首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Domestic fires at the city level, being causes for casualties and causing significant material damages, are stored as a point pattern in a GIS. In this paper we apply a statistical point pattern analysis to derive major causes from related layers of information. We fit a G-function to analyse neighbourhood relations and a Strauss process for inferring causal relations. Using open-source software we find significant differences in patterns and explaining factors between the different parts of the day, in particular for different building types and income groups. We conclude that a quantitative spatial model can be fitted and that this provides a useful opportunity for fire brigades to improve planning their efforts.  相似文献   

2.
We determine the 3-D shear wave speed variations in the crust and upper mantle in the southeastern borderland of the Tibetan Plateau, SW China, with data from 25 temporary broad-band stations and one permanent station. Interstation Rayleigh wave (phase velocity) dispersion curves were obtained at periods from 10 to 50 s from empirical Green's function (EGF) derived from (ambient noise) interferometry and from 20 to 150 s from traditional two-station (TS) analysis. Here, we use these measurements to construct phase velocity maps (from 10 to 150 s, using the average interstation dispersion from the EGF and TS methods between 20 and 50 s) and estimate from them (with the Neighbourhood Algorithm) the 3-D wave speed variations and their uncertainty. The crust structure, parametrized in three layers, can be well resolved with a horizontal resolution about of 100 km or less. Because of the possible effect of mechanically weak layers on regional deformation, of particular interest is the existence and geometry of low (shear) velocity layers (LVLs). In some regions prominent LVLs occur in the middle crust, in others they may appear in the lower crust. In some cases the lateral transition of shear wave speed coincides with major fault zones. The spatial variation in strength and depth of crustal LVLs suggests that the 3-D geometry of weak layers is complex and that unhindered crustal flow over large regions may not occur. Consideration of such complexity may be the key to a better understanding of relative block motion and patterns of seismicity.  相似文献   

3.
Rayleigh hysteresis, as defined by the well-known Rayleigh relations, has been observed not only when magnetization of pyrrhotite-bearing KTB-samples is measured in parallel to a weak dc magnetic field, but also in experiments where field and measuring directions have been adjusted strictly perpendicularly to each other. Nine-tupels of independent Rayleigh hysteresis loops could thus be compiled. Their characteristic coefficients X ijk of initial susceptibility together with the Rayleigh loss coefficients αjk have been proved to determine completely the samples' weak-field magnetic anisotropy. Interpreting the coefficient matrices ( X ijk) and (αjk) as the tensor of initial susceptibility and the Rayleigh tensor, respectively, generalization of the isotropic Rayleigh relations in terms of corresponding tensor relationships has been suggested for the anisotropic case. Application to the KTB samples showed 3-D Rayleigh hysteresis measurements to be an excellent tool for rock magnetic analysis in terms of ore content and crystalline texture. In particular, a magnetocrystalline double texture of the basal planes of pyrrhotite precipitates and their [1120] directions of easy magnetization have been clearly detected. Surprisingly, the welt-known theorem α= const. X 2I, formulated by Néel (1942) for the isotropic case, has been found to hold true even in tensor generalization (αjk) = const ( X 2jk). To reach sufficient resolution for the measurements performed, a sensitive vibrating coil magnetometer (VCM) has been developed.  相似文献   

4.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

5.
We derive both 3-D and 2-D Fréchet sensitivity kernels for surface-wave group-delay and anelastic attenuation measurements. A finite-frequency group-delay exhibits 2-D off-ray sensitivity either to the local phase-velocity perturbation  δ c / c   or to its dispersion  ω(∂/∂ω)(δ c / c )  as well as to the local group-velocity perturbation  δ C / C   . This dual dependence makes the ray-theoretical inversion of measured group delays for 2-D maps of  δ C / C   a dubious procedure, unless the lateral variations in group velocity are extremely smooth.  相似文献   

6.
1 The Concept: About Knowledge EconomyIn general terms, all kinds of productions have knowledge with them, either western or eastern, past or present. In production process, people use knowledge to choose suitable materials, to develop processing technologies, fashion and styles to meet the needs of customers and, after all, to make profits (or sometimes to make for "public good"). In order to cut the cost to the possibly lowest level, people also use knowledge to choose suitable places and,…  相似文献   

7.
The coupled plate interface of subduction zones—commonly called the seismogenic zone—has been recognized as the origin of fatal earthquakes. A subset of the after-shock series of the great Antofagasta thrust-type event (1995 July 30; M w = 8.0) has been used to study the extent of the seismogenic zone in northern Chile. To achieve reliable and precise hypocentre locations we applied the concept of the minimum 1-D model, which incorporates iterative simultaneous inversion of velocity and hypocentre parameters. The minimum 1-D model is complemented by station corrections which are influenced by near-surface velocity heterogeneity and by the individual station elevations. By relocating mine blasts, which were not included in the inversion, we obtain absolute location errors of 1  km in epicentre and 2  km in focal depth. A study of the resolution parameters ALE and DSPR documents the importance of offshore stations on location accuracy for offshore events. Based on precisely determined hypo-centres we calculate a depth of 46  km for the lower limit of the seismogenic zone, which is in good agreement with previous studies for this area. For the upper limit we found a depth of 20  km. Our results of an aseismic zone between the upper limit of the seismogenic zone and the surface correlates with a detachment zone proposed by other studies; the results are also in agreement with thermal studies for the Antofagasta forearc region.  相似文献   

8.
An algorithm for the numerical modelling of magnetotelluric fields in 2-D generally anisotropic block structures is presented. Electrical properties of the individual homogeneous blocks are described by an arbitrary symmetric and positive-definite conductivity tensor. The problem leads to a coupled system of partial differential equations for the strike-parallel components of the electromagnetic field. E x, and H x These equations are numerically approximated by the finite-difference (FD) method, making use of the integro-interpolation approach. As the magnetic component H x, is constant in the non-conductive air, only equations for the electric mode are approximated within the air layer. The system of linear difference equations, resulting from the FD approximation, can be arranged in such a way that its matrix is symmetric and band-limited, and can be solved, for not too large models, by Gaussian elimination. The algorithm is applied to model situations which demonstrate some non-trivial phenomena caused by electrical anisotropy. In particular, the effect of 2-D anisotropy on the relation between magnetotelluric impedances and induction arrows is studied in detail.  相似文献   

9.
Guinea worm and other water borne diseases associated with untreated surface water use have necessitated that communities are supplied with groundwater in the Northern Region of Ghana. The Electrical Resistivity Survey (ERS) method is one of the common geophysical survey techniques used for borehole siting in Ghana. Various groundwater exploration programs have utilized it by employing the four electrode system. However, the ERS has not been able to locate potential borehole sites successfully in the Voltaian Sedimentary Basin (VSB) in the Northern Region of Ghana although it has been successful in other geological formations. Unsatisfactory results obtained from the employment of the ERS system in the VSB therefore necessitated an experiment with the 2-D Multi-Electrode Resistivity Imaging (2-D MERI) technique. Field results show that the 2-D MERI is a robust and efficient technique: an improvement on the four electrode ERS system in terms of amount and quality of data obtained. The 2-D MERI interpretations were confirmed with a much improved borehole drilling success rate of 60% compared to 38% obtained using the ERS within the mudstone and shale formations. The 2-D MERI also indicated that very low resistivity layers in the VSB may not necessarily be good targets for borehole drilling and the generally held notion that groundwater cannot be found at depths more than 25 m is no longer tenable.  相似文献   

10.
A Point-Based Intelligent Approach to Areal Interpolation   总被引:1,自引:0,他引:1  
Areal interpolation is the data transfer from one zonal system to another. A survey of previous literature on this subject points out that the most effective methods for areal interpolation are the intelligent approaches, which often take two-dimensional (2-D) land use or one-dimensional (1-D) road network information as ancillary data to give insight on the underlying distribution of a variable. However, the 2-D or 1-D ancillary information is not always applicable for the variable of interest in a specific study area. This article introduces a point-based intelligent approach to the areal interpolation problem by using zero-dimensional (0-D) points as ancillary data that are locationally associated with the variable of interest. The connection between zonal variables and point locations can be modeled with a linear or a nonlinear exponential function, which incorporates the distribution of the variables in the transferring of the information from the source zone to the target zone. An experimental study interpolating the population data at a suburbanized area suggests that the proposed method is an attractive alternative to other areal interpolation solutions based on the evaluation of its resulting accuracy and efficiency.  相似文献   

11.
Wide-angle seismic velocities in heterogeneous crust   总被引:5,自引:0,他引:5  
Seismic velocities measured by wide-angle surveys are commonly used to constrain material composition in the deep crust. Therefore, it is important to understand how these velocities are affected by the presence of multiscale heterogeneities. The effects may be characterised by the scale of the heterogeneity relative to the dominant seismic wavelength (λ); what is clear is that heterogeneities of all scales and strengths bias wide-angle velocities to some degree. Waveform modelling was used to investigate the apparent wide-angle P -wave velocities of different heterogeneous lower crusts. A constant composition (50 per cent felsic and 50 per cent ultramafic) was formed into a variety of 1- and 2-D heterogeneous arrangements and the resulting wide-angle seismic velocity was estimated. Elastic, 1-D models produced the largest velocity shift relative to the true average velocity of the medium (which is the velocity of an isotropic mixture of the two components). Thick (width > λ) horizontal layers, as a result of Fermat's Principle, provided the largest increase in velocity; thin (width ≪λ) vertical layers produced the largest decrease in velocity. Acoustic 2-D algorithms were shown to be inadequate for modelling the kinematics of waves in bodies with multiscale heterogeneities. Elastic, 2-D modelling found velocity shifts (both positive and negative) that were of a smaller magnitude than those produced by 1-D models. The key to the magnitude of the velocity shift appears to be the connectivity of the fast (and/or slow) components. Thus, the models with the highest apparent levels of connectivity between the fast phases, the 1-D layers, produced the highest-magnitude velocity shifts. To understand the relationship between measured seismic velocities and petrology in the deep crust it is clear that high-resolution structural information (which describes such connectivity) must be included in any modelling.  相似文献   

12.
We present new methods for the interpretation of 3-D seismic wide-angle reflection and refraction data with application to data acquired during the experiments CELEBRATION, 2000 and ALP 2002 in the area of the Eastern Alps and their transition to the surrounding tectonic provinces (Bohemian Massif, Carpathians, Pannonian domain, Dinarides). Data was acquired on a net of arbitrarily oriented seismic lines by simultaneous recording on all lines of seismic waves from the shots, which allows 2-D and 3-D interpretations. Much (80%) of the data set consists of crossline traces. Low signal to noise (S/N) ratio in the area of the young orogens decreases the quality of travel time picks. In these seismically heterogeneous areas it is difficult to assign clearly defined arrivals to the seismic phases, in particular on crossline record sections.
In order to enhance the S/N ratio, signal detection and stacking techniques have been applied to enhance the Pg -, Pn - and PmP phases. Further, inversion methods have been developed for the interpretation of WAR/R-data, based on automated 1-D inversion ( Pg ) and the application of the delay time concept ( Pn ). The results include a 3-D velocity model of the crust based on Pg waves, time and depth maps of the Moho and a Pn -velocity map. The models based on stacked data are robust and provide a larger coverage, than models based on travel time picks from single-fold (unstacked) traces, but have relatively low resolution, especially near the surface. They were used as the basis for constructing models with improved resolution by the inversion of picks from single-fold data. The results correlate well with geological structures and show new prominent features in the Eastern Alps area and their surrounds. The velocity distribution in the crust has strong lateral variations and the Moho in the investigation area appears to be fragmented into three parts.  相似文献   

13.
This paper presents the development of a 2.5-D simulation technique for acoustic wave propagation in media with variable density and velocity. A comparative study of the 2-D and 2.5-D responses of a model reveals the spatially and temporally damped nature of the 2.5-D acoustic wave equations. The simulated results for constant and variable density models show that the density variation affects only the reflectivity of the layer. The computational cost for variable density models is 2.17 and 2.26 times that for constant density models for the 2.5-D and 2-D cases, respectively. Furthermore, the 2.5-D computational cost in the time domain is only about 10–15 per cent more than that for two dimensions, so this modest increase in computational cost can avoid the exorbitant 3-D computational cost.
Snapshots for a crosshole geometry were computed at various times in order to study the effect of heterogeneity on the amplitude and shape of the wave front. Extensive analysis of an oil-bearing reservoir with and without the inclusion of a gas zone was performed using a point source as well as multiple sources. In addition, the effects of the thickness of a low-velocity layer (oil-bearing) and of the location of the source have been studied. It is concluded from the numerical response that the waveguide action of the low-velocity layer depends on its thickness in terms of the dominant wavelength. Trapping of waves was not observed when the source was outside the low-velocity layer. Furthermore, the presence of heterogeneity in the low-velocity layer contributes considerably to the leakage of energy in the adjacent layers due to scattering/diffraction. It was found that, in the 2.5-D numerical simulation, the stability condition and the requirement of the number of grid points per wavelength to avoid grid dispersion are the same as for the 2-D case.  相似文献   

14.
We consider the kinematic production of magnetic fields in a sphere by velocity fields dominated by differential rotation and spiralling convective cells. The high magnetic Reynolds number limit of Braginsky (1964) is considered and formulae are derived allowing an α-effect parametrization of such flows to be easily calculated. This permits an axisymmetric system to be investigated in parallel with the direct 3-D numerical computations. Good agreement between the asymptotic and 3-D calculations is found. The 'spiralling' property typical of convective motion in rotating spheres is important in terms of dynamo action; the differential rotation coexisting with this feature is also vital. Indeed, it is the presence of both features which allows the analysis of Braginsky to be employed. With flows approximating the columnar form anticipated for rapidly rotating convection, dynamo action is relatively easily achieved for all azimuthal wavenumbers; modes of differing wavenumbers interact almost by a simple superposition. With flows of more complex latitudinal form, the mutual interactions between modes become more complicated. For columnar-type flows, dipole magnetic fields are favoured when the sense of outward spiralling is prograde and the zonal flow is eastwards, as is physically preferred.  相似文献   

15.
Ambient noise Rayleigh wave tomography of New Zealand   总被引:16,自引:0,他引:16  
We present the first New Zealand-wide study of surface wave dispersion, using ambient noise observed at 42 broad-band stations in the national seismic network (GeoNet) and the Global Seismic Network (GSN). Year-long vertical-component time-series recorded between 2005 April 1 and 2006 March 31 have been correlated with one another to yield estimated fundamental mode Rayleigh wave Green's functions. We filter these Green's functions to compute Rayleigh wave group dispersion curves at periods of 5–50 s, using a phase-matched filter, frequency–time analysis technique. The uncertainties of the measurements are estimated based on the temporal variation of the dispersion curves revealed by 12 overlapping 3-month stacks. After selecting the highest quality dispersion curve measurements, we compute group velocity maps from 7 to 25 s period. These maps, and 1-D shear wave velocity models at four selected locations, exhibit clear correlations with major geological structures, including the Taranaki and Canterbury Basins, the Hikurangi accretionary prism, and previously reported basement terrane boundaries.  相似文献   

16.
We perform a systematic parameter space study of the seismic response of a large fault with different levels of heterogeneity, using a 3-D elastic framework within the continuum limit. The fault is governed by rate-and-state friction and simulations are performed for model realizations with frictional and large scale properties characterized by different ranges of size scales. We use a number of seismicity and stress functions to characterize different types of seismic responses and test the correlation between hypocenter locations and the employed distributions of model parameters. The simulated hypocenters are found to correlate significantly with small L values of the rate-and-state friction. The final sizes of earthquakes are correlated with physical properties at their nucleation sites. The obtained stacked scaling relations are overall self-similar and have good correspondence with properties of natural earthquakes.  相似文献   

17.
18.
以DPSIRM因果关系模型拟定指标体系,运用模糊层次分析法和综合比较法赋权并量化计算,基于地理信息系统空间分析方法,对大连社区人居环境状况和全空间分异格局进行研究,结果表明:大连市社区人居环境安全单元分为五个类别,即社区人居环境安全评价很差单元、社区人居环境安全评价较差单元、社区人居环境安全评价过渡单元、社区人居环境安全评价较好单元、社区人居环境安全评价优良单元;大连市人居环境安全的空间分布中各分区所占的比例为:人居环境安全区30.598%,人居环境较安全区30.232%,人居环境安全过渡区9.678%,人居环境较不安全区12.299%,人居环境不安全区17.193%;南部滨海区人居环境安全好,北部城乡结合部人居环境安全差,呈现由南向北递减趋势;中部是国家森林公园等植被覆盖好的区域,人居环境安全好。研究表明本文所建评价模型具有普遍性,可用于不同社区人居环境因子的评价与比较。  相似文献   

19.
About 50 000 P and S arrival times and 25 000 values of t * recorded at seismic arrays operated in the Central Andes between 20°S and 25°S in the time period from 1994 to 1997 have been used for locating more than 1500 deep and crustal earthquakes and creating 3-D P , S velocity and Qp models. The study volume in the reference model is subdivided into three domains: slab, continental crust and mantle wedge. A starting velocity distribution in each domain is set from a priori information: in the crust it is based on the controlled sources seismic studies; in slab and mantle wedge it is defined using relations between P and S velocities, temperature and composition given by mineral physics. Each iteration of tomographic inversion consists of the following steps: (1) absolute location of sources in 3-D velocity model using P and S arrival times; (2) double-difference relocation of the sources and (3) simultaneous determination of P and S velocity anomalies, P and S station corrections and source parameters by inverting one matrix. Velocity parameters are computed in a mesh with the density of nodes proportional to the ray density with double-sided nodes at the domain boundaries. The next iteration is repeated with the updated velocity model and source parameters obtained at the previous step. Different tests aimed at checking the reliability of the obtained velocity models are presented. In addition, we present the results of inversion for Vp and Vp/Vs parameters, which appear to be practically equivalent to Vp and Vs inversion. A separate inversion for Qp has been performed using the ray paths and source locations in the final velocity model. The resulting Vp , Vs and Qp distributions show complicated, essentially 3-D structure in the lithosphere and asthenosphere. P and S velocities appear to be well correlated, suggesting the important role of variations of composition, temperature, water content and degree of partial melting.  相似文献   

20.
We present two equivalent algorithms for iterative linearized waveform inversion for 3-D Earth structure with respect to an arbitrary 3-D starting model; one is a matrix formulation, and the second is a wavefield formulation. Both algorithms require the computation of accurate synthetic seismograms, but neither requires that any particular method be used to compute the synthetics. The matrix formulation is equivalent to our previously published algorithm (Hara, Tsuboi & Geller 1991), but requires less than 10 per cent of the CPU time of the previous algorithm. The wavefield algorithm is equivalent to that of Tarantola (1986) and Mora (1987), but appears to be substantially more efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号