首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat’ near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.  相似文献   

2.
This research aimed to explore the fusion of multispectral optical SPOT data with microwave L-band ALOS PALSAR and C-band RADARSAT-1 data for a detailed land use/cover mapping to find out the individual contributions of different wavelengths. Many fusion approaches have been implemented and analyzed for various applications using different remote sensing images. However, the fusion methods have conflict in the context of land use/cover (LULC) mapping using optical and synthetic aperture radar (SAR) images together. In this research two SAR images ALOS PALSAR and RADARSAT-1 were fused with SPOT data. Although, both SAR data were gathered in same polarization, and had same ground resolution, they differ in wavelengths. As different data fusion methods, intensity hue saturation (IHS), principal component analysis, discrete wavelet transformation, high pass frequency (HPF), and Ehlers, were performed and compared. For the quality analyses, visual interpretation was applied as a qualitative analysis, and spectral quality metrics of the fused images, such as correlation coefficient (CC) and universal image quality index (UIQI) were applied as a quantitative analysis. Furthermore, multispectral SPOT image and SAR fused images were classified with Maximum Likelihood Classification (MLC) method for the evaluation of their efficiencies. Ehlers gave the best score in the quality analysis and for the accuracy of LULC on LULC mapping of PALSAR and RADARSAT images. The results showed that the HPF method is in the second place with an increased thematic mapping accuracy. IHS had the worse results in all analyses. Overall, it is indicated that Ehlers method is a powerful technique to improve the LULC classification.  相似文献   

3.
In single-band single-polarized SAR images, intensity and texture are the information source available for unsupervised land cover classification. Every textural feature measure identifies texture patterns by different approaches. For efficient land cover classification, textural measures have to be chosen suitably. Therefore, in this letter, the role of various intensity and textural measures is analyzed for their discriminative ability for unsupervised SAR image classification into various land cover types like water, urban, and vegetation areas. To make the algorithm adaptable, these textural features are fused using principal component analysis (PCA), and principal components are used for classification purposes. To highlight the effectiveness of PCA, the difference between PCA- and non-PCA-based classifications is also analyzed. Analysis of the role of texture measures for unsupervised classification of real-world SAR data with application of PCA is presented in this letter. The analysis of how every individual feature measure contributes for classification process is presented, and then, textural measures for a feature set are chosen according to their role in improving classification accuracy. By analysis, it is observed that the feature set comprising mean, variance, wavelet components, semivariogram, lacunarity, and weighted rank fill ratio provides good classification accuracy of up to 90.4% than by using individual textural measures, and this increased accuracy justifies the complexity involved in the process.  相似文献   

4.
Detailed and enhanced land use land cover (LULC) feature extraction is possible by merging the information extracted from two different sensors of different capability. In this study different pixel level image fusion algorithms (PCA, Brovey, Multiplicative, Wavelet and combination of PCA & IHS) are used for integrating the derived information like texture, roughness, polarization from microwave data and high spectral information from hyperspectral data. Span image which is total intensity image generated from Advanced Land observing Satellite-Phase array L-band SAR (ALOS-PALSAR) quad polarization data and EO-1 Hyperion data (242 spectral bands) were used for fusion. Overall PCA fused images had shown better result than other fusion techniques used in this study. However, Brovey fusion method was found good for differentiating urban features. Classification using support vector machines was conducted for classifying Hyperion, ALOS PALSAR and fused images. It was observed that overall classification accuracy and kappa coefficient with PCA fused images was relatively better than other fusion techniques as it was able to discriminate various LULC features more clearly.  相似文献   

5.
The classification of tropical fragmented landscapes and moist forested areas is a challenge due to the presence of a continuum of vegetation successional stages, persistent cloud cover and the presence of small patches of different land cover types. To classify one such study area in West Africa we integrated the optical sensors Landsat Thematic Mapper (TM) and the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) with the Phased Arrayed L-band SAR (PALSAR) sensor, the latter two on-board the Advanced Land Observation Satellite (ALOS), using traditional Maximum Likelihood (MLC) and Neural Networks (NN) classifiers. The impact of texture variables and the use of SAR to cope with optical data unavailability were also investigated. SAR and optical integrated data produced the best classification overall accuracies using both MLC and NN, respectively equal to 91.1% and 92.7% for TM and 95.6% and 97.5% for AVNIR-2. Texture information derived from optical images was critical, improving results between 10.1% and 13.2%. In our study area, PALSAR alone was able to provide valuable information over the entire area: when the three forest classes were aggregated, it achieved 75.7% (with MCL) and 78.1% (with NN) overall classification accuracies. The selected classification and processing methods resulted in fine and accurate vegetation mapping in a previously untested region, exploiting all available sensors synergies and highlighting the advantages of each dataset.  相似文献   

6.
多时相双极化合成孔径雷达干涉测量土地覆盖分类方法   总被引:5,自引:1,他引:4  
综合采用时相、极化和干涉3种维度的SAR数据进行土地覆盖分类。以黑龙江省逊克县多时相ALOS PALSAR数据覆盖区为研究区,利用不同时相极化SAR、干涉SAR信号对地物特征的敏感性,结合后向散射强度和干涉相干的时变特征进行地物解译,发展了基于多时相、多极化、干涉SAR数据的SVM土地覆盖分类方法。研究结果表明,引入双极化SAR中不同极化(HH-HV)间的相干系数,并结合所选择的时相特征、极化特征以及干涉相干特征进行分类,可解决双极化SAR影像中林地与城市及建设用地的混分问题,得到更高精度的土地覆盖分类结果。  相似文献   

7.
多频率InSAR提取沼泽湿地DEM精度对比分析   总被引:1,自引:1,他引:0  
选取3种波长的干涉SAR数据对提取沼泽湿地区域的DEM,并随机从1:10 000地形图中选取111个点数据进行精度验证,最后对比分析了沼泽湿地植被对于不同SAR波长的干涉相干性差异。结果表明:L-band ALOS-1 PALSAR精细模式的HH单视复数数据与1:10 000地形图数据吻合度较好,76.58%的高程值差异在3 m以内,其相干系数比C-band Sentinel-1A IW模式的VV单视复数数据和X-band TerraSAR HH单视复数数据要高;更适合利用雷达干涉测量技术提取沼泽湿地的DEM;不同湿地植被类型的相干系数有较大差异,岛状林和灌草结合的湿地植被分布区相干系数值较大,而浅水沼泽植被区和深水沼泽植被区相对较低。  相似文献   

8.
Abstract

Forest cover monitoring plays an important role in the implementation of climate change mitigation policies such as Kyoto protocol and Reducing Emissions from Deforestation and Forest Degradation (REDD). In this study, we have monitored land cover using the PALSAR (Phased Array type L-band Synthetic Aperture Radar) full polarimetric data based on incoherent target decomposition. Supervised classification technique has been applied on Cloude–Pottier decomposition, Freeman–Durden three component, and Yamaguchi four component decomposition for accurate mapping of different types of land cover classes. Based on confusion matrix derived from the predicted and defined pixels, the evergreen and sparsely deciduous forests have shown high producer's accuracy by Freeman–Durden three component and Yamaguchi four component classifications. The overall accuracy of Maximum Likelihood Classification by Yamaguchi four component is 94.1% with 0.93 kappa coefficient as compared to the 90.3% with 0.88 kappa coefficient by Freeman–Durden three component and 89.7% with 0.88 kappa coefficient by Cloude–Pottier decomposition. High accuracy of classification in a forested area using full polarimetric PALSAR data may have been because of high penetration of L-band SAR. The content of this study could be useful for the forest cover mapping during cloudy days needed for proper implementation of REDD policies in Cambodia.  相似文献   

9.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

10.
作为目前仅有的L波段星载SAR系统,PALSAR-2在国土资源调查和地质灾害监测方面有着广泛和独特的应用潜力。自其发射运行以来,它的数据质量成为用户们广泛关注的焦点。对于涉及雷达干涉测量的应用来说,干涉相干性是SAR数据最重要的质量评价指标之一。本文选取了覆盖黄河上游山区的PALSAR-2与PALSAR各一对影像,开展了干涉处理实验分析。本文提出采用相干分解技术,可以抑制几何去相干的影响,并从地物类型和地形坡度两个方面,分析比较它们的相干性分布差异,同时,给出了黄河上游地区的差分干涉初步结果。实验结果表明,在地形起伏较大的地区,相似观测模式获取的PALSAR-2数据的相干性通常优于PALSAR数据,干涉性能有显著的提升。同时,PALSAR-2差分干涉图在拉西瓦水电站果卜岸坡坡体上探测到了清晰的形变条纹,在滑坡体形变监测方面展现出巨大的应用潜力。  相似文献   

11.
利用雷达干涉数据进行城市不透水层百分比估算   总被引:2,自引:0,他引:2  
人工不透水层是城市地区的重要特征.作为城市生态环境的关键指数,不透水层百分比(Impervious Surfaces Percentage, ISP)常用于城市水文过程模拟、水质面源污染及城市专题制图等研究中.本文利用ERS-1/2 重复轨道雷达干涉数据,采用分类与回归树(CART)算法探究了雷达遥感在城市ISP估算中的可行性和潜力,并与SPOT5 HRG光学遥感图像的估算结果进行了分析比较.香港九龙港岛实验区的初步研究结果表明,雷达干涉数据在城市不透水层研究中具有一定的应用潜力,特别是裸土和稀疏植被的ISP估算结果要好于光学遥感,这主要得益于雷达干涉数据(特别是长时间相干图像)在人工建筑物和裸土或稀疏植被之间具有很强的区分能力,另外,雷达干涉数据和光学遥感数据间的融合能够提高ISP估算精度.  相似文献   

12.
Woody canopy cover (CC) is the simplest two dimensional metric for assessing the presence of the woody component in savannahs, but detailed validated maps are not currently available in southern African savannahs. A number of international EO programs (including in savannah landscapes) advocate and use optical LandSAT imagery for regional to country-wide mapping of woody canopy cover. However, previous research has shown that L-band Synthetic Aperture Radar (SAR) provides good performance at retrieving woody canopy cover in southern African savannahs. This study’s objective was to evaluate, compare and use in combination L-band ALOS PALSAR and LandSAT-5 TM, in a Random Forest environment, to assess the benefits of using LandSAT compared to ALOS PALSAR. Additional objectives saw the testing of LandSAT-5 image seasonality, spectral vegetation indices and image textures for improved CC modelling. Results showed that LandSAT-5 imagery acquired in the summer and autumn seasons yielded the highest single season modelling accuracies (R2 between 0.47 and 0.65), depending on the year but the combination of multi-seasonal images yielded higher accuracies (R2 between 0.57 and 0.72). The derivation of spectral vegetation indices and image textures and their combinations with optical reflectance bands provided minimal improvement with no optical-only result exceeding the winter SAR L-band backscatter alone results (R2 of ∼0.8). The integration of seasonally appropriate LandSAT-5 image reflectance and L-band HH and HV backscatter data does provide a significant improvement for CC modelling at the higher end of the model performance (R2 between 0.83 and 0.88), but we conclude that L-band only based CC modelling be recommended for South African regions.  相似文献   

13.
单变量特征选择的苏北地区主要农作物遥感识别   总被引:2,自引:0,他引:2  
遥感识别多源特征综合和特征优选是提高遥感影像分类精度的关键技术。农作物遥感识别中,识别特征的相对单一和数量过多均会导致作物识别精度不理想。随机森林(random forests)采用分类与回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。单变量特征选择(univariate feature selection)能够对每一个待分类的特征进行测试,衡量该特征和响应变量之间的关系,根据得分舍弃不好的特征,优选得到的特征用于分类。本文基于随机森林和单变量特征选择,利用多时相光谱信息、植被指数信息、纹理信息及波段差值信息,设计多组分类实验方案,对江苏省泗洪县的高分一号(GF-1)和环境一号(HJ-1A)影像进行分类研究,旨在选择最佳的分类方案对实验区主要农作物进行识别和提取。实验结果表明:(1)多源信息综合的农作物分类精度明显高于单一的原始光谱特征分类,说明不同类型特征的引入能改善分类效果;(2)基于单变量特征选择算法的优选特征分类效果最佳,总体精度97.07%,Kappa系数0.96,表明了特征优选在降低维度的同时,也保证了较高的分类精度。随机森林和单变量特征选择结合的方法可以提高遥感影像的分类精度,为农作物的识别和提取研究提供了有效的方法。  相似文献   

14.
Temporal changes in the normalized difference vegetation index (NDVI) have been widely used in vegetation mapping due to the usefulness of NDVI data in distinguishing characteristic seasonal differences in the phenology of greenness of vegetation cover. Research has also shown that NDVI provides potential to derive meaningful metrics that describe ecosystem functions. In this paper, we have applied both unsupervised “k-means” classification and supervised minimum distance classification as derived from temporal changes in NDVI measured in 1997 along the North Eastern China Transect (NECT), and we have also utilized the same two classification methods together with NDVI-derived metrics, namely maximum NDVI, mean NDVI, NDVI amplitude, NDVI threshold, total length of growing season, fraction of growing season during greenup, rate of greenup, rate of senescence, integrated NDVI during the growing season, and integrated NDVI during greenup/integrated NDVI during senescence to map vegetation. The main objectives of this study are: (1) to test the relative performance of NDVI temporal profile metrics and NDVI-derived metrics for vegetation cover discrimination in NECT; (2) to test the relative performance of unsupervised (k-means) and supervised (minimum distance) methods for vegetation mapping; (3) to test the accuracy of the IGBP-DIS released land cover map for NECT; (4) to provide an up-to-date vegetation map for NECT. The results suggest that the classifications based on NDVI temporal profile metrics have higher accuracies than those based on any other metrics, such as NDVI-derived metrics, or all (NDVI temporal profile metrics + NDVI-derived metrics), or 15 metrics (NDVI temporal profile + Rate of greenup, Rate of senescence, and Integrated NDVI in greenup/integrated NDVI in senescence) for both methods. And among them, unsupervised k-means classification had the highest overall accuracy of 52% and Kappa coefficient of 0.2057. Both unsupervised (k-means) and supervised (minimum distance) methods achieved similar accuracies for the same metrics. The accuracy of IGBP-DIS released land cover map had an overall accuracy of 37% and a Kappa coefficient is 0.1441, and can improve to 46% by decomposing the crop/natural vegetation mosaic to cropland and other natural vegetation types. The results support using unsupervised k-means classification based on NDVI temporal profile metrics to provide an up-to-date vegetation cover classification. However, new effort is necessary in the future in order to improve the overall performance on this issue.  相似文献   

15.
针对ALOS PALSAR全极化数据提取了多种极化特征,分析其对人工地物、裸地、农田、林地、水体5种典型地物的提取能力。实验结果表明,利用全极化SAR影像提取的极化特征可以较好地区分城市典型地物类型,并且全极化数据的地物区分能力优于双极化数据。对于单一时相的数据分类结果而言,人工地物与其他非人工地物的极化特征差别最大,水体与林地也较容易区分,而裸地和农田容易混淆。  相似文献   

16.
Optical Earth Observation data with moderate spatial resolutions, typically MODIS (Moderate Resolution Imaging Spectroradiometer), are of particular value to environmental applications due to their high temporal and spectral resolutions. Time-series of MODIS data capture dynamic phenomena of vegetation and its environment, and are considered as one of the most effective data sources for land cover mapping at a regional and national level. However, the time-series, multiple bands and their derivations such as NDVI constitute a large volume of data that poses a significant challenge for automated mapping of land cover while optimally utilizing the information it contains. In this study, time-series of 10-day cloud-free MODIS composites and its derivatives – NDVI and vegetation phenology information, are fully assessed to determine the optimal data sets for deriving land cover. Three groups of variable combinations of MODIS spectral information and its derived metrics are thoroughly explored to identify the optimal combinations for land cover identification using a data mining tool.The results, based on the assessment using time-series of MODIS data, show that in general using a longer time period of the time-series data and more spectral bands could lead to more accurate land cover identification than that of a shorter period of the time-series and fewer bands. However, we reveal that, with some optimal variable combinations of few bands and a shorter period of time-series data, the highest possible accuracy of land cover classification can be achieved.  相似文献   

17.
Large and growing archives of orbital imagery of the earth’s surface collected over the past 40 years provide an important resource for documenting past and current land cover and environmental changes. However uses of these data are limited by the lack of coincident ground information with which either to establish discrete land cover classes or to assess the accuracy of their identification. Herein is proposed an easy-to-use model, the Tempo-Spatial Feature Evolution (T-SFE) model, designed to improve land cover classification using historical remotely sensed data and ground cover maps obtained at later times. This model intersects (1) a map of spectral classes (S-classes) of an initial time derived from the standard unsupervised ISODATA classifier with (2) a reference map of ground cover types (G-types) of a subsequent time to generate (3) a target map of overlaid patches of S-classes and G-types. This model employs the rules of Count Majority Evaluation, and Subtotal Area Evaluation that are formulated on the basis of spatial feature evolution over time to quantify spatial evolutions between the S-classes and G-types on the target map. This model then applies these quantities to assign G-types to S-classes to classify the historical images. The model is illustrated with the classification of grassland vegetation types for a basin in Inner Mongolia using 1985 Landsat TM data and 2004 vegetation map. The classification accuracy was assessed through two tests: a small set of ground sampling data in 1985, and an extracted vegetation map from the national vegetation cover data (NVCD) over the study area in 1988. Our results show that a 1985 image classification was achieved using this method with an overall accuracy of 80.6%. However, the classification accuracy depends on a proper calibration of several parameters used in the model.  相似文献   

18.
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved.  相似文献   

19.
The study examined the capability of dual-polarization SAR data for forest cover mapping and change assessment in the Brazilian Amazon Forest regions. Shuttle Imaging Radar (SIR)-C and Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data were analysed to map and quantify deforestation. The images were classified using hybrid classifier, where each land cover was grouped in various spectral sub-classes interpreted on the imagery and later merged together to generate the desired land cover classes. The classification accuracy for forest was reasonably high (>90%). The technique applied in this study can be extended for operational mapping and monitoring of deforestation in the tropics, particularly for those regions which are often covered by cloud.  相似文献   

20.
Detailed spatial information on the presence and properties of woody vegetation serves many purposes, including carbon accounting, environmental reporting and land management. Here, we investigated whether machine learning can be used to combine multiple spatial observations and training data to estimate woody vegetation canopy cover fraction (‘cover’), vegetation height (‘height’) and woody above-ground biomass dry matter (‘biomass’) at 25-m resolution across the Australian continent, where possible on an annual basis. We trained a Random Forest algorithm on cover and height estimates derived from airborne LiDAR over 11 regions and inventory-based biomass estimates for many thousands of plots across Australia. As predictors, we used annual geomedian Landsat surface reflectance, ALOS/PALSAR L-band radar backscatter mosaics, spatial vegetation structure data derived primarily from ICESat/GLAS satellite altimetry, and spatial climate data. Cross-validation experiments were undertaken to optimize the selection of predictors and the configuration of the algorithm. The resulting estimation errors were 0.07 for cover, 3.4 m for height, and 80 t dry matter ha-1 for biomass. A large fraction (89–94 %) of the observed variance was explained in each case. Priorities for future research include validation of the LiDAR-derived cover training data and the use of new satellite vegetation height data from the GEDI mission. Annual cover mapping for 2000–2018 provided detailed insight in woody vegetation dynamics. Continentally, woody vegetation change was primarily driven by water availability and its effect on bushfire and mortality, particularly in the drier interior. Changes in woody vegetation made a substantial contribution to Australia’s total carbon emissions since 2000. Whether these ecosystems will recover biomass in future remains to be seen, given the persistent pressures of climate change and land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号