首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
天顶对流层延迟(zenith tropospheric delay,ZTD)是影响GPS定位精度的关键因素,为了提高ZTD的预测精度,提出一种基于相空间重构的高斯过程回归预测模型。针对ZTD时间序列的混沌特性,利用国际GNSS服务(International GNSS Service,IGS)站提供的ZTD数据,采用Cao方法确定嵌入维数,对ZTD数据进行相空间重构,探究高斯过程(Gaussian process,GP)模型对12个位于南、北半球不同纬度等级IGS站的ZTD预测精度和准确性。为了验证GP模型的有效性,将预测结果分别与原始数据和反向传播(back propagation,BP)神经网络模型预测结果作对比分析,进一步探究不同时间对ZTD预测精度的影响,并分析了经度和海拔对ZTD预测精度的影响。结果表明,GP模型预测结果的均方根误差(root mean square error,RMSE)达到mm级,GP模型与理论值的相关性达到0.997,预测精度指标明显优于BP神经网络模型;GP模型在南半球的预测精度高于北半球,且在高纬地区的RMSE小于3.6 mm,更适用于高纬地区的对流层延迟预测;在研究时域内,GP模型在大部分站点对晚上的预测精度高于白天,经度对ZTD预测精度的影响不明显,海拔与ZTD预测精度呈正比。  相似文献   

2.
对流层延迟误差与信号频率无关,且具有较强的随机性,是GNSS导航定位中的主要误差源之一。以GGOS Atmosphere发布的格网数据作为真值,从纬度、高程及时间特性3个方面分析了两种全球天顶对流层延迟ZTD(Zenith Total Delay)模型(UNB模型和EGNOS模型)的时空特征,为GNSS导航定位中模型选择的正确性与合理性提供参考依据。分析得出:在纬度方向,ZTD值的RMSE和Bias从南到北呈现递减趋势且逐渐趋于稳定,建议计算ZTD时在南半球通过格网插值,北半球采用UNB模型;在高程方向,ZTD值与高程值呈现出反比关系,EGNOS的残差值较UNB残差值分布更加均匀且规律性较强,可利用高程值进行建模修正;在时间特征方面,ZTD单天内变化较小,两模型互差在mm级且表现出一定的季节性特征。  相似文献   

3.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

4.
以亚洲地区46个IGS站2008-2011年实测的高精度天顶对流层延迟(ZTD)数据为参考值,通过对2008-2010年EGNOS模型计算ZTD的日均偏差进行频谱分析,建立了亚洲地区EGNOS模型的单站修正模型(SSIEGNOS),对EGNOS和SSIEGNOS模型在亚洲地区的精度和适用情况进行了评估,结果表明:(1)EGNOS模型偏差和RMS在时间分布上呈现明显的季节变化规律,而SSIEGNOS模型偏差和RMS变化较小且平稳;(2)在空间分布上,两种模型的偏差随着经纬度和高程的变化均无明显规律,但随着高程或者纬度的增加RMS总体上都有递减的趋势;(3)SSIEGNOS模型预测ZTD的精度相对于EGNOS模型有明显提高。  相似文献   

5.
对流层延迟是影响精密单点定位效果的一项重要误差源,不同的对流层改正方法直接影响PPP的定位结果。对比分析采用UNB3模型、Saastamoinen模型、ZTD参数估计3种方法对PPP定位精度和收敛时间的影响。实验结果表明:3种模型平面改正精度和收敛时间基本一致。天顶方向改正精度UNB3模型与ZTD参数估计法基本相当,但两者优于Saastamoinen模型;收敛速度UNB3模型与Saastamoinen模型基本一致,ZTD参数估计法收敛速度较慢。  相似文献   

6.
为验证分析最新全球气压气温模型(GPT3模型)在中国区域的模型精度,以中国区域18个IGS站为例,分别利用全球大地测量观测系统(Global Geodetic Observing System, GGOS) Atmosphere机构提供的2015-2017年气象数据和国际卫星导航服务(International GNSS Service,IGS)数据中心提供的2015年对流层延迟数据对GPT3模型气象参数和天顶对流层延迟(zenith troposphere delay,ZTD)进行验证,并联合全球其他GNSS站点共同进行GPT3模型误差特性分析。结果表明,相比GPT和GPT2模型,GPT3模型的精度和稳定性明显提高;GPT3模型在取得与GPT2w模型相近精度的同时,稳定性有所提高。GPT3模型精度受纬度影响显著,气温和气压的精度和稳定性由赤道向两极地区逐渐降低,水汽压精度几乎不受纬度影响,稳定性在中纬度和部分低纬度区域比高纬度地区差。GPT3模型对气象参数估值的偏差在低海拔地区具有随机性,以气压偏差最为明显,随着海拔升高,气压和水汽压偏差逐渐稳定在±2 hPa内,气温偏差在±2℃内。  相似文献   

7.
针对传统对流层延迟模型在复杂山区大高差环境下误差过大的问题,该文对欧洲中期天气预报中心的ERA5大气再分析资料反演的天顶对流层延迟精度进行分析,其中ERA5 ZTD由积分法+Saastamoinen模型求得。结果表明:以精密单点定位模糊度固定估计的ZTD为参考,ERA5 ZTD平均偏差绝对值为3.8 mm,总平均均方根误差为10.5 mm。北半球夏季偏差与均方根误差最大,冬季最小,南半球反之。并址站间的日内变化趋势相同,与PPP-AR ZTD变化趋势符合性较好,且呈现明显的日内周期性变化。ERA5 ZTD均方根误差由赤道向两极呈递减趋势,不同测站高程处ZTD精度与高程无明显关系,整体表现出较高精度。总体上,ERA5 ZTD能够满足在复杂山区大高差环境下的对流层延迟误差要求,可作为数据源进行区域对流层建模。  相似文献   

8.
GPS信号传播过程中穿过对流层时受到大气折射的影响,其信号发生弯曲和延迟,因此,对流层延迟是GPS测量的主要误差源之一。对流层延迟模型改正算法的选择关系着GPS探测大气水汽的精度。介绍了Saastamoinen、Hopfield、UNB3及EGNOS等4种国际上常用的对流层延迟模型,以南极戴维斯站(DAV1)为例,计算了4种对流层模型在南极地区的天顶总延迟(ZTD)、天顶干延迟(ZHD)和天顶湿延迟(ZWD),与探空数据进行比较,得到了适合南极地区的对流层延迟模型。  相似文献   

9.
利用CDDIS提供的6个IGS站点2018年高精度对流层天顶延迟(ZTD)参考值,对利用ERA-Interim资料计算的ZTD值进行了精度评估.结果显示,ERA-Interim资料计算的ZTD与IGS提供的ZTD产品相比误差在cm级,不同纬度的计算ZTD及其偏差有不同的季节特征.IGS ZTD和ERA-Interim ZTD分别用于GNSS单点定位改正,伪距结果显示两者改正偏差的差异在亚毫米级,且结果在各个方向都得到了改善,U方向最明显,能达到0.5 m左右.  相似文献   

10.
针对Global Pressure and Temperature2/Global Pressure and Temperature 2w(GPT2/2w)模型在亚洲区域对流层延迟估计中的适用性问题,该文基于GPT2/2w模型,结合Saastamoinen模型(分别用GPT2S、GPT2w-1S、GPT2w-5S表示)估计亚洲地区2007—2017年10年的天顶对流层延迟(ZTD)并分析其精度与时空分布。使用欧洲定轨中心(CODE)的ZTD产品来验证模型在亚洲地区的精度。分析结果表明GPT2w-1S模型精度最高,偏差(Bias)为0.88 cm,均方根误差(RMSE)为4.63 cm,GPT2w-5S模型精度次之,GPT2S模型最差。受水汽分布影响,时间上,3种模型精度表现出季节特性,冬季精度最好,夏季精度最差;空间上,3种模型在高海拔地区精度较好,模型精度对纬度的依赖性不明显且纬度对3种模型的影响程度差别不大。  相似文献   

11.
基于GNSS基准站网的对流层延迟建模   总被引:1,自引:0,他引:1  
针对在卫星导航定位中,通常采用对流层模型进行,对流层延迟误差修正的现状,该文研究了一种基于GNSS基准站网的对流层延迟建模方法,并基于此方法利用日本地区GENET参考网约737个站5a的GNSS-ZTD序列建立了区域对流层模型ZTDM-JPN,并将ZTDM-JPN模型应用于GPS及北斗定位实验,分析了其在GPS及北斗定位中的实际应用性能。通过与国际上常用的对流层模型EGNOS、UNB3m作比较,结果表明,ZTDM-JPN模型的模拟精度较相同条件下的EGNOS与UNB3m模型分别提升约26%和21%,从而验证了该建模方法的可行性与优越性。  相似文献   

12.
对流层延迟是影响高精度定位与导航的主要误差之一,也是全球导航卫星系统(global navigation satellite system,GNSS)水汽探测的关键参数。美国航空航天局发布了最新一代的大气再分析资料(MERRA-2资料),其可用于计算高时空分辨率的对流层延迟产品,但是目前尚无文献对利用MERRA-2资料计算天顶对流层延迟(zenith tropospheric delay,ZTD)和天顶湿延迟(zenith wet delay,ZWD)的精度进行分析。因此,联合2015年中国陆态网214个GNSS站ZTD产品和分布于中国区域的87个探空站资料,对利用MERRA-2资料在中国区域计算ZTD/ZWD的精度进行评估。结果表明:(1)以陆态网ZTD为参考值,利用MERRA-2资料积分计算ZTD的年均偏差和均方根误差(root mean square error,RMSE)分别为0.32 cm和1.21 cm,且偏差和RMSE均表现出一定的季节变化,总体上呈现为夏季精度低、冬季精度高;在空间分布上,偏差随纬度和高程的变化趋势并不明显,但RMSE随纬度和高程的增加总体上呈现递减的趋...  相似文献   

13.
周润杨  薛玫娇 《测绘工程》2018,(2):20-25,31
由于高纬度地区气温气压值及变化率与中低纬度地区有较大差异,因此目前发布的多种对流层延迟模型在高纬度地区使用的精度会不同。为了给高纬度地区BDS/GPS用户提供更好的对流层延迟模型选择,文中采用UNB3,EGNOS和GPT2模型,以IGS发布的ZPD产品和SINEX文件作为参考,对比基于这三种对流层延迟模型计算的天顶对流层总延迟量以及精密单点定位精度,可知GPT2较UNB3和EGNOS在高纬度地区定位中有更好的精度表现。  相似文献   

14.
GPS对流层延迟改正UNB3模型及其精度分析   总被引:4,自引:0,他引:4  
就GPS对流层延迟改正UNB3模型的天顶延迟模型和Niell映射函数模型进行了详细的探讨,采用C 语言编程,建立了相应的程序模块;在GPS普通单点定位中,比较分析了UNB3模型的修正精度;通过IGS跟踪站的大量数据分析计算表明,UNB3天顶延迟模型的修正精度在平面x、y方向上与Saastamoinen天顶延迟模型相当,在高程H方向上优于Saastamoinen天顶延迟模型.  相似文献   

15.
针对现有对流层天顶延迟模型改正法因水汽参数难以精确获取所导致的时空分辨率与精度上的不足问题,提出了一种融合WRF(weather research and forecasting model)大气数值模式的对流层天顶延迟估计方法。通过分析WRF模式的数值模拟机理及其数据结构特征,采用直接积分与模型改正相结合的混合计算方式,实现了全球任意位置上小时级的对流层天顶延迟估计。验证结果表明,该方法计算的小时级ZTD再分析值精度为13.6 mm,日均值精度更是可达9.3 mm,比传统模型UNB3m的49.6 mm以及目前标称精度最高模型GPT2w的34.6 mm,精度分别提高了约5倍和3.5倍。在30 h的预报时段内,预报值精度也可达22 mm。无论是ZTD再分析值还是预报值比现有模型的估计值精度均有明显提高。  相似文献   

16.
GTDM:一种获取全球对流层延迟的新模型   总被引:1,自引:0,他引:1  
对流层延迟是GNSS定位的主要误差源。现有的各对流层延迟模型大多存在过度拟合的弊端,不能反映延迟在短时间内的细节变化。本文利用2011-2017年ECMWF气象资料分析了对流层延迟的变化特征,发现同一格网相邻年份之间全球对流层延迟偏差绝大多数在5 cm内。在此基础上,本文提出了一种非参数拟合的对流层延迟模型GTDM。经验证,GTDM模型具有较好的拟合效果。本文将2016-2017年IGS分析中心提供的对流层延迟产品数据、探空气象数据解算的对流层延迟作为外检核数据,验证结果表明,GTDM模型在全球范围的精度均优于GZTD、GPT2w、UNB3m模型。GTDM模型建模方法简单,可避免过度拟合对流层延迟值的问题,能够有效地反映对流层延迟变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号