首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
近30年南极海冰的变化特征   总被引:6,自引:0,他引:6       下载免费PDF全文
卞林根  林学椿 《极地研究》2005,17(4):233-244
采用NCEP的1973-2002年南极海冰密集度资料,对近30年南极海冰冰密集度的季节变化、年际变化及其与南极海冰涛动指数的长期变化关系进行了分析研究。结果表明,南极海冰的季节变化特点是海冰融化速度远大于凝结速度,而北极海冰融化速度与凝结速度基本相同。南极海冰存在着明显的年际变化,海冰面积指数呈增加趋势,年平均倾向率为28/10a。而北极海冰年际变化则相反,呈减少趋势,年平均面积指数的倾向率-3.5/10a。南极海冰涛动指数能代表南极地区近1/3的海水变化,是南极海冰变化的重要指数,具有10年、3-5年和2年左右的准振荡周期。  相似文献   

2.
2014年夏季北极东北航道冰情分析   总被引:1,自引:0,他引:1       下载免费PDF全文
使用2003—2014年6—9月份的AMSR-E和AMSR-2海冰密集度数据计算了北极海冰范围, 并获得海冰空间分布图。通过分析得出, 2014年北极夏季海冰范围在数值上与2003—2013年的多年平均值很接近, 在空间分布上与多年中值范围相比主要表现为两个方面的不同:(1)2014年夏季拉普捷夫海及其以北海域海冰明显少于多年中值范围, 9月份冰区最北边界超过了85°N;(2)巴伦支海北部斯瓦尔巴群岛至法兰士约瑟夫地群岛区域海冰范围明显多于多年中值范围, 而且海冰范围在8月份不减反增, 冰区边界较7月份往南扩张了约0.8个纬度。2014年夏季在拉普捷夫海以南风为主, 而在巴伦支海以北风为主。南风将俄罗斯大陆上温暖的空气吹向高纬地区, 造成高纬地区温度偏高, 促进拉普捷夫海海冰融化, 并使海冰往北退缩。北风将北冰洋上的冷空气吹向低纬地区, 造成巴伦支海的气温偏低, 不利于海冰的融化, 同时北风使海冰往南漂移扩散, 造成巴伦支海北部海冰范围在2014年偏多。2014年北地群岛航线开通时间范围大约在8月上旬到10月上旬, 时长约两个月。新西伯利亚群岛及附近海域的开通时间稍早于北地群岛, 但关闭时间比北地群岛晚, 所以 2014年东北航道全线开通的时间主要受制于北地群岛附近海冰变化。  相似文献   

3.
加拿大北极群岛西北航道区域海冰冰情对西北航道的开通及航行安全有着显著的影响。本研究将西北航道分为南部、北部以及交汇区3个区域,利用美国国家冰雪中心Bootstrap海冰密集度数据和CryoSat-2、CS2SMOS观测以及高分辨率北极海洋-海冰耦合模型(AO-FVCOM)的海冰厚度数据对1978年11月—2017年12月加拿大北极群岛区域西北航道海冰冰情长期时空特征进行研究,并对南线和北线冰情进行评估。研究结果显示西北航道冬春季被高密集度的海冰覆盖,夏秋季密集度较小,呈现北高南低的分布特征;北部、南部、以及交汇区域覆盖范围呈现减少趋势,分别为–0.01×105km~2·(10a)~(–1)[–0.77%·(10a)~(–1)]、–0.09×105km~2·(10a)~(–1)[–3.50%·(10a)~(–1)]以及–0.12×104km~2·(10a)~(–1)[–2.81%·(10a)~(–1)];海冰厚度在北部和南部区域呈现减小趋势,分别为–0.25 m·(10a)~(–1)和–0.13 m·(10a)~(–1)。西北航道南线冰情优于北线,海冰密集度、覆盖范围、厚度均小于北线。对影响海冰密集度和厚度的大气和海洋热力学因素进行分析发现,研究区域的表面大气温度、海洋表层温度呈现上升趋势,并和海冰密集度呈现显著负相关,和北部、南部区域海冰厚度呈现显著负相关,与交汇区域海冰厚度相关不显著。  相似文献   

4.
使用不莱梅大学AMSR-E(Advanced Microwave Scanning Radiometer for EOS)和AMSR2(Advanced Microwave Scanning Radiometer 2)日尺度海冰密集度数据,计算了2002—2018年加拿大北极群岛7—9月的平均海冰面积,研究了9月份平均海冰密集度变化特征;结合商船破冰能力确定海冰密集度阈值,选取西北航道关键区域,统计了西北航道的通航窗口,探讨了西北航道在实际商业通航方面的可能性。研究发现,在过去17年加拿大北极群岛的7—9月海冰面积整体呈下降趋势但有明显波动性, 9月份的海冰分布年际变化复杂,差异较大;在西北航道可通航的年份中,可通航的开始日期一般在8月份,结束日期在9月底至10月初,南路可通航时间最短14天,最长达到80天。总的来说,西北航道可通航年份和时间缺乏规律性。  相似文献   

5.
北极迅速变暖条件下西北航道的海冰分布变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
苏洁  徐栋  赵进平  李翔 《极地研究》2010,22(2):104-124
北极近年迅速变暖使西北航道的通航成为可能。本文利用AMSR-E的6.25km分辨率日平均海冰密集度卫星数据研究了2002-2008年北极西北航道的海冰密集度变化特征。通过统计分析沿西北航线冰障关键流段代表站点的融化期、轻冰期、无冰期、无冰天数和轻冰天数,以及海冰分布和变化的某些细节,加深了对西北航道海冰季节变化和年际变化以及空间分布的主要特征,特别是与通航相关的冰情信息的了解。研究指出西北航道南路比北路容易开通;各线路冰障流段存在的时间呈减小趋势,整条线路无冰/轻冰天数呈增加趋势;冰间湖和冰间水道的产生和发展在很大程度上可能会影响到整个航路的融冰开始时间。  相似文献   

6.
利用ORAS5海洋-海冰再分析数据集,研究发现1979—2018年间巴伦支海海洋热含量存在显著的季节和年际变化特征,且有持续上升趋势。海-气热通量是控制巴伦支海海洋热含量季节变化的主要因素,而北大西洋流的海洋热输运则影响其年际变化和上升趋势。北大西洋流的温度和流速变化对其海洋热输运的年际变化均有贡献,而其海洋热输运的上升趋势则主要是来自于北大西洋流温度的增加。此外,巴伦支海开阔海域和冰区的海-气热交换呈现相反的趋势,在无海冰覆盖的开阔海域,海洋放热减少,海洋混合减弱;而在有海冰覆盖的海域,海洋放热则显著增加,海洋混合增强。  相似文献   

7.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

8.
利用2002—2013年的海冰密集度数据对北极东北航道通航关键区域——维利基茨基海峡的海冰分布特征和通航性进行了分析研究。结果表明,近十年来从8月中下旬到10月中旬海峡海面状况适合船舶航行;海冰冰情年际变化很大,对维利基茨基海峡通航天数有明显的影响;海峡每年可通航时间基本在40 d以上,其开通时间年际变化较大,从7—9月不等,而结束时间相对集中在10月份。  相似文献   

9.
2003年与1999年楚科奇海海冰的差异及其发生原因   总被引:2,自引:1,他引:1       下载免费PDF全文
我国在1999年和2003年进行了两次北极考察,这两年海冰的冰情差别很大,分别对应冰情较重和较轻的年份。本文利用卫星遥感资料对1999年和2003年的海冰分布状况及其差异进行了全面的分析,并利用气温和风场资料深入研究形成这种差异的动力学原因。结果表明, 2003年的海冰冰情与1999年相比要轻很多,海冰面积在春季融冰季节和秋季冻结季节显著减小。2003年春季,来自白令海的海水提早半个月进入楚科奇海,导致海冰大范围融化。但是,到了夏季,海冰的面积减少过程停滞下来。而秋季楚科奇海封冻过程比1999年晚半个月。以上这些特征形成了2003年与1999年海冰的显著差异。研究结果表明, 2003年春季和秋季的气温比1999年要明显增高,最大月平均温差接近18°C,显著的高温为海冰融化的加剧和冻结的推迟提供了热量。直接影响海冰分布的是海面风场,两年风场的差异产生了来自白令海的太平洋入流的差异,对春季海冰融化的提前、夏季入流的减弱和秋季冻结过程的推迟起到关键的作用。季节性气象要素的年际差异可以归因于整个北极的AO系统变化, 2003年AO指数是正值, 1999年为负值,成为楚科奇海局地海冰变化的气候背景。  相似文献   

10.
基于美国冰雪数据中心的月平均海冰运动和海冰密集度数据, 建立了1979—2015 年罗斯海海冰运动 速度时间变化序列, 揭示了海冰运动速度的年际和季节变化特征, 探讨了海冰运动速度和海冰范围之间可 能存在的联系, 最后对影响海冰运动速度变化的因素进行了分析。结果表明, 1979—2015 年罗斯海海冰运动 速度总体呈现加快趋势, 海冰运动速度增加趋势最快的季节为秋季, 其次是冬季、春季和夏季。冬季海冰平 均运动速度最大, 依次是秋季、春季和夏季。海冰运动速度与海冰范围在37 年间均呈现上升趋势, 海冰范 围变化滞后海冰运动速度1—2 个月, 两者呈显著正相关关系, 海冰运动速度的增加导致罗斯海海冰范围不 断扩张, 进而影响南极整体海冰分布。罗斯海海冰运动速度与风速之间存在显著正相关关系, 风场是影响海 冰运动速度的一个直接因素。除此之外, 海冰运动还受到包括气压场、洋流场以及海洋阻力系数等的影响。  相似文献   

11.
利用NCEP/NCAR再分析逐日500 h Pa高度场资料,对北半球夏季中高纬度大气阻塞特征进行统计分析,发现大气阻塞活动频率高的地区主要集中在白令海峡区域、鄂霍次克海区域、欧亚大陆区域及格陵兰区域。而通过NSIDC提供的卫星观测资料发现近30年夏季海冰容易减少的区域正好对应阻塞活动北部的高纬度地区。分别通过对以上4个区域有阻塞发生相对没有阻塞发生时的500 h Pa位势高度场、地面温度场、850 h Pa经向瞬变热通量输送和平流输送等异常变化场进行对比分析,结果发现夏季中高纬度阻塞频率的增加对海冰的减少有显著影响,主要体现在阻塞的发生发展可通过增加高纬度地面温度、对极地的热量输送和暖平流输送来加快海冰的融化。这种阻塞引起的热力作用在鄂霍次克海和欧亚大陆区域效果更为显著。  相似文献   

12.
海冰范围的变化对气候变化、生态系统以及人类活动都会产生重大的影响,近年来极地海冰范围的变化受到广泛关注。对南极罗斯海与普里兹湾海域海冰范围进行时间序列分析,研究发现海冰范围季节性变化在罗斯海与普里兹湾海域差异较大,罗斯海地区表现出"快速缩小、迅速扩大"的特性,普里兹湾海域表现出"快速缩小、缓慢扩大"的特性。两地区的海冰范围在年际变化上都表现出扩大的趋势,2003—2014年罗斯海地区海冰变化趋势为(1.39±1.12)×104km2·a~(-1),普里兹湾海域海冰变化趋势为(0.61±0.26)×104km2·a~(-1)。罗斯海地区夏季的年际变化为减少趋势。  相似文献   

13.
2002—2011年南极海冰变化的遥感分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2002—2011年南极地区AMSR-E逐日海冰密集度数据, 计算相应时间段内的海冰外缘线和海冰面积, 分析了南极地区这10年来各时间尺度上的海冰变化, 揭示了海冰变化的时空特征。结果表明: 2002— 2011年南极海冰外缘线、海冰面积分别增加了3.64%、3.8%, 总体上呈现增加的趋势, 其中2008年海冰面积最大。罗斯海、西太平洋和威德尔海的海冰面积呈现增加趋势, 而印度洋和别林斯高晋海/阿蒙森海的海冰面积则趋于减小。南极海冰面积一般夏季最小、冬季最大, 相同季节海冰面积变化波动较小, 不同海区只是变化范围不同。南极一年冰增长速度较低, 平均每年增加约0.1×106 km2, 且大范围地分布在南极大陆(除威德尔海外)周围。多年冰平均每年减少0.05×106 km2, 且多处于威德尔海。海冰面积变化与气温有负相关关系。  相似文献   

14.
刘喜迎 《极地研究》2011,23(2):90-97
利用美国麻省理工学院开发的数值模式MITgcm设计了区域冰·洋耦合数值模拟试验,开展了海冰动力学过程中两种流变学方案(黏性-塑性流变学和弹性-黏性-塑性流变学)的对比研究.结果表明,两种方案模拟的海冰内部应力张量分量σ<,11>和σ<,22>总体分布形式相近.冬季,大值区主要位于加拿大北极群岛和格陵兰岛北侧以及格陵兰岛...  相似文献   

15.
This paper outlines the fundamental roles sea ice plays during the spring Arctic climate, and it demonstrates the use of passive microwave remote sensing in measuring climatically important sea ice variables during the spring transitional period. It discusses the theoretical concepts underlying passive microwave remote sensing of sea ice, and it summarizes the historical use of satellite microwave radiometry in the Arctic region. In addition, this paper discusses the derivation of climatically important sea ice variables, including sea ice extent, concentration, multiyear ice fraction, and snow melt onset, with additional comments on the precision and accuracy of the remote sensing estimates. It also discusses interannual trends in sea ice extent and presents interannual trends in snow melt onset dates. Finally, this paper provides a brief discussion on the future directions in passive microwave remote sensing of climatically important sea ice variables during the spring transitional period.  相似文献   

16.
This paper outlines the fundamental roles sea ice plays during the spring Arctic climate, and it demonstrates the use of passive microwave remote sensing in measuring climatically important sea ice variables during the spring transitional period. It discusses the theoretical concepts underlying passive microwave remote sensing of sea ice, and it summarizes the historical use of satellite microwave radiometry in the Arctic region. In addition, this paper discusses the derivation of climatically important sea ice variables, including sea ice extent, concentration, multiyear ice fraction, and snow melt onset, with additional comments on the precision and accuracy of the remote sensing estimates. It also discusses interannual trends in sea ice extent and presents interannual trends in snow melt onset dates. Finally, this paper provides a brief discussion on the future directions in passive microwave remote sensing of climatically important sea ice variables during the spring transitional period.  相似文献   

17.
对1979—2009年月平均的CFSR(The Climate Forecast System Reanalysis)海冰密集度(SIC)和海平面气压(SLP)资料进行多变量经验正交函数分解(MV—EOF),得出耦合主模态,并通过对温度、位势高度和风场的回归分析,进一步探寻海冰与大气环流的关系,第一模态SLP的特征为北极涛动(AO),SIC呈离散的正负中心分布但大体为东西反位相,AO正位相时,喀拉海、拉普捷夫海、东西伯利亚海和鄂霍次克海海冰减少,巴芬湾、波弗特海、楚科奇海和白令海海冰增加。耦合第二模态的SLP呈偶极子分布,负、正异常中心在巴伦支海和波弗特海,SIC在巴伦支海,弗拉姆海峡,格陵兰海,拉布拉多海和白令海,鄂霍次克海地区有正异常,在喀拉海、拉普捷夫海、东西伯利亚海、楚科齐海和波弗特海为负异常。耦合第三模态SLP在冰岛地区存在负异常中心,在拉普捷夫海地区有正异常中心,SIC在巴伦支海北部、弗拉姆海峡、格陵兰海为负异常,其余地区全为正异常。 对SLP和SIC分别进行EOF分解,并与耦合模态进行比较,SLP的EOF主模态的时空分布与耦合模态中SLP的时空分布十分相似,SIC的EOF模态的时空分布则与耦合模态中SIC的时空分布有较大差别,说明耦合模态对SIC的分布影响较大,即大气环流对海冰分布的影响为主要的过程,海冰对大尺度的大气环流的模态的影响不明显。  相似文献   

18.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号