首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为分析海南岛橡胶林物候特征,探究热带森林植被物候变化特征,本研究利用MODIS归一化植被指数(nor-malized difference vegetation index,NDVI)数据,采用Savitzky-Golay(S-G)滤波法重建2001—2015年的MODIS NDVI时间序列,利用动态阈值法和典型样区提...  相似文献   

2.
龚道溢  何学兆 《遥感学报》2004,8(4):349-355
大量研究利用PathfinderAVHRR NDVI资料分析植被状况与气温、降水等气候要素之间的关系。许多分析指出Pathfinder资料包含误差 ,并分析这些资料误差对大尺度NDVI 气温耦合关系检测结果的影响。利用奇异值分解方法 (SVD) ,通过比较不同NDVI资料误差情况下北半球春季NDVI对气温变化响应的时空特征的差异 ,对资料误差造成的分析结果的可靠性进行判断。考虑了 4种误差形式 ,分别是不同强度的连续误差、不连续误差、强火山喷发造成的误差及趋势误差。分析结果表明 ,利用SVD分析大尺度的NDVI 气温耦合特征时 ,允许的NDVI资料误差的最大上限阈值大致在 0 5σ左右。PathfinderAVHRR NDVI原始资料包含的误差很可能低于此阈值 ,得到的分析结果有较高的可信度。此外 ,在不知道NDVI原始资料误差的情况下进行植被对气候变化响应的检测时 ,可以借鉴此方法对结果的可靠性进行检查和验证。  相似文献   

3.
MODIS NDVI和AVHRR NDVI 对草原植被变化监测差异   总被引:5,自引:0,他引:5  
以草地作为研究载体,对比分析草原植被AVHRR NDVI和MODIS NDVI两种NDVI序列的年内、年际变化特征,讨论两种NDVI序列对降水量、平均气温和水汽压3种气候因子的响应差异,为合理选择NDVI序列对植被进行监测研究提供参考。结果表明:(1)两种NDVI序列所反映的草原植被年内变化趋势相似,但MODIS NDVI对各类草原的区分度优于AVHRR NDVI;(2)两种NDVI序列所反映的2000年—2003年草原植被年际变化差异明显。较之于MODIS NDVI,AVHRR NDVI变化趋势分类图表现出更强的植被改善趋势,植被改善面积在AVHRR NDVI变化趋势分类图中占94.25%,在MODIS NDVI中为83.33%;两种NDVI变化趋势分类图反映的植被变化趋势吻合度为52.88%。(3)两种NDVI序列与水汽压、降水量相关性差异显著。MODIS NDVI与各站点平均气温的相关系数均大于GIMMS NDVI;而MODIS NDVI与水汽压的相关系数83%(10个站点)小于GIMMS NDVI,与降水量的相关系数67%(8个站点)小于GIMMS NDVI。  相似文献   

4.
青藏高原小嵩草高寒草甸返青期遥感识别方法筛选   总被引:3,自引:1,他引:2  
小嵩草高寒草甸是青藏高原的主要植被类型,研究其返青期识别方法对于模拟及预测青藏高原植被物候变化具有重要意义。常用的植被返青期遥感识别方法主要是先对遥感植被指数原始时序数据进行拟合去噪声再求取返青期,各种方法对研究区域、研究经验、参数设置、函数初值设置等有很强的依赖性。为避免返青期识别方法在曲线拟合时对参数初值的依赖性和陷入局部最优解,本文引入了模拟退火算法对双高斯和双逻辑斯蒂函数进行参数优化,并分别对基于以上两种函数及多项式拟合的植被指数时序曲线进行对比,从而选出最佳拟合方法,最后采用最大斜率阈值法、动态阈值法和曲率法识别返青期。利用青藏高原小嵩草高寒草甸34个样本点的返青期地面观测数据及相应的8 km分辨率的NOAA归一化差值植被指数(NDVI)时序数据对以上各种组合的返青期遥感识别方案进行了测试,并选取了153个遥感实验点求取了近30年(1982年—2011年)青藏高原小嵩草高寒草甸的返青期,结果表明:采用双高斯函数拟合的NDVI曲线与原始NDVI时序数据最为接近,在此基础上采用最大斜率阈值法识别的小嵩草高寒草甸返青期及其变化趋势与地面物候观测结果最为一致;同时发现近30年青藏高原小嵩草高寒草甸的平均返青期主要集中在每年的第120—140天,并且呈逐年提前趋势,30年来提前了7天。  相似文献   

5.
基于时序NDVI的昭觉植被覆盖度变化研究   总被引:1,自引:0,他引:1  
归一化植被指数(NDVI)能精确地反映植被绿度、光合作用强度,在一定程度上反映着植被的演化信息,是评价生态环境状况的重要指标之一。本文利用Landsat TM数据分别对昭觉地区2009年和2014年的NDVI进行计算,并分别利用均值法、像元二分模型及NDVI差值植被指数对研究区域植被覆盖变化进行定量分析,结果表明:昭觉县NDVI均值上升了11.6%,植被覆盖度中极度改善的面积比例约占38%,昭觉县整体NDVI植被覆盖度显著提高,并对其变化原因进行简要分析,为生态环境建设提供决策依据。  相似文献   

6.
多光谱影像NDVI阴影影响去除模型   总被引:1,自引:0,他引:1  
归一化植被指数(NDVI)在植被多光谱遥感反演中占据尤为重要的地位,而遥感影像中普遍存在的阴影对NDVI的精度产生很大的影响,因此去除阴影对植被NDVI的影响对更精确的定量化研究具有应用价值。本文基于光照区和阴影区的太阳辐射能量差异,模拟出同一植被在光照区和阴影区的辐亮度,分析阴影对NDVI的影响机理;利用植被固有反射率谱间关系,引入对阴影极敏感的且与植被信息相关性小的归一化暗像元指数NDPI(Normalized Dark Pixel Index),分析同一植被处于光照区与阴影区的NDVI关系,构建以光照区植被NDVI为基准的NDVI阴影影响去除模型NSEE (NDVI Shadow-Effect-Eliminating),并应用于Landsat 8 OLI影像进行验证。结果表明:NDVI阴影影响基本去除,阴影区NDVI接近正常值,且光照区NDVI保持稳定;有效解决了阴影导致NDVI统计直方图的偏态问题,使其更接近正态分布;与验证影像NDVI沿剖面线逐像元比对发现,植被NDVI阴影影响基本去除;均方根误差RMSE为0.067。本模型能够将本身NDVI值很低的像元与阴影导致NDVI降低的植被像元区分开,符合实际地物情况;模型基于影像自身信息,去除NDVI阴影影响的同时,有效保持了NDVI的相对空间关系;本文基于物理机理构建模型,模型表达简洁、易于应用,且仅依赖于影像自身信息,无需异源数据,计算方便且高效。  相似文献   

7.
基于MODIS时序植被指数的区域物候信息提取   总被引:1,自引:0,他引:1  
利用黑龙江省2012年16 d 250 m的MODIS NDVI数据,使用Savitsky-Golay滤波法、Logistic调合函数模型和非对称Gaussian模型3种方法对曲线拟合重构,引入均方根误差比较3种方法的优劣;在曲线平滑的基础上提取物候参数,分别对森林和农用地用固定阈值和动态阈值提取其物候参数,目的在于比较两种阈值设定方法的优劣,并获取阈值使物候参数结果与作物农事历信息吻合。结果表明,Savitsky-Golay滤波法在与原始曲线近似度方面优于另外两种拟合方法。  相似文献   

8.
改进的表观热惯量法反演土壤含水量   总被引:4,自引:0,他引:4  
提出一种改进的表观热惯量计算模型,以中科院栾城农业生态系统试验站为基地,通过实测的模型参数,利用提出的表观热惯量模型计算不同植被覆盖下、不同实验区土壤含水量的热惯量值,并与土壤含水量进行相关性分析,以找到热惯量方法可以用来反演土壤含水量的适用条件(归一化植被指数NDVI的阈值).实验结果表明,该模型监测土壤含水量是可行的,在植被覆盖度较低的情况下(NDVI≤O.35)具有较高的精度,在植被覆盖度较高(NDVI>0.35)时,热惯量模型失效,因此用热惯量方法反演土壤含水量植被覆盖时将NDVI阈值的最大值设为0.35.将该方法应用到MODIS数据中,以河北省栾城县、赵县、藁城市3市县为研究区,分别反演该区土壤含水量,反演结果与实际情况相符合.实地取点人工监测土壤含水量为25.1%,栾城站模型计算结果为22.4%,匹配性较好,该方法在遥感数据中得到了很好的应用.  相似文献   

9.
为提高遥感影像中不同覆盖度植被信息由栅格到矢量的转化效率和准确度,改进了常用的NDVI辅助提取植被信息方法,即根据NDVI与植被覆盖度之间的关系自动提取不同覆盖度的植被信息.为检验该方法的效果,利用试验区一组TM影像进行植被信息的提取试验.结果表明,该方法与常用方法相比能有效地增强不同覆盖度植被边缘信息,提高了植被边缘信息栅格矢量化的效率和准确度.  相似文献   

10.
太湖水生植被NDVI的时空变化特征分析   总被引:2,自引:0,他引:2  
为了明确太湖不同生态区水生植被长势的变化规律及其影响因子,利用MODIS传感器提供的NDVI数据,分析了太湖2000年—2015年NDVI的时间及空间变化特征。结果表明:太湖水生植被NDVI存在明显的季节变化和年际变化,NDVI每年最小值出现在冬季,最大值出现在植被生长旺盛的8月或9月,其值可达0.35;太湖全湖NDVI多年平均值为0.1,最大值为0.14,出现在2007年。太湖NDVI的空间差异可将太湖划分为不同的植被类型区,太湖西北部(竺山湾和梅梁湾)NDVI最大值可达0.2,植被类型主要以浮游藻类为主,东太湖区域最大值超过0.6,主要以沉水植被为主;太湖不同区域植被动态特征对气象因子的响应也不尽相同,沉水植物生长与平均气温有显著的正相关关系,而浮游植物区的生长状况受平均风速影响较大。  相似文献   

11.
基于地形调节植被指数估算长汀县植被覆盖度   总被引:3,自引:0,他引:3  
植被覆盖度遥感估算最常用的方法是基于植被指数构建模型,但大部分的植被指数没有考虑地形的影响。以福建省长汀县作为研究区,引入能消除地形影响的地形调节植被指数(topography adjusted vegetation index,TAVI),利用像元二分模型估算植被覆盖度,旨在研究TAVI对植被覆盖度估算结果的影响,并与基于归一化差值植被指数(normalized difference vegetation index,NDVI)估算的结果进行比较。根据目视效果和统计指标的分析表明:基于TAVI估算的植被覆盖度精度高于基于NDVI的估算结果,并能有效降低阴坡阳坡间的差异,提高阴坡区域植被覆盖度的估算精度。  相似文献   

12.
以黄上高原泾河流域为例,首先利用遥感植被指数和气候干燥度指数之间的回归模型,模拟出了潜在植被指数,在此基础上通过遥感监督分类方法得出泾河流域现生植被分布格局和潜在植被的分布格局,并利用转换矩阵方法得出了植被退化的空间态势.结果表明:泾河流域最主要的潜在植被类型是针阔叶疏林(32.44%)、阔叶落叶林(31.28%)和中牛灌丛(23.71%).与现生植被相比较,有25.08%的阔叶落叶林潜在分布区被开垦为农作物,13.32%退化为针阔叶疏林,13.04%退化为中生灌丛,14.22%变化为旱生灌丛,仅有25.90%的面积保持了阔叶落叶林植被;针阔叶疏林分布区主要退化为农作物(26.01%)、旱生灌丛(20.99%)、草甸(17.12%);中生灌丛主要退化为草甸(30.29%)和温带草原(43.21%).植被的退化以流域中部、南部的黄土残塬沟壑区退化最为严重,其次为流域北部的黄土丘陵区,而流域东部的子午岭山区和流域西部的六盘山区植被退化相对较轻.  相似文献   

13.
In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest–savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.  相似文献   

14.
This research aimed to analyze the possibility to estimate and automatically map large areas of soybean cultivation through the use of MODIS (Moderate-Resolution Imaging Spectroradiometer) images. Two major techniques were used: GEOgraphic-Object-Based Image Analysis (GEOBIA) and Data Mining (DM). In order to obtain the images, the segmentation algorithm implemented by Definiens Developer was used. A decision tree (DT) was created from a training set previously prepared. Time-series of images from the MODIS sensor aboard the Terra satellite were acquired in order to represent the wide variation of the vegetation pattern along the soybean crop cycle. The time-series data were used only for the CEI index. Furthermore, to compare the results obtained from GEOBIA, the slicing technique was used at the CEI level. After the training, the DT was applied to the vegetation indices generating the thematic map of the spatial distribution of soybean. In accordance with the error matrix and kappa parameter analysis, tests for statistical significance were created. Results indicate that the classification achieved by Kappa coefficients is 0.76. In short, the obtained results proved that combining vegetation indices and time-series data using GEOBIA return promising results for mapping soybean plantation on a regional scale.  相似文献   

15.
江海英  柴琳娜  贾坤  刘进  杨世琪  郑杰 《遥感学报》2021,25(4):1025-1036
植被冠层含水量CWC (Canopy Water Content)和植被地上部分含水量VWC (Vegetation Water Content)对于植被健康状况和土壤干旱监测具有重要意义。本文联合PROSAIL辐射传输模型和植被水分指数NDWI(Normalized Difference Water Index),发展了一种简单、通用性较好的低矮植被CWC和VWC反演方法,可实现中、高空间分辨率下的CWC和VWC估算。首先对PROSAIL模型输入参数进行敏感性分析,明确各参数对模型输出反射率的影响机制,以优化PROSAIL模型输入参数设置并生成低矮植被的反射率模拟数据。基于模拟数据,计算了4个植被水分指数NDWI_((860,1240))、NDWI_((860,1640))、NDWI_((1240,1640))和NDWI_((860,970))用于反演低矮植被CWC和VWC。基于模拟数据的结果表明,4个植被水分指数与ln (CWC)都存在明显的线性关系,基于该关系建立了CWC估算模型。该模型可以直接用于低矮植被CWC估算,并通过VWC与CWC之间的经验关系间接计算得到VWC。模型模拟结果也表明,由于NDWI_((860,1640))和NDWI_((1240,1640))高度相关(R~2=0.99),两者可以提供相似且相对较好的低矮植被CWC估算精度。基于地面实测数据的验证结果与基于模拟数据的结果表现出很好的一致性,即基于NDWI_((860,1640))和NDWI_((1240,1640))估算的VWC都有相似且较高的精度,决定系数(R~2)都为0.88,均方根误差(RMSE)分别为0.4558 kg/m~2和0.4380 kg/m~2。利用Landsat 5 TM数据对NDWI_((860,1640))估算效果的验证结果显示,模型估算CWC与地面实测CWC的R~2为0.84,RMSE为0.1342 kg/m~2,估算VWC的RMSE为0.5651 kg/m~2。本文提出的基于NDWI_((860,1640))和NDWI_((1240,1640))的CWC/VWC估算模型可被用于低矮植被的长势监测和干旱监测,为低矮植被覆盖地表的土壤水分反演提供高质量的植被水分信息。  相似文献   

16.
中国植被绿度期遥感监测方法研究   总被引:7,自引:0,他引:7  
武永峰  李茂松  李京 《遥感学报》2008,12(1):92-103
基于遥感技术的地表植物物候监测,有效克服了传统地面观测站点有限、资料不完整等缺陷,实现了观测方法由点向面的空间尺度转换,因此可表征植被生态系统层面的物候现象.本文选择使用"植被绿度期"来代替"植物生长期或生长季"等概念,并以中国陆地植被为研究对象,建立了中国植被绿度期遥感监测模型--基于NDVI累积频率曲线的Logistic拟合模型,来计算中国植被绿度始期和绿度末期.为验证本模型结果的可靠性和优越性,使用地面物候观测数据对其结果加以检验,并与其他常见遥感监测模型进行了比较.结果和验证表明,在地处温带地区的牡丹江、呼和浩特、北京、西安和洛阳站点,使用本模型计算的植被绿度始期与地面观测结果相差9-21d,绿度末期相差0-13d,其准确度均优于其他遥感模型,而且年际波动相对较小;在地处亚热带地区的屯溪、仁寿、贵阳和广州站点,本模型结果产生较大误差.通过误差分析可知,在南方以常绿植被为主的亚热带地区,本模型计算所得的植被绿度始期和绿度末期并不是地表植被生长季始末日期的真实反映,而往往用于指示区域气候变化的特征.此外,本研究模型比其他方法具有更好的适用性,而且适合不同空间尺度的植物物候监测.  相似文献   

17.
评估MODIS的BRDF角度指数产品   总被引:1,自引:2,他引:1  
应用地表观测的二向性反射数据集和多种MODIS数据产品,通过统计分析,对MODIS的二向性反射角度指数产品进行综合评估,结果表明:(1)MODIS角度指数包含了地表三维结构信息,有望用来反演地表的物理结构参数;(2)MODIS角度指数是内在的三维关系,各向异性因子(Anisotropic Factor:ANIF)和各向异性指数(Anisotropic Index:ANIX)高相关,建议去掉ANIF以精炼MODIS角度指数产品;(3)各向异性平整指数(Anisotropic FlatIndex:AFX)较好地指示了地表基本散射类型的变化,且具有较小的类内方差,对改善特定地表分类精度可能会更有用.  相似文献   

18.
利用2000-2015年植被生长季(4~10月)MODIS/NDVI产品反演生成同时相的植被覆盖度数据,运用趋势性分析方法和皮尔逊相关系数法,进行了不同类型自然植被覆盖度时空变化特征及其与降水量、平均气温的驱动因素分析。结果表明从多年平均状态看,针叶林的植被覆盖度高于其他天然植被,灌丛类的最低,荒漠和灌丛类的植被覆盖度总体呈递增趋势;从年际尺度上看,草原和灌丛类植被对气温和降水量的响应规律大致呈反方向;不同类植被在春季(4月)对气温和降水量反映的差异性最大,与春季为新疆融雪高峰期有一定关系。  相似文献   

19.
一种改进的融合多指标荒漠化等级分类方法   总被引:1,自引:0,他引:1  
土地荒漠化等级分类是荒漠化监测的重要内容,也是土地荒漠化综合治理、科学防护的基础。针对植被稀疏及干旱区土地荒漠化提取异常的问题,本文选择干旱/半干旱的科尔沁区为试验区,以2005、2010和2015年3期的中高分辨率Landsat遥感影像为数据源,基于大量的样本统计分析,提出了一种融合植被覆盖度(FVC)、去土壤植被指数(MSAVI)、增强性植被指数(EVI)3种指标的荒漠化提取模型,并将之与传统植被覆盖度指标提取结果进行了对比分析。研究结果表明,相较于单一植被指数反演方法,本文提出的算法分类精度更高,尤其针对干旱/半干旱地区,该融合植被指数法具有更好的适用性和稳健性。该方法为荒漠化评价体系的建立提供了新的思路,为土地荒漠化防护与治理提供了辅助决策支撑。  相似文献   

20.
本文讨论了以热带森林植被为主体的再生资源的面积动态变化监测。研究中包括两个部分。首先,我们利用多时相遥感图像对大面积的西双版纳州进行地类判读,系统地分析了森林植被的动态变化。其次,利用Landsat MSS和TM数据对自然保护区的动态变化进行了包含无监督分类和归一化差值植被指数分析的数字图像处理,变化分类也相当符合实际。总的实验结果表明,这种监测方法是很有效的,可在再生资源监测中特别是在森林植被监测中加以推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号