首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
子午线弧长公式的简化及通用高斯投影计算程序介绍   总被引:6,自引:0,他引:6  
刘正才 《测绘工程》2001,10(1):55-56,62
通过简化子午线弧长公式,给出适用于各种椭球的通用高斯投影实用公式,并简单介绍依此编制的通用高斯投影计算程序。  相似文献   

2.
适用于不同椭球的高斯平面坐标正反算的实用算法   总被引:22,自引:3,他引:19  
本文详细介绍了适用于不同椭球的高斯投影正反算公式中子午线弧长或底点纬度的计算方法,并给出了实用公式。该公式简便实用,便于计算机实现。为验证此公式的正确性,本文最后用该公式计算了54椭球子午线弧长及底点纬度计算式中的各系数,与天文大地网推算的相应系数进行了比较验证。  相似文献   

3.
菜单式通用高斯投影计算程序(CASIOfx-4500P)   总被引:1,自引:0,他引:1  
本文简化了子午线弧长公式 ,并将之用于各种椭球上的通用高斯投影计算 ,编写CASIOfx -4 5 0 0P计算器的菜单式通用高斯投影计算程序 ,以便一般测绘单位推广应用 1 980年国家大地坐标系。  相似文献   

4.
依据高精度子午线长度正算公式,给出了子午线弧长反算公式基于迭代算法程序语言的具体实现,计算出了常用4种椭球的高精度系数值,然后进行了正反算的验证。  相似文献   

5.
由于地球是弹滞体,根据牛顿理论,由于地球的自转作用,地球应该呈扁椭球状。18世纪,法国科学院派遣了两支测量队分赴拉普兰和秘鲁对地球的子午线弧长进行了实测,最终证实了地球是扁椭球。本文分别讨论了子午弧长随地心、大地、归化纬度的变化规律,数值计算结果表明:以大地纬度和归化纬度而论.1°子午线弧长随着纬度的增大而逐渐变长;但以地心纬度而论,1°子午线弧长随着纬度的增大而逐渐变短。  相似文献   

6.
推导了以归化纬度、地心纬度解算子午线弧长的展开公式,同时又根据拉格朗日反演定理,得到了由子午线弧长反解归化纬度、地心纬度的直接公式。该组公式与子午线弧长正反解公式的大地纬度表达在结构形式上保持一致,进一步揭示了子午线弧长同3种纬度变量之间的内在联系。分析表明,基于归化纬度的子午线弧长解算与大地主题解算方法具有理论上的统一性,正反解精度均高于传统基于大地纬度的展开。  相似文献   

7.
椭球子午线弧长计算的新方法   总被引:7,自引:0,他引:7  
根据子午线弧长的计算原理,推导出一个新的子午线弧长计算实用公式。采用新公式计算由赤道到纬度φ的子午线弧长时,在计算效果及计算精度分析方面比传统公式更加直观、准确。  相似文献   

8.
对于高斯正反算来说,首先要计算子午线弧长和底点纬度,从根本上讲,子午线弧长和底点纬度的精度决定着高斯正反算结果的精度。文章参考了一些文献和书籍,借助其成果,实现了不同椭球的较高精度的高斯正反算解算程序。  相似文献   

9.
一、引言 子午线弧长计算足椭球人地测量的一个基本数学问题,它的计算公式中含仃椭圆积分,椭圆积分无分析解。人地测量中一般的做法足按二项式定理展开,展开后为积分方便,又需要按有关公式,化正弦幂函数为余弦的倍角函数,合并同类项后逐项积分。子午线弧长在大地测量和地图制图中有着广泛的用途,如用于推算地球形状大小的弧度测量,  相似文献   

10.
针对长线工程中横轴椭圆柱等角投影在设计工程平面施工图时需要频繁分带和精度较低的问题,提出了以线路走向的椭球大椭圆线为新的中央子午线进行投影的大椭圆线椭球高斯投影,并研究大椭圆线椭球的参数理论模型。首先,推导了以归化纬度代替大地纬度为参数的子午线弧长公式;其次,根据二次曲线不变量理论、线性代数、微积分等知识推导出以平面方程系数为参数的大椭圆椭球基本几何参数的计算模型;然后,推导出基础椭球与大椭圆椭球之间大地坐标的直接转换模型;最后,以某一实际工程资料为基础,验证了推导的理论模型的正确性和优越性,以便在长线工程中普及应用。  相似文献   

11.
平差系统的模型误差及其识别方法研究   总被引:2,自引:0,他引:2  
论述了模型误差影响参数估值的一些理论问题,指出了随机模型误差和函数模型误差之间的相互作用和转化。为讨论平差系统最优模型的选取,给出了与现有文献将模型误差纳入平差系统的思路不同的一个估计和识别模型误差的理论基础公式,由此导出了相应的实用公式,给出了平差系统模型的优选方法。  相似文献   

12.
卞鸿巍  文者  马恒  王荣颖 《测绘学报》2022,51(9):1890-1898
在中低纬度检验惯性导航极区性能的模拟测试系统中,基准误差造成的IMU转换修正误差是影响模拟测试精度的重要因素,本文讨论分析了其简化计算方法。采用转移前后地球球体模型下横向坐标系导航参数不变的基准轨迹转移原则,首先简述了模拟测试方法及IMU转换公式;其次,研究了IMU转换修正误差的计算方法,相比完整计算公式给出了适合船用的近似计算公式,并对其中的系数、各分量的量级及变化形式进行分析;最后,利用实测航次的导航参数,对比验证了公式计算的正确性。简化公式最大计算误差约为10%,可满足后续模拟测试中IMU误差的分析要求。  相似文献   

13.
提出了一种新型双星串飞编队卫星测高模式下高度计之间的相对定标方法,给出了计算高度计相对偏差的完整公式;采用Jason-2卫星数据,对相对偏差计算公式中的各误差项进行了功率谱分析以及差分序列的统计分析;以厘米级定标精度为前提,简化了相对偏差计算公式并进行了误差预估。结果表明,相对偏差中各误差项均呈现低频特性,相对偏差误差主要与两颗卫星的相对径向轨道误差、测距误差、海况偏差及两星下比较点间的水准面高差相关,单次飞行高度计之间相对偏差的精度约为1.99cm。  相似文献   

14.
本文针对最小均方误差系统在理论和设计方法上存在的问题,推导出按无纹波条件下最小均方误差系统更完善的设计公式以及应用计算机的快速设计方法。  相似文献   

15.
为描述复杂的现实世界对象,在GIS中将地理对象抽象和简化,建模误差必然存在,并且成为不确定性内容中的重要组成部分。本文将建模误差纳入到不确定性模型中,以三维B样条曲线为例,采用误差传播律来评估参数曲线的线位不确定性,充分体现现实世界对象的复杂性和数字表达的抽象简化的差距,进一步完善了不确定性理论。  相似文献   

16.
有限范围的重力层间改正算法   总被引:1,自引:1,他引:0  
层间改正是重力归算的一项重要内容,传统的平面层层间改正、球面层层间改正与地形改正的范围不一致,因此均存在远区虚拟地形引入的近似误差,且计算点高度越高,此误差越大。本文提出使用有限范围的层间改正进行重力归算的方法,使其区域范围与地形改正的范围一致。然后给出了有限范围层间改正的简便计算方法,该算法与通过地形改正严密积分法演化来的算法具有较好的一致性。内插试验说明当计算点地形高于1000m时,内插应使用基于有限范围层间改正的重力归算方法。  相似文献   

17.
粗差验后方差的无偏估计与最优稳健估计   总被引:6,自引:0,他引:6  
在正态粗差假设下导出了粗差验后方差的无偏估计,对误差工膨胀模型和误差均值移动模型,两者的无偏估计公式是相同的。这证明了李德仁验后方差的朱建军方差不是无偏的。由于偏方定义的彭方法是正态粗差假设下的最优稳健估计。  相似文献   

18.
牛卓立 《测绘工程》1996,5(4):40-43
提出一种由GPS独立观测边组成闭合环的各坐标分量闭合差计算GPS平面控制全中误差的公式。给出了根据地心直角坐标系各坐标分量计算平面上环闭合差的简化公式。根据《工程测量规范》各等级三角网、三边网的主要精度指标,计算了相应等级GPS平面控制网的全中误差指标。  相似文献   

19.
随着PPP的发展与应用,对PPP误差源的研究更加精细、更加科学。电离层折射是高精度PPP的主要误差之一,国内外通用方法是用大气传播理论建立电离层修正模型。本文主要探讨了电离层对精密单点定位影响的基本理论,总结了目前常用方法;研究了Klobuchar模型的改正公式及计算方法;系统地研究了双频观测值建立消电离层延迟模型的理论和方法。使用相同时段的观测数据,将广播星历、Klobuchar模型和双频观测值改正消电离层模型的结果进行比较,发现用GPS双频观测值建立的消电离层模型的精度明显优于广播星历及Klobuchar模型。  相似文献   

20.
We study the characteristics of the random GPS positioning errors when the pseudorange errors differ for each satellite. A concise, explicit, analytical formula is derived for the covariance of the positioning error by using singular value decomposition. It is composed of a uniform error covariance together with additional contributions from those satellites with larger pseudorange errors. The eigenvectors of the uniform error covariance define the principal directions of the 4-dimensional error ellipsoid, and the eigenvalues are the squares of the semi-axes. The additional part from individual satellites has only one eigenvector and one eigenvalue. This makes the error ellipsoid enlarge mainly along a direction related to both the overall satellite geometry and the position of the specific satellites. The theory is validated by simulating the GPS constellation and pseudorange measurements. The random positioning error is examined while any one or more pseudorange errors are increased. Horizontal positioning error distributions are presented to demonstrate the variations of the orientation and size of the error ellipses with the pseudorange error of a specific satellite. The results show that the analytical formula describes the positioning error accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号