  相似文献   

16.
巴音温都尔沙漠表层土壤粒度特征及风蚀量估算   总被引:5,自引:1,他引:4  
对巴音温都尔沙漠的表层土壤进行的粒度分析及风蚀量估算结果表明,巴音温都尔沙漠属就地起沙,从丘间低地、沙丘基部到沙丘顶部,平均粒径逐渐变细,分选情况逐渐变好;未沙化土地的平均粒径最细,分选较差.偏度是流动沙丘表层土壤全部为正偏,未沙化土地为负偏.在沙丘不同部位正偏程度也不同,沙丘顶部表现为极正偏,偏度在此出现最大值.未沙化土地、丘间低地及沙丘基部均呈多峰态,而沙丘顶部则呈典型的双峰态.在成沙过程中,每成1 g沙最多要耗土9.56 g,损失掉的土壤以小于0.25 mm的细粒物质居多,表明土地在沙漠化过程中损失的土壤是形成沙尘暴的主要尘源.  相似文献   

17.
对月牙泉外围沙山表面沉积物进行系统采样,结合区域风况,分析了沙山典型部位的粒度分布及其参数特征。月牙泉北侧金字塔沙丘沙粒较粗,分选性较差,正偏趋势显著;月牙泉南侧线形沙丘以细沙为主,分选性较好,分布属正偏态。北侧金字塔沙丘从西南和西北两个坡面到东侧坡面,粗颗粒减少、分选性变好,但趋势不明显,说明金字塔沙丘未发生明显移动;而南侧线形沙丘自南侧坡面向北侧坡面沙粒粒径变小、分选变好,较细的沙粒被搬运并沉积北侧坡面,搬运作用十分明显,即线形沙丘向月牙泉方向发生明显移动。通过粒度分析风沙动力环境表明,月牙泉风沙危害主要来自南侧沙山北移。  相似文献   

18.
鄱阳湖沙地是亚热带湿润区典型风沙化土地,土地沙化问题严峻。鄱阳湖沙地研究多在小范围开展,研究意义有限,应在多处进行沙地粒度比对研究。选取庐山市、都昌县、永修县和南昌市新建区等沙地样品57个,分析其粒度特征。结果表明:(1)鄱阳湖沙地主要由中沙、细沙和粗沙组成,三者总含量超90%;Mz均值为1.79Φ,分选较差,呈正偏和尖锐分布;(2)鄱阳湖沙地不同土地类型沉积物表层(0-5 cm)与20-40 cm深度粒度特征存在一定差异,固定沙丘、半固定沙丘、流动沙丘和河滩表层比20-40 cm深度粒径大,但流动沙丘和湿地草滩表层分选优于20-40 cm深度;湿地草滩和河滩优势粒级含量和粒度参数有别于沙丘;(3)鄱阳湖沙地固定沙丘、半固定沙丘和流动沙丘为风成沉积;河滩以河流作用为主,风蚀为辅;湿地草滩是在风力和水动力共同作用下形成的。鄱阳湖沙地沿盛行风向从南到北S、SK、K依次减小,风沙运动多以两跳一悬式为主,以就地起沙为主,河滩湖滩作为补充。  相似文献   

19.
响水河中游右岸沙丘群粒度分布特征   总被引:2,自引:2,他引:0  
王勇  韩广  杨林  郭宇航  肖涛 《中国沙漠》2017,37(1):26-32
在野外实地考察和测量的基础上,沿盛行风向,对西辽河平原西部响水河中游右岸普遍发育的新月形沙丘链进行样品采集。经室内激光粒度仪测定,研究了河岸沙丘粒度分布规律。结果表明:(1)响水河右岸沙丘及丘间地以中沙为主,而河谷谷底细沙含量最多,平沙地次之。(2)滨岸沙丘由迎风坡脚到丘顶平均粒径变小,远岸沙丘由迎风坡脚到丘顶平均粒径变大;多数沙丘分选性由两侧坡脚到丘顶变好;多数沙丘丘顶偏度值和峰态值大于两侧坡脚。(3)滨岸沙丘受风、水两相作用,能从较深地层获得沙源;其下风向沙丘主要受风力作用,沙源主要为丘间地沙及上风向风沙流携带的较细沙。  相似文献   

20.
以毛乌素沙地3种沙丘(新月形沙丘、抛物线形沙丘和反向沙丘)为研究对象,对其形态、表沙粒度特征和区域风况进行了量化分析,探讨了沙丘表沙物理运动过程及其形态对外界条件(风况和地表植被)变化的反馈,揭示了沙丘表沙粒度特征对不同沙丘形态的响应机制。结果表明:新月形沙丘表沙平均粒径由迎风坡底部向顶部逐渐变小,分选呈现逐渐变好趋势, 但粒径较小和分选较差的表沙样出现在沙丘迎风坡中部。随着地表植被覆盖度的增加,新月形沙丘逐渐向抛物线形沙丘转变,近地表输沙能力和沙丘上风向沙源的供应同样受到限制,致使抛物线形沙丘由迎风坡底部向顶部呈现表沙平均粒径变大,而分选逐渐变好的趋势。毛乌素沙地内季节性风况(春季盛行强劲西北风,夏季盛行较弱东南风)的变化不仅促进了反向沙丘的发育,并且重组了西北盛行风影响下的表沙粒度特征。在夏季反向风风蚀的作用下,沙丘落沙坡顶部出现反向堆积和脊线反向移动的现象,同时其顶部呈现平均粒径由小变大、分选逐渐变好的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号